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Abstract. In the repetitive approach to the theory of jet bundles there are three
methods of repetition, which yield non-holonomic, semi-holonomic, and holonomic
jet bundles respectively. However the classical approach to holonomic jet bundles
failed to be truly repetitive, for it must resort to such a non-repetitive coordinate-
dependent construction as Taylor expansion. The principal objective in this paper
is to give a purely repetitive definition of holonomicity by using microsquares (dou-
ble tangents), which spells the flatness of the Cartan connection on holonomic infi-
nite jet bundles without effort. The definition applies not only to formal manifolds
but to microlinear spaces in general, enhancing the applicability of the theory of
jet bundles considerably. The definition is shown to degenerate into the classical
one in case of formal manifolds.

Introduction

The flatness of the Cartan connection lies smack dab at the center of the theory of infinite
jet bundles and its comrade called the geometric theory of nonlinear partial differential equa-
tions. Indeed it is the flatness of the Cartan connection that enables the de Rham complex to
decompose two-dimensionally into the variational bicomplex, from which the algebraic topol-
ogy of nonlinear partial differential equations has emerged by means of spectral sequences
(cf. Bocharov et al. [1]), just as the algebraic topology of smooth manifolds is centered on
the unique concept of de Rham complex.
In our previous paper (Nishimura [14]) we have approached the theory of infinite jet

bundles from a standpoint of synthetic differential geometry by regarding a 1-jet as a decom-
position of the tangent space to the space at the point at issue (cf. Saunders [16, Theorem
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4.3.2]) and then looking on higher-order jets as repeated 1-jets (cf. Saunders [16, §5.2 and
§5.3]). As is well known, three different ways of repetition of 1-jets yield higher-order jet bun-
dles of three different kinds, namely, non-holonomic, semi-holonomic and holonomic ones. In
Nishimura [14] we have happened to adopt the semi-holonomic version of infinite jet bundle
as our favorite, but we have failed to distinguish it from the holonomic one.
The principal objective in this paper is to give a purely combinatorial definition of holo-

nomicity, which is undoubtedly coordinate-free and applicable to microlinear spaces in gen-
eral. Once we have deciphered holonomicity from a synthetic coign of vantage and we have
switched from semi-holonomic infinite jet bundles to holonomic ones, the flatness of the Car-
tan connection is easily seen to obtain as an immediate meed, just as in the classical case of
finite-dimensional manifolds. These matters belong in the first section of this paper.
If our new definition of holonomicity claims to deserve its name, it should be shown

to degenerate into the classical coordinate one in case of formal manifolds, thereby tallying
with Kock’s [6] synthetic paraphrase of the classical approach. This is the topic of Section 4.
Sections 2 and 3 are devoted to laconic reviews of formal manifolds and Kock’s [6] synthetic
approach to jet bundles respectively.
Our idea is presented within our favorite framework of synthetic differential geometry,

but apart from the notion of tangent vector being synthetic, the idea could so easily be
translated into classical analytical terms as to be applicable to much a wider context than
the classical theory of jet bundles was originally intended for, say, differential spaces. It is
the high formality that endues our approach to jet bundles with much wider applicability
than such a former generalization of the classical theory as Libermann’s [11] Banach-space-
modelled extension enjoys.
Now we fix our notation and terminology. We denote by R the extended set of real

numbers with cornucopia of infinitesimals, which is expected to satisfy the so-called general
Kock axiom (cf. Lavendhomme [10, §2.1]). An R-module is called Euclidean (in the extended
sense) if it satisfies the general Kock axiom. Obviously Rn is a Euclidean R-module. We
denote by D the totality of elements of R whose squares vanish. Given a microlinear space
M and x ∈ M , we denote by Tn(M) the set of all mappings γ from Dn to M , while we
denote by Tnx(M) the set of all mappings γ from D

n to M with γ(0, . . . , 0) = x. A mapping
π : E → M of microlinear spaces is called a bundle over M , in which E is called the total
space of π, M is called the base space of π, and Ex = π

−1(x) is called the fiber over x ∈ M .
Given x ∈ E, we denote by Vnx(π) the subset of T

n
x(E) consisting of all γ ∈ T

n
x(E) such

that π ◦ γ(d1, . . . , dn) = π(x) for all (d1, . . . , dn) ∈ Dn. Given two bundles π : E → M and
π′ : E ′ → M over the same microlinear space M , a mapping f : E → E ′ is said to be over
M if it induces the identity mapping of M. In this case f is called a morphism of bundles
over M from π to π′ .

1. Nishimura’s synthetic approach revisited

Let π : E →M and π′ : E ′ →M be bundles over the same microlinear space M , which shall
be fixed throughout this section. A preconnection over the bundle π : E →M at x ∈ E is a
mapping ∇x : T1π(x)(M) → T

1
x(E) such that for any t ∈ T

1
π(x)(M) and any α ∈ R, we have
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the following:

π ◦ ∇x(γ) = t (1.1)

∇x(αt) = α∇x(t) (1.2)

We note in passing that condition (1.2) implies that ∇x is linear by dint of Proposition 10
of Lavendhomme [10, §1.2]. We denote by J1x(π) the totality of preconnections ∇x over the
bundle π : E → M at x ∈ E. We denote by J1(π) the set-theoretic union of J1x(π)

′s for all
x ∈ E. The canonical projection J1(π)→ E is denoted by π1,0 with π1 = π ◦ π1,0.
Let f be a morphism of bundles over M from π to π′ over the same base space M. We

say that a preconnection ∇x over π at a point x of E is f -related to a preconnection ∇y over
π′ at a point y = f(x) of E ′ (in the sense of Nishimura) provided that

f ◦ ∇x(t) = ∇y(t) (1.3)

for any t ∈ T1a(M) with a = π(x) = π
′(y).

Theorem 1.1. (cf. Saunders [16, Theorem 4.3.2]). Given a preconnection ∇x over the bun-
dle π : E → M at a point x of E, the set Hx(π,∇x) = {∇x(t) | t ∈ T1π(x)(M)} is an

R-submodule of the R-module T1x(E), and the R-module T
1
x(E) is the direct sum of R-

submodules Hx(π,∇x) and V1x(π) of T
1
x(E). Conversely, given an R-submodule H of T

1
x(E)

with T1x(E) = H ⊕ V
1
x(π), there exists a unique preconnection ∇x with Hx(π,∇x) = H

provided that there exists a preconnection over π at x at all.

In short, providing that there exists a preconnection over π at x at all, the assignment
∇x 7→ Hx(π,∇x) gives a bijective correspondence between preconnections over π at x and
R-submodules of T1x(E) complementary to V

1
x(π).

Proof. Essentially the same as in the proof of Theorem 2.1 of Nishimura [13]. �

Vectors inHx(π,∇x) in the above theorem are called horizontal. The canonical projections of
T1x(E) into Hx(π,∇x) and V

1
x(π) with respect to the decomposition T

1
x(E) = Hx(π,∇x)⊕

V1x(π) in the above theorem are denoted respectively by h∇x and v∇x . Note that h∇x(t) =
∇x(π ◦ t) for any t ∈ T1x(E).
The above theorem has its counterpart for morphisms of bundles over M.

Theorem 1.2. Let f be a morphism of bundles from π : E →M to π′ : E ′ →M over M. A
preconnection ∇x over π at x ∈ E is f -related to a preconnection ∇y over π′ at y = f(x) iff
h∇y(f ◦ t) = f ◦ h∇x(t) for any t ∈ T

1
x(E), or equivalently, iff v∇y(f ◦ t) = f ◦ v∇x(t) for any

t ∈ T1x(E), or equivalently again, iff the differential of f at x preserves horizontal vectors.

Proof. See the proof of Proposition 1.2 of Nishimura [14]. �

By convention we let J̃0(π) = Ĵ0(π) = J0(π) = E with π̃0,0 = π̂0,0 = π0,0 = idE and

π̃0 = π̂0 = π0 = π. We let J̃
1(π) = Ĵ1(π) = J1(π) with π̃1,0 = π̂1,0 = π1,0 and π̃1 = π̂1 = π1.
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Now we are going to define J̃k+1(π), Ĵk+1(π) and Jk+1(π) together with mappings π̃k+1,k :

J̃k+1(π) → J̃k(π), π̂k+1,k : Ĵk+1(π) → Ĵk(π) and πk+1,k : Jk+1(π) → Jk(π) by induction on
k ≥ 1. These are intended for non-holonomic, semi-holonomic and holonomic jet bundles in
order. We let π̃k+1 = π̃k ◦ π̃k+1,k , π̂k+1 = π̂k ◦ π̂k+1,k and πk+1 = πk ◦ πk+1,k. First we deal
with J̃k+1(π), which is defined to be J1(π̃k) with π̃k+1,k = (π̃k)1,0.

Next we deal with Ĵk+1(π), which is defined to be the subspace of J1(π̂k) consisting of
∇x’s with x = ∇y ∈ Ĵk(π) abiding by the following condition:

∇x is π̂k,k−1-related to ∇y. (1.4)

Finally we deal with Jk+1(π), which is defined to be the subspace of J1(πk) consisting of ∇x’s
with x = ∇y ∈ Jk(π) abiding by the following conditions:

1) ∇x is πk,k−1-related to ∇y.

2) Let d1, d2 ∈ D and γ a microsquare on M with γ(0, 0) = πk(x). Let it be that

z = ∇y(γ(·, 0))(d1)

w = ∇y(γ(0, ·))(d2)

∇z = ∇x(γ(·, 0))(d1)

∇w = ∇x(γ(0, ·))(d2)

Then we have

∇z(γ(d1, ·))(d2) = ∇w(γ(·, d2))(d1). (1.5)

Now we define the infinite jet bundles J̃∞(π), Ĵ∞(π) and J∞(π) of the bundle π : E → M
as the inverse limits of the following sequences in order:

J̃0(π)
∼
π1,0
←− J̃1(π)

∼
π2,1
←− J̃2(π)

∼
π3,2
←− J̃3(π) . . . (1.6)

Ĵ0(π)
π̂1,0
←− Ĵ1(π)

π̂2,1
←− Ĵ2(π)

π̂3,2
←− Ĵ3(π) . . . (1.7)

J0(π)
π1,0
←− J1(π)

π2,1
←− J2(π)

π3,2
←− J3(π) . . . (1.8)

Therefore a point x of J∞(π) is represented by a sequence {xi}i≥k with xi ∈ Jk(π) and
πi+1,i(xi+1) = xi. We define a mapping π∞,n : J

∞(π) → Jn(π) to be π∞,n({xi}i≥k) =
πm,n(xm) for some m ≥ max{k, n}. This definition is surely independent of our choice of m,
and so is well defined. We define a mapping π∞ : J

∞(π) → M to be π∞({xi}i≥k) = πk(xk).
These remarks and definitions apply to J̃∞(π) and Ĵ∞(π) with due but obvious modifications.
We conclude this section by remarking that the assumption [J∞II] of our previous paper

(Nishimura [14]) is redundant, so long as we turn our attention from the semi-holonomic
infinite jet bundle Ĵ∞(π) to the holonomic infinite jet bundle J∞(π).
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Now we are going to define a connection on the bundle π∞ : J
∞(π) → M to be called

the Cartan connection and to be denoted by ∇∞:

∇∞(t,x)(d) = {∇i+1xi (t)(d)}i≥k (1.9)

for any t ∈ T1π∞(x)(M), any d ∈ D and any x = {xi}i≥k = {∇
i+1
xi
}i≥k ∈ J∞(π).

The existence of the Cartan connection ∇∞ on J∞(π) makes the infinite jet bundle J∞(π)
prodigiously predominant over higher-order jet bundles Ji(π)’s in theory and applications.
The proof of the following theorem is simple, but we could not exaggerate its importance in
the theory of infinite jet bundles.

Theorem 1.3. For any microsquare γ on M , any d1, d2 ∈ D and any x ∈ J∞(π) with
π∞(x) = γ(0, 0), we have

∇∞(γ(·, d2),∇
∞(γ(0, ·),x)(d2))(d1) = ∇

∞(γ(d1, ·),∇
∞(γ(·, 0),x)(d1))(d2). (1.10)

Proof. Let it be that

x = {xi}i≥0 = {∇
i
x}i≥1

y = ∇∞(γ(0, ·),x)(d2) = {yi}i≥0 = {∇
i+1
yi
}i≥0 = {∇

i+1
xi
(γ(0, ·))(d2)}i≥0

z = ∇∞(γ(·, 0),x)(d1) = {zi}i≥0 = {∇
i+1
zi
}i≥0 = {∇

i+1
xi
(γ(·, 0))(d1)}i≥0.

Then we have

∇∞(γ(·, d2),∇
∞(γ(0, ·),x)(d2))(d1)

= ∇∞(γ(·, d2), {∇
i+1
xi
(γ(0, ·))(d2)}i≥0)(d1)

= {∇i+1yi (γ(·, d2))(d1)}i≥0. (1.11)

On the other hand we have

∇∞(γ(d1, ·),∇
∞(γ(·, 0),x)(d1))(d2)

= ∇∞(γ(d1, ·), {∇
i+1
xi
(γ(·, 0))(d1)}i≥0)(d2)

= {∇i+1zi (γ(d1, ·))(d2)}i≥0. (1.12)

Therefore it follows from (1.5), (1.11) and (1.12) that (1.10) obtains. �

All the results and their gimmicks of our previous paper (Nishimura [14]) persist through
their holonomicization, except that the assumption [J∞II] is now seen to be redundant.

2. Formal manifolds

We denote by D(n)k the set

{(d1, . . . , dn) ∈ Rn | any product of k + 1 or more of the di’s is 0}.
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Trivially D(n)k ⊂ D(n)k+1. We denote by D(n)∞ the set-theoretic union of all D(n)k’s. It
is easy to see that

D(n)k ×D(m)1 ⊂ D(n+m)k+1 (2.1)

D(n+m)k ⊂ D(n)k ×D(m)k (2.2)

so that

D(n+m)∞ = D(n)∞ ×D(m)∞ (2.3)

A subspace Y of a space X is called étale provided that for any commutative square

1 −→ K
↓ ↓
Y −→ X

(2.4)

with an infinitesimal space K and the canonical injection Y → X there is a unique diagonal
fill-in K →Y.
A space M is called a formal n-dimensional manifold if for each x ∈ M there exists

an étale subspace of M containing x and isomorphic to D(n)∞, which is usually denoted
schematically by x + D(n)∞ and is called the ∞-monad around x. Intuitively speaking, a
formal n-dimensional manifold is a space which is of n-dimensional coordinates infinitesimally.
We will often identify a point of M and its coordinates. In particular, it is not difficult to
see that x+D(n)k is independent of our choice of an infinitesimal coordinate system and is
called the k-monad around x.
A formal bundle is a mapping π of a formal (n + m)-dimensional manifold E into a

formal n-dimensional manifold M such that for any x ∈ E there exist an étale subspace of
E isomorphic to D(n + m)∞ = D(n)∞ × D(m)∞ and containing x and an étale subspace
of M isomorphic to D(n)∞ and containing π(x) such that the restriction of π to the above
étale subspace of E is represented by the canonical projection D(n+m)∞ → D(n)∞ mapping
(xi, up) to (xi)(1 ≤ i ≤ n, 1 ≤ p ≤ m), in which the formal bundle π is said to be of dimension
(n,m). In other words the mapping π : E → M is a formal bundles iff it is infinitesimally
trivializable.
Now we choose formal (n,m)-dimensional bundles π : E → M and π′ : E ′ → M once

and for all.

3. Kock’s synthetic approach summarized

Kock’s synthetic approach to jet bundles is based on the following fundamental theorem ([4,
Theorem 4.3]).

Theorem 3.1. Let f : a +D(n)∞ → X, where a ∈ Rn and X is any Euclidean R-module.
Then we have

f(a+ (d1, . . . , dn)) = Σ
k
p=0

1

p!
Σnj1=1 · · ·Σ

n
jp=1Dj1 · · ·Djpf(a)dj1 · · · djp (3.1)

for any (d1, . . . , dn) ∈ D(n)k, where Di denotes the i-th directional derivative.
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This theorem has justified Kock [6] to define an k-jet of π at a ∈ M , using an infinitesimal
coordinate, as a mapping γ : a + D(n)k → E such that π ◦ γ is the identity mapping. We
denote by J k(π) the totality of k-jets of π. Since D(n)k ⊂ D(n)k+1, there is a canonical
projection J k+1(π) → J k(π), which we denote by π̄k+1,k. We denote by π̄k the canonical
mapping J k(π)→ M. It is easy to see that

Proposition 3.2. J k(π) is a formal manifold of dimension n+m(n+kk ), and π̄k : J
k(π)→M

is a formal bundle of dimension (n,m(n+kk )).

Given a morphism f of bundles over M from π to π′, we say that a k-jet γ of π at a ∈M is
f -related to a k-jet γ′ of π′ at a (in the sense of Kock) provided that γ′ = π ◦ γ.

4. The equivalence of the two approaches

The principal objective of this section is to give a classical coordinate description of Jk(π) after
the manner of Saunders [16, Chaper 5], thereby establishing the equivalence between Kock’s
[6] and our synthetic approaches to jet bundles within the framework of formal bundles. Let
us begin with 1-jets. We are going to define an isomorphism Ψ1π : J

1(π) → J1(π). Let
γ ∈ J 1(π), so that it is defined on (xi) + D(n)1. We have to define a 1-preconnection ∇x
over the bundle π at x = γ((xi)), which we intend for Ψ1π(γ). Let t ∈ T

1
(xi)(M), so that it is

of the form

d ∈ D 7→ (xi) + d(ai), (4.1)

where (ai) ∈ Rn. Since d(ai) ∈ D(n)1, we can define ∇x(t) to be d ∈ D 7→ γ((xi)+ d(ai)). It
is not difficult to see that the mapping∇x : t ∈ T1(xi)(M) 7→ ∇x(t) is indeed a 1-preconnection

over π at x, so that we have a mapping Ψ1π : J
1(π) → J1(π) with Ψ1π(γ) = ∇x. It is not

difficult to see that

Theorem 4.1. J 1(π) and J1(π) can naturally be identified under Ψ1π.

In particular, given x = (xi, up) ∈ E and ∇x ∈ J1(π), there exist unique u
p
i ’s of R (1 ≤ i ≤ n,

1 ≤ p ≤ m) such that ∇x(t) is of the form

d ∈ D |→ (xi + dai, up + dΣnj=1a
jupj) (4.2)

for any t ∈ T1(xi)(M) of the form (4.1). This gives a coordinate description (x
i, up;upi ) of ∇x,

which we will usually identify with ∇x itself.
It is easy to see that

Proposition 4.2. Let f be a morphism of bundles over M from π : E → M to π′ : E ′ →
M. Let (xi) ∈ M . Let γ ∈ J 1(π) and γ′ ∈ J 1(ξ) with f(γ(xi)) = γ′((xi)). Let ∇x = Ψ1π(γ)
and ∇y = Ψ1π′(γ

′), where x = γ((xi)) and y = γ′((xi)). Then γ is f -related to γ′ in the sense
of Kock iff ∇x is f -related to ∇y in the sense of Nishimura.
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Now we will deal with 2-jets. Let t ∈ T1(xi)(M) be of the form (4.1). Let ∇x =

(xi, up;upi ;u
p
;j, u

p
i;j) ∈ J̃

2(π) = J1(π1) and ∇y = (xi, up;u
p
i ) ∈ J

1(π) with x = (xi, up;upi )
and y = (xi, up), so that ∇y(t) is of the form (4.2) while ∇x(t) is of the form

d ∈ D 7→ (xi + dai, up + dΣnj=1a
jup;j;u

p
i + dΣ

n
j=1a

jupi;j), (4.3)

for which we have

Proposition 4.3. (xi, up;upi ;u
p
;j, u

p
i;j) ∈ Ĵ

2(π) iff upi = u
p
;i for all 1 ≤ p ≤ m and all

1 ≤ i ≤ n.

Proof. It follows from (4.2) and (4.3) that ∇x is π1,0-related to ∇y iff

up + dΣnj=1a
jup;j = u

p + dΣnj=1a
jupj (4.4)

for all (a1, . . . , an) ∈ Rn and all d ∈ D, which is tantamount to saying that

up;j = u
p
j (4.5)

for all 1 ≤ p ≤ m and all 1 ≤ j ≤ n. This completes the proof. �

Thus the coordinate (xi, up;upi ;u
p
;j, u

p
i;j) ∈ Ĵ

2 can be simplified to (xi, up, upi , u
p
i;j), so that we

have

Corollary 4.4. Ĵ2(π) is a formal manifold, and π̂2 : Ĵ
2(π)→M is a formal bundle.

Now we take a step forward.

Proposition 4.5. Let (xi, up, upi , u
p
i;j) ∈ Ĵ

2(π). Then (xi, up, upi , u
p
i;j) ∈ J

2(π) iff upi;j = u
p
j;i

for all 1 ≤ p ≤ m and all 1 ≤ i, j ≤ n.

Proof. Let γ ∈ T2(xi)(M). Then γ is of the form

(d1, d2) ∈ D
2 7→

(x1, . . . , xn) + d1(a
1, . . . , an) + d2(b

1, . . . , bn) + d1d2(c
1, . . . , cn)

= (x1 + d1a
1, . . . , xn + d1a

n) + d2(b
1 + d1c

1, . . . , bn + d1c
n)

= (x1 + d2b
1, . . . , xn + d2b

n) + d1(a
1 + d2c

1, . . . , an + d2c
n).

Let ∇x1 = (x
i, up, upi , u

p
i;j), ∇x0 = x1 = (x

i, up, upi ) and x0 = (x
i, up). Then we have

∇x0(γ(·, 0))(d1) = (xi + d1a
i, up + d1Σ

n
j=1a

jupj)

∇x1(γ(·, 0))(d1) = (xi + d1a
i, up + d1Σ

n
j=1a

jupj , u
p
i + d1Σ

n
j=1a

jupi;j).
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Let y0 = ∇x0(γ(·, 0))(d1) and ∇y0 = ∇x1(γ(·, 0))(d1). Then we have

∇y0(γ(d1, ·))(d2
= (xi + d1a

i + d2b
i + d1d2c

i, up + d1Σ
n
j=1a

jupj

+d2Σ
n
k=1(b

k + d1c
k)(upk + d1Σ

n
j=1a

jupk;j))

= (xi + d1a
i + d2b

i + d1d2c
i, up + d1Σ

n
j=1a

jupj

+d2Σ
n
k=1b

kupk + d1d2Σ
n
k=1c

kupk + d1d2Σ
n
j=1Σ

n
k=1a

jbkupk;j). (4.6)

On the other hand we have

∇x0(γ(0, ·))(d2) = (xi + d2b
i, up + d2Σ

n
j=1b

jupj)

∇x1(γ(0, ·))(d2) = (xi + d2b
i, up + d2Σ

n
j=1b

jupj , u
p
i + d2Σ

n
j=1b

jupi;j).

Let z0 = ∇x0(γ(0, ·))(d2) and ∇z0 = ∇x1(γ(0, ·))(d2). Then we have

∇z0(γ(·, d2))(d1) =

= (xi + d1a
i + d2b

i + d1d2c
i, up + d2Σ

n
j=1b

jupj +

d1Σ
n
k=1(a

k + d2c
k)(upk + d2Σ

n
j=1b

jupk;j))

= (xi + d1a
i + d2b

i + d1d2c
i, up + d1Σ

n
j=1a

jupj +

d2Σ
n
k=1b

kupk + d1d2Σ
n
k=1c

kupk + d1d2Σ
n
j=1Σ

n
k=1a

kbjupk;j)

= (xi + d1a
i + d2b

i + d1d2c
i, up + d1Σ

n
j=1a

jupj +

+d2Σ
n
k=1b

kupk + d1d2Σ
n
k=1c

kupk + d1d2Σ
n
j=1Σ

n
k=1a

jbkupj;k). (4.7)

Therefore it follows from (4.6) and (4.7) that

∇y0(γ(d1, ·))(d2) = ∇z0(γ(·, d2))(d1)

for all γ ∈ T2(xi)(M) and all (d1, d2) ∈ D
2 iff upj;k = u

p
k;j for all 1 ≤ p ≤ m and all 1 ≤ j, k ≤ n.

This completes the proof. �

Corollary 4.6. J2(π) is a formal manifold of dimension n +m(n+22 ), and π2 : J
2(π) → M

is a formal bundle of dimension (n,m(n+22 )).

With due regard to Proposition 4.5 we have

Theorem 4.7. J 2(π) and J2(π) can naturally be identified.

The explicit construction of the isomorphism Ψ2π : J
2(π) → J2(π) goes as follows. Let

γ ∈ J 2(π), so that it is defined on (xi)+D(n)2. We have to define a preconnection ∇x over
the bundle π1 : J

1(π) → M at x = Ψ1π(γ|(xi)+D(n)1)), which we intend for Ψ
2
π(γ). Let t ∈

T1(xi)(M), so that it is of the form d ∈ D 7→ (x
i)+d(ai), where (ai) ∈ Rn. Since d(ai) ∈ D(n)1

and D(n)1 +D(n)1 ⊂ D(n)2, we can define ∇x(t) to be d ∈ D 7→ Ψ1π(γ|(xi)+d(ai)+D(n)1). It is
not difficult to see that the mapping ∇x : t ∈ T1(xi)(M) 7→ ∇x(t) is indeed a 1-preconnection

over π1 at x, so that we have the desired isomorphism Ψ
2
π : J

2(π)→ J2(π) with Ψ2π(γ) = ∇x.
The above argument leading to Theorem 4.7 can easily be generalized so as to yield
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Theorem 4.8. J k(π) and Jk(π) can naturally be identified for any natural number k.

Corollary 4.9. Jk(π) is a formal manifold of dimension n +m(n+kk ), and πk : J
k(π) → M

is a formal bundle of dimension (n,m(n+kk )).

The isomorphism Ψkπ from J
k(π) to Jk(π) is explicitly constructed by induction on k. We

have already constructed Ψ1π : J
1(π) → J1(π) and Ψ2π : J

2(π) → J2(π). Now we proceed
inductively. The explicit construction of the isomorphism Ψk+1π : J k+1(π) → Jk+1(π) goes
as follows. Let γ ∈ J k+1(π), so that it is defined on (xi) + D(n)k+1. We have to define
a preconnection ∇x over the bundle πk : Jk(π) → M at x = Ψkπ(γ|(xi)+D(n)k), which we
intend for Ψk+1π (γ). Let t ∈ T

1
(xi)(M), so that it is of the form d ∈ D 7→ (x

i) + d(ai),

where (ai) ∈ Rn. Since d(ai) ∈ D(n)1 and D(n)1 + D(n)k ⊂ D(n)k+1, we can define
∇x(t) to be d ∈ D 7→ Ψkπ(γ|(xi)+d(ai)+D(n)k) . It is not difficult to see that the mapping
∇x : t ∈ T1(xi)(M) 7→ ∇x(t) is indeed a preconnection over πk at x, so that we have the

desired isomorphism Ψk+1π : J k+1(π)→ Jk+1(π) with Ψk+1π (γ) = ∇x.
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rentiables banachiques. Analyse Globale, 7–108, Presses Univ. Montréal, Montréal, Que-
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