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Abstract. In the present paper we propose to extend the notion of extrinsic
symmetric space introduced by D. Ferus [5] to the recently defined symmetric
Cauchy-Riemann Manifolds [8]. We show that this is a meaningful extension, by
presenting a number of examples that exist in “nature”.
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1. Introduction

Cauchy-Riemann manifolds have been a popular subject of study for many years (see for
instance [7], [9], [10], [1], [2] and many references in them). Recently (see [8]) the notion
of symmetric almost Hermitian CR-manifold (SCR-space for short) has been introduced as
a very natural generalization of symmetric spaces (Riemannian or Hermitian). That very
interesting paper, which is the motivation of the present one, contains a deep study of these
spaces with many examples and a general method of construction.
Roughly, a SCR-space is an almost Hermitian CR-manifold that, at each point y ∈ M,

has a CR-diffeomorphism sy :M →M (called a symmetry at the point y ∈M) such that y is
a (not necessarily isolated) fixed point of sy and its derivative sy∗|y restricted to a particular
subspace of Ty (M) coincides with (−Id) . See Section 2 for the complete definitions.
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Here we propose to extend the classical notion of extrinsic symmetric space, given by D.
Ferus in [5], to the recently defined SCR-spaces (see Definition 3 below).
The main objective of the present paper is to show that this extended notion is of interest,

basically, because many non trivial examples exist “in nature”. In fact some of the examples
of extrinsic symmetric CR-spaces that we may present, for instance odd dimensional spheres
S2n−1 in Cn or the connected components of the set of tripotents in a Hermitian Positive
Jordan Triple System (the former being a particular case of the last) are given as examples
of SCR-spaces in [8].
Of course the extrinsic symmetric spaces of [5] are included in the larger family, but many

new examples arise that, in our opinion, give non-trivial meaning to the extended notion.
The paper is organized as follows. In the next section we present, for the benefit of the

reader, the basic material needed for our work. It is divided into three subsections. The first
two contain the definitions and results from [8] which are required here. The third one is
included to present a few known facts concerning Hermitian Positive Jordan Triple Systems,
the basic recent reference here is [4, Part V].
It is interesting to notice that many of the examples presented in [8], particularly those

which are relevant for us here, are constructed in connection with Hermitian Jordan Triple
Systems. In Section 3 we show that some of the examples in [8] are in fact, extrinsic sym-
metric.
In Section 4 we present two new families of examples of extrinsic symmetric CR-spaces.

This section starts with a subsection describing the method we use to construct them inside
Hermitian positive simple Jordan Triple Systems. The possibility of a successful construction
seems to depend on the nature of the Hermitian Jordan Triple System under consideration.
It is possible to use the method to construct more complicated examples but it does not seem
convenient to include them here.
Finally Subsection 4.4 contains a description of all examples that can be constructed by

this method in EIII and MIII (2, 3).
The Appendix contains some notation concerning compact Hermitian symmetric spaces

and their canonical embedding as well as some complementary calculations. It goes without
saying that, forgetting the embedding, these spaces are also examples of SCR-spaces.

2. Necessary facts

In this section, for the convenience of the reader, we give the definitions and facts from [8]
and [4] which are needed in the rest of the paper. We have divided it into three subsections.

2.1. SCR-spaces

LetM be a connected finite dimensional real manifold (C∞ or analytic), at each point x ∈M
the tangent space will be denoted by Tx (M). An almost Cauchy-Riemann structure or an
almost CR-structure is the assignation, to every x ∈ M, of a linear subspace Hx ⊂ Tx (M)
and a complex structure Jx on Hx in such a way that the subspace Hx and the complex
structure Jx depend differentially on x. This dependence means that every point x ∈ M
has a neighborhood U ⊂ M and for each y ∈ U a linear endomorphism Jy of Ty (M) such
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that
(
−J2y

)
is a projection from Ty (M) onto Hy with J

2
yX = −X for every X ∈ Hy and

Jy depending smoothly on y ∈ U. Thus all the subspaces Hx have the same dimension.
A connected differentiable manifold with an almost CR-structure is called an almost CR-
manifold.
A smooth map ϕ : M → N between two almost CR-manifolds is called a CR-map if

for every y ∈ M the derivative ϕ∗|y : Ty (M) → Tϕ(y) (N) maps the complex subspace
Hy (M) complex linearly intoHϕ(y) (N) . Then it makes sense to consider CR-diffeomorphisms
between almost CR-manifolds.
Let D = D (M) be the Lie algebra of smooth vector fields inM and consider the subspace

H = H (M) = {X ∈ D : Xy ∈ Hy, ∀y ∈M} .

We define inductively

H1 = H, Hk = Hk−1 +
[
H,Hk−1

]
(k = 1),

Hk = 0 (k 5 0).

Then [Hr,Hs] ⊂ Hr+sand H∞ =
⋃
k H
k is the Lie subalgebra of D generated by H. We also

denote by Hky the subspaces of Ty (M)

Hky =
{
X ∈ Ty (M) : X = Uy, for some U ∈ H

k
}
.

Let us assume now that we have on M a Riemannian metric and let 〈∗, ∗〉y denote the
corresponding scalar product in Ty (M). We shall say that M is an almost Hermitian CR-
manifold if for every y ∈M and every X,Z ∈ Hy

〈JyX, JyZ〉y = 〈X,Z〉y

Let us consider now, in Ty (M) , the subspace H
1
y = Hy and define H

k
y and H

−1
y , respectively,

as the orthogonal complement of Hk−1y in Hk and that of H∞y in Ty (M) with respect to the
scalar product 〈∗, ∗〉y . Since Hy ⊂ H

∞
y , the orthogonal direct sum H

−1
y ⊕Hy is a real subspace

of Ty (M) and one has

Ty (M) =
⊕

k=−1

Hky .

Let M be an almost Hermitian CR-manifold and let σ : M → M be a CR-diffeomorphism.
The map σ is called a symmetry at the point y ∈M if y is a (not necessarily isolated) fixed
point of σ and its derivative σ∗|y restricted to the subspace H

−1
y ⊕ Hy ⊂ Ty (M) coincides

with (−Id) .
A connected almost Hermitian CR-manifold M is called a symmetric almost Hermitian

CR-manifold (SCR-space for short) if there is a symmetry, denoted by sy, at each point
y ∈M. It can be proved that there is at most one symmetry ( [8, p. 152, 3.3]), at each point
of M .
One important observation must be made ([8, p. 153, 3.4]). For every symmetry σ at

the point y ∈M the derivative σ∗|y of σ at y satisfies

σ∗|yX = (−1)
k
X
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for every X ∈ Hky and every k = −1. Then if we define

T+y (M) =
⊕

k even

Hky ,

T−y (M) =
⊕

k odd

Hky ,

it is clear that σ∗|y is the (±Id) on T
±
y (M). We also have

Proposition 1. [8, p. 153, 3.6] Let M be an SCR-space and I (M) the Lie group of all iso-
metric CR-diffeomorphisms ofM . Let G be the closed subgroup of I (M) generated by all sym-
metries sy, y ∈M. Let o ∈M denote a fixed base point inM and let K = {g ∈ G : g (o) = o} .
Then G is a Lie group acting transitively and properly on M . The identity component Go

of G has index ≤ 2 in G and coincides with the closed subgroup of I (M) generated by the
transvections sy ◦sz with y, z ∈M. The isotropy subgroup K is compact and M can be canon-
ically identified with the homogeneous manifold G/K via g (o) 7→ gK. Furthermore, M is
compact if and only if G is a compact Lie group. �

Remark 1. This implies in particular that the SCR-space M has a unique structure of
real-analytic CR-manifold and the maping y 7→ sy from M to G is real-analytic. Also the
dimension of the subspace Hky ⊂ Ty (M) does not depend on y for every k.

2.2. The construction principle

Kaup and Zaitsev ([8, Sec. 6]) give a way to construct every SCR-space by Lie theoretical
methods. We need to describe this method here, because we intend to use it to construct
some particular examples. Nevertheless, we will try to present the essential aspects restricted
to the case of our interest. The general construction can be found in [8, Sec. 6].
Let K be a compact connected Lie group and σ an inner involutive automorphism of K.

There is an element s ∈ K such that σ (g) = sgs for g ∈ K. Let k denote the Lie algebra of
K and τ = Ad (s) the induced automorphism of k. Let kx = F (τ, k) (the fixed point set of
τ in k) and let m denote the orthogonal complement of kx in k with respect to the Killing
form in k. Then m = F (−τ, k) . The subgroup F (σ,K) is closed in K hence compact. Let
us choose an open subgroup Kx ⊂ F (σ,K) . It is clear that the Lie algebra of Kx is kx. Let
M = K/Kx and denote by x = [Kx] ∈ M . Let Tx (M) denote the tangent space to M at x.
We may identify naturally Tx (M) with m. The space M has a unique real analytic structure
[6, p. 123, 4.2].
We may take on k an Ad (Kx)-invariant inner product 〈∗, ∗〉 (for instance the opposite

of the Killing form) and a linear subspace h ⊂ m together with a complex structure J on h
satisfying the following properties:

(i) 〈JZ, JZ〉 = 〈Z,Z〉 ∀Z ∈ h.

(ii) Kx contains the element s.

(iii) For every g ∈ Kx, Ad (g) h ⊂ h and Ad (g) JZ = JAd (g)Z for Z ∈ h.
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We may extend the inner product 〈∗, ∗〉 restricted to m = Tx (M) to a K-invariant Rie-
mannian metric on M. The following proposition from [8, p. 165, 6.2] is what we need to
construct our examples in Section 4.

Proposition 2. Let b be the Lie subalgebra of k generated by the subspace h then M is a
minimal symmetric CR-manifold with symmetry sx := s at x if and only if k = kx + b. �

Remark 2. That M is minimal means that H−1y = {0} for every y ∈ M due to Remark 1
(see [8, p. 149]).

2.3. Hermitian Positive Jordan Triple Systems

A Hermitian Jordan Triple System [4, p. 429] is a finite dimensional vector space over the
complex numbers with a map L : V × V → EndC(V ) which is C-linear in the first variable,
C-antilinear in the second one and satisfies the following identities

i) L(x, y)z = L(z, y)x ∀x, y, z ∈ V.

ii) [L(x, y), L(z, w)] = L(L(x, y)z, w)− L(z, L(y, x)w) ∀x, y, z, w ∈ V.

In V we have a naturally defined sesquilinear form

〈x, y〉 = trL (x, y) . (1)

The Jordan Triple System is called positive if

〈x, x〉 > 0, ∀x 6= 0 in V. (2)

This defines in V a Hermitian inner product which has the following property:

〈L (x, y) z, w〉 = 〈z, L (y, x)w〉 ∀x, y ∈ V.

An ideal in a Hermitian Jordan Triple System V is a vector subspace I ⊂ V such that

L(I, V )V ⊂ I
L (V, I)V ⊂ I.

A Hermitian Jordan Triple System V is called simple if V 6= {0} and has no ideals except
{0} and V.
We will assume that our Hermitian Jordan triple system V is positive and simple. This

is not always necessary but will simplify our statements.
An element e ∈ V is called a tripotent if L (e, e) e = 2e, (this not the canonical definition

[8, p. 172] but is the one used in [4] and it is more convenient for our purposes). If V 6= {0}
then it contains a non-zero tripotent [4, p. 513]. Two tripotent elements e1 and e2 are called
orthogonal if L (e1, e2) = 0 (this is equivalent to L (e2, e1) = 0).
If e1 and e2 are orthogonal then L (e1, e1) and L (e2, e2) commute, e = e1+e2 is a tripotent

and
L (e, e) = L (e1, e1) + L (e2, e2) .
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Furthermore
L (ej, ej) ek = 2δ

j
kej.

A tripotent e is called primitive if it can not be written as a sum of two orthogonal tripotents.
Let e be a tripotent in V. The operator L (e, e) is diagonalizable with eigenvalues {0, 1, 2}.

The eigenspaces are

Vα (e) = {Z ∈ V : L (e, e)Z = αZ} α = 0, 1, 2.

and we have the Pierce decomposition of V relative to e :

V = V0 ⊕ V1 ⊕ V2.

If e 6= 0 then dimV2 6= 0. It is important to notice that under our hypothesis, a non-zero
tripotent e is primitive if and only if V2 (e) = Ce.
Let {e1, . . . , ep} be a set of mutually orthogonal tripotents in V. The operators L (ej, ej)

commute and are simultaneously diagonalizable with eigenvalues 0, 1, 2. The simultaneous
eigenspaces which may be different from {0} are

Vαβ =
{
z ∈ V : L (ej, ej) z =

(
δjα + δ

j
β

)
z, 1 ≤ j ≤ p

}

for 0 ≤ α ≤ β ≤ p. The decomposition

V =
⊕

0≤α≤β≤p

Vαβ

is the Pierce decomposition of V with respect to {e1, . . . , ep} . The spaces Vαβ are Jordan
triple subsystems of V and invariant by the operators L (ej, ej) .
A frame on V is a maximal set of mutually orthogonal, primitive tripotents. It is known

that the number of elements in a frame is a constant. This is the rank of V. A frame of V
is also a basis (over the reals) for a maximal flat subspace S of V. A real subspace S ⊂ V is
called a flat subspace if it is a real triple subsystem of V and L (x, y) = L (y, x) ∀x, y ∈ S.
Every Hermitian positive JTS has a frame.
An automorphism of V is a complex linear isomorphism f of V such that

L (fx, fy) = f ◦ L (x, y) ◦ f−1,

hence it satisfies
〈fx, fy〉 = 〈x, y〉 .

The automorphisms form a group, Aut (V ) , which is a closed subgroup of the unitary group
of V (with the Hermitian product 〈x, y〉). We denote by (Aut (V ))0 the connected component
of the identity in Aut (V ) . The Lie algebra D of (Aut (V ))0 is the Lie algebra of derivations
of V. T ∈ EndC (V ) is a derivation if it satisfies

T (L (x, y) z) = L (Tx, y) z + L (x, Ty) z + L (x, y)Tz.

Notice that D is a real Lie algebra.
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For each u ∈ V, iL (x, x) is a derivation of V due to the identity 2.3 (ii). Furthermore the
subspace SpanR {iL (x, x) : x ∈ V } contains all the differences L (x, y) − L (y, x) and since
[iL (x, x) , iL (y, y)] is one of these differences it is clear that SpanR {iL (x, x) : x ∈ V } is a
subalgebra ofD which is called the algebra of inner derivations of V and denoted by Int (V ) .
Let {e1, . . . , er} be a frame in V and consider an element

x =
r∑

j=1

λjej, λj ∈ C; 1 ≤ j ≤ r.

Set λ0 = 0. Then for y ∈ Vαβ , 0 ≤ α ≤ β ≤ r, the following relation holds

L (x, x) y =
(
|λα|

2 + |λβ|
2)
y. (3)

3. Extrinsic symmetric CR-spaces exist in nature

It is quite natural to try to extend the definition of extrinsic symmetric manifold, given by D.
Ferus in [5], to symmetric almost Hermitian CR-manifolds by giving the following definition.
Let M be a compact symmetric almost Hermitian CR-manifold and let h : M → Rn be

an isometric embedding (taking in Rn the usual Euclidean metric).

Definition 3. We shall say that h is an extrinsic symmetric embedding or that M is an
extrinsic symmetric almost Hermitian CR-submanifold of Rn if for each y ∈ M there exists
an isometry θy of R

n such that

(i) θy (h (M)) ⊂ h (M) , θy (h (y)) = h (y) (this means in particular that θy is linear).

(ii) For every X ∈ Ty (M)
θy ◦ h∗|yX = h∗|y ◦ sy∗|yX.

(iii) θy is the identity on the normal space Ty(M)
⊥ at the point h(y).

That extrinsic symmetric almost Hermitian CR-submanifolds of Rn exist is a trivial fact
since symmetric R-spaces are totally real and they obviously satisfy our definition. But it
is also obvious that there are some where the CR-structure is not trivial, for instance odd
dimensional spheres S2n−1 which have a natural and not trivial CR-structure [8, p.146] are
extrinsic symmetric submanifolds of R2n = Cn with the extended definition.
The extrinsic symmetric spheres are a particular case of the family given in the next

proposition. This is a consequence of [8, p. 176, 8.14].

Proposition 4. Let V be a positive simple Hermitian JTS and let M be a connected compo-
nent of the set Tri (V ) of tripotent elements in V. Then M is an extrinsic symmetric almost
Hermitian CR-submanifold of V.

Our notation from [4] makes it necessary to rephrase this proposition because our tripotents
satisfy L (e, e) e = 2e instead of L (e, e) e = e as in [8]. However if e is a tripotent for our
definition then x = 1√

2
e is clearly a tripotent for [8] and vice versa. Then the proposition we

want to prove is the following.
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Proposition 5. Let V be a positive simple Hermitian JTS and let M be a connected com-
ponent of the set

1
√
2
Tri (V ) =

{
1
√
2
e : e ∈ Tri (V )

}
⊂ V.

Then M is an extrinsic symmetric almost Hermitian CR-submanifold of V.

Proof. Let e ∈ Tri (V ) and set h = 1√
2
e. LetM be the connected component of h in 1√

2
Tri (V ).

It is known that M is an orbit of the connected component of the identity (Aut (V ))0 . We
take in V ' R2n the real scalar product 〈x, y〉R = Re 〈x, y〉 which induces inM a Riemannian
metric so that the inclusion i : M ↪→ V is an isometry. Associated to the tripotent h there
is the triple multiplication operator µh (x) = L (h, h)x which is Hermitian and splits V into
an orthogonal direct sum V = V0 ⊕ V 1

2
⊕ V1 of eigenspaces of µh, called the Pierce spaces of

h, corresponding to the eigenvalues 0, 1/2, 1.
Associated to µh, there is the ”Pierce reflection” [8, p. 172]

ρh = exp (2πiµh) = P1 − P 1
2
+ P0

were Pj is the canonical projection Pj : V → Vj for j = 0, 1/2, 1.
V1 is a unital complex Jordan algebra with identity element h ([8, p. 172]) and has a

conjugate linear, algebra involution z 7→ z∗ = L (h, z)h. The selfadjoint part of V1, A =
{z ∈ V1 : z∗ = z} is a formally real Jordan algebra and V1 = A ⊕ iA. This is an orthogonal
direct sum, since they are eigenspaces of the involutive operator ∗ which is selfadjoint.
It is indicated in [8, p. 175] that Th (M) = iA ⊕ V 1

2
and hence Th (M)

⊥ = A ⊕ V0. The

holomorphic tangent space at h is Hh (M) = V 1
2
.

Since the Pierce reflection is contained in (Aut (V ))0 , it fixes h and leaves Tri (V ) invari-
ant, then ρh leaves M invariant. It is proved in [8, p. 176, (8.14,15)] that ρh is a symmetry
of M at h and it is clear that ρh is the identity on Th (M)

⊥ = A ⊕ V2. This proves the
proposition. �

The requirement of simplicity for V is clearly not necessary, we include it to be coherent with
our previous convention (see Subsection 2.3).
It is interesting to notice that these CR-manifolds are not the only ones that have the

property of being extrinsic symmetric almost Hermitian CR-submanifold of a positive simple
Hermitian JTS V. Our next section is devoted to the construction of other examples.

4. New examples

These examples are also contained in a Hermitian positive simple Jordan triple system. For
that reason we start with a subsection in which we make explicit the construction principle
for the case of orbits in a HJTS.

4.1. The construction principle applied to HJTS

Let V be a Hermitian positive simple Jordan triple system and let K be a closed connected
subgroup of the connected component of the identity of Aut (V ), then K is compact. Let S
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be maximal flat subspace of V and let x ∈ S. We want to study the orbit M = K (x) ⊂ V.
Let Kx denote the isotropy group of K at x, then M = K/Kx. Let k and kx denote the
Lie algebras of K and Kx respectively. Let m denote the orthogonal complement of kx in k
with respect to the Killing form in k, then k = kx ⊕ m. The subspace m can be naturally
“identified”, in the usual manner, with the tangent space Tx (M) to M at x i.e. every
Z ∈ m is identified with the vector tangent to the curve exp(tZ)x at the point x that is
d
dt
exp(tZ)x

∣∣
t=0
= Z.x. Under this identification the isotropy representation of Kx on Tx (M)

becomes g∗|x (Z.x) = (Ad (g)Z) .x. We may write then Tx (M) = m.x.
We have on V the Hermitian inner product 〈∗, ∗〉 . The real part of this Hermitian inner

product 〈x, , y〉R = Re 〈x, y〉 yields on V
R a real scalar product which, in turn, induces a

Riemannian metric on M. Let ρ be an involutive automorphism i.e. ρ2 = Id, of V which
leaves invariant the subspace Tx (M) (hence it also leaves invariant Tx (M)

⊥). Furthermore,
we will assume that ρ ∈ K and it is the identity on Tx (M)

⊥
.

We have an induced automorphism of the group K defined by σ (g) = ρgρ and this in
turn, induces a map sx of M by sx (g (x)) = σ (g)x = ρg (x) i.e. sx is just the restriction of
ρ to M.
Let T±x (M) ' m

±.x denote the subspaces corresponding to the eigenvalues (±1) of ρ on
Tx (M) ' m.x respectively.
Let us assume now that there exists a complex subspace h.x of m−.x ' T−x (M) which

satisfies the following requirements (then h ⊂ m ⊂ k).

(i) 〈iZ.x, iZ.x〉R = 〈Z.x, Z.x〉 for all Z.x ∈ h.x.

(ii) Kx contains the element sx.

(iii) Every element g ∈ Kx leaves the subspace h invariant and commutes, there, with
multiplication by i, i.e. Z ∈ h implies Ad (g)Z ∈ h and Ad (g) iZ = iAd (g)Z,
∀g ∈ Kx

In this particular situation, Proposition 2 gives the necessary and sufficient condition which
makes M a minimal symmetric CR-manifold with symmetry sx at x. Namely the Lie subal-
gebra b of k generated by the subspace h satisfies

k = kx + b.

We use this procedure to construct the following examples.
For the sake of simplicity our examples are constructed in rank two. It would be clear

that this can be reproduced in larger ranks.

4.2. Example in EIII

We shall take V as the exceptional JTS of dimension 16 over C. Then V is the tan-
gent space, at some point, to the compact irreducible Hermitian symmetric space EIII =
E6/Spin (10) .U (1) . To introduce the structure of Jordan triple system in V we shall use the
canonical isometric Euclidean embedding of EIII in e6, the compact Lie algebra of E6. We
take in e6 the opposite of the Killing form as real scalar product and the induced Riemannian
metric on EIII. A way to associate the JTS to our Hermitian Symmetric Space EIII is
well known. For the canonical isometric Euclidean embedding mentioned above, we have its
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second fundamental form α(x, y), the corresponding shape operator Aξ and the Riemannian
curvature tensor R(x, y) for the Riemannian connection O. Let E denote our basic point in
EIII which we will determine below. We define V = TE(M) and

L(x, y)z = Aα(x,y)z +R(x, y)z ∀x, y, z ∈ V.

The induced real scalar product on TE (EIII) = V is a real positive multiple of 〈x, y〉R on V
due to irreducibility. Then we may use on V, 〈X, Y 〉R or 〈X, Y 〉 , keeping as a scalar product
on e6 the opposite of the Killing form.
The maximal root of e6 is η = α1+2α2+2α3+3α4+2α5+α6; we have to take Φ = π−{α1}

(or equivalently π − {α6}).
The set Φu (of tangent roots) consists of those positive roots which contain α1. |Φu| = 16.

They are:

η = β1 = α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6 β9 = α1 + α2 + α3 + 2α4 + α5
β2 = α1 + α2 + 2α3 + 3α4 + 2α5 + α6 β10 = α1 + α2 + α3 + α4 + α5
β3 = α1 + α2 + 2α3 + 2α4 + 2α5 + α6 β11 = α1 + α3 + α4 + α5 + α6
β4 = α1 + α2 + α3 + 2α4 + 2α5 + α6 β12 = α1 + α2 + α3 + α4
β5 = α1 + α2 + 2α3 + 2α4 + α5 + α6 β13 = α1 + α3 + α4 + α5
β6 = α1 + α2 + α3 + 2α4 + α5 + α6 β14 = α1 + α3 + α4
β7 = α1 + α2 + 2α3 + 2α4 + α5 β15 = α1 + α3
β8 = α1 + α2 + α3 + α4 + α5 + α6 β16 = α1.

In hR =
∑6
j=1RHαj we define vectors vi as it is indicated in the Appendix. Then

α1 (v1) = α6 (v6) = 1, α2 (v2) = α3 (v3) = α5 (v5) = 1/2, α4 (v4) = 1/3.

Let us take E = iv1 as our base point in EIII. Then JE = ad (E) in V. It is well known and
not hard to see, that with this definition we have a Hermitian positive simple Jordan triple
system associated to our space EIII.
The roots {η, β11} form a strongly orthogonal pair. We take e1 = U−η and e2 = U−β11

and then
L (ej, ej) ej = 2ej, j = 1, 2, (4)

because η (Hη) = β11 (Hβ11) = 2 (see the Appendix for notation and a proof of (4)). Hence
they are tripotents and also L (e1, e2) = L (e2, e1) = 0, since [e1, e2] = 0 and [e1, [e2, E]] = 0.
Furthermore

V2 (ej) = Rej + iRej = Cej, j = 1, 2

and so they are primitive tripotents [4, p. 515, VI.2.5].
Now we obtain the simultaneous Pierce decomposition for {e1, e2} and to that end we

consider first the Pierce decomposition for each ej, j = 1, 2.

V0 (e1) =
∑

j

CUβj j = 11, 13, 14, 15, 16.

V1 (e1) =
∑

l

CUβl l = 2, . . . , 10, 12.
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V0 (e2) =
∑

j

CUβj j = 1, 7, 9, 10, 12.

V1 (e2) =
∑

l

CUβl l = 2, . . . , 8, 13, . . . , 16.

Then (using the obvious notation which indicates only the positive roots involved)

V00 = V0 (e1) ∩ V0 (e2) = {0} ,

V01 = V0 (e2) ∩ V1 (e1) = {7, 9, 10, 12} ,

V02 = V0 (e1) ∩ V1 (e2) = {13, 14, 15, 16} ,

V12 = V1 (e1) ∩ V1 (e2) = {2, 3, 4, 5, 6, 8} ,

V11 = Ce1, V22 = Ce2.

Notice that the dimensions a = 6 and b = 4 agree with [4, p. 526].
Then we have the simultaneous Pierce decomposition for {e1, e2}.

V = V11 ⊕ V22 ⊕ V01 ⊕ V02 ⊕ V12.

Now if we take

x =
√
2e1 +

1
√
2
e2, (5)

then we have a regular element in the maximal flat subspace S = Re1 ⊕Re2 contained in V.
We take now the connected compact group K = Spin (10) .U (1) ⊂ (Aut (V ))0. Let k be the
Lie algebra of K.
For the canonical embedding into e6 as adjoint orbit of the point E = iv1 we have

TE (EIII)
⊥ = k

TE (EIII) = V.

On the other hand, as we saw in Subsection 2.1, to construct such an space in V , it is not
required to take the whole group (Aut (V ))0 but a subgroup satisfying the three conditions.
Let M be the K-orbit of the point x defined at (5) and let Kx be the isotropy subgroup.

We clearly have

Tx (M)
⊥ = RU−η ⊕RU−β11 = Re1 ⊕Re2 = S,

Tx (M) = RUη ⊕RUβ11 ⊕ V01 ⊕ V02 ⊕ V12.

We want to see that M is an extrinsic SCR space in V.
To that end we study the effect of L (x, x) on Vαβ (it is necessary to put λ0 = 0 and use

formula (3)).
L (x, x) y = 2y y ∈ V01,
L (x, x) y = 1

2
y y ∈ V02,

L (x, x) y = 5
2
y y ∈ V12,

L (x, x) y = 4y y ∈ V11,
L (x, x) y = y y ∈ V22.

(6)
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Set µ = L (x, x) and ρ = exp (2πiµ) . Since iµ ∈ Int (V ) = k (see Theorem 6 in Subsection
5.5) we clearly have ρ ∈ K. We have to study the eigenspaces and projectors of ρ. We have

µ = P22 +
1

2
P02 + 2P01 +

5

2
P12 + 4P11, (7)

and then
ρ = exp (2πiµ) = P22 − P02 + P01 − P12 + P11. (8)

This means that ρ acts as the identity on V11 ⊕ V22 ⊕ V01 and as (−id) on V02 ⊕ V12. Since
ρ ∈ K it leaves M invariant; then ρ ∈ Kx because it fixes x. We define

sx = (ρ|M)

and want to see that M is a minimal symmetric CR-manifold with symmetry sx at x.
We first have to decide which is the subspace Hx (M) ⊂ Tx (M) that we want to use.

From the nature of ρ it is clear that we have to take

Hx (M) = V02 ⊕ V12 = {2, 3, 4, 5, 6, 8, 13, 14, 15, 16} . (9)

We need to find the corresponding subspace h in the algebra k = Riv1⊕ so (5) ⊂ e6 such that
h.x = Hx (M) .
The way in which the subalgebra of type d5 is contained in e6 is as the roots which do

not contain α1, There are 20 positive roots which are

δ1 = α3 δ11 = α2
δ2 = α3 + α4 δ12 = α4 + α5
δ3 = α2 + α3 + α4 δ13 = α2 + α4 + α5
δ4 = α4 δ14 = α3 + α4 + α5 + α6
δ5 = α2 + α4 δ15 = α2 + α3 + 2α4 + α5
δ6 = α3 + α4 + α5 δ16 = α5
δ7 = α2 + α3 + α4 + α5 δ17 = α5 + α6
δ8 = α2 + α3 + α4 + α5 + α6 δ18 = α4 + α5 + α6
δ9 = α2 + α3 + 2α4 + α5 + α6 δ19 = α2 + α4 + α5 + α6
δ9 = α2 + α3 + 2α4 + 2α5 + α6 δ20 = α6.

By (9), the formulae in Subsection 5.3 of the Appendix and the identities

β2 = η − δ11 β8 = β11 + δ11
β3 = η − δ5 β6 = β11 + δ5
β4 = η − δ3 β5 = β11 + δ3
β5 = η − δ13 β4 = β11 + δ13
β6 = η − δ7 β3 = β11 + δ7
β8 = η − δ15 β2 = β11 + δ15
β14 = η − δ17 β13 = β11 − δ20
β16 = β11 − δ14 β15 = β11 − δ18
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we see that the subspace h ⊂ k ⊂ e6 is

h = {δ3, δ5, δ7, δ11, δ13, δ14, δ15, δ17, δ18, δ20} . (10)

Now we compute the isotropy subalgebra kx of k at the point x. The roots are those δ such
that ±δ cannot be added to η and β11. They are {δ1, δ2, δ4, δ6, δ12, δ16} which is clearly the
root part of an algebra of type a3 generated by {α3, α4, α5} . Let us get now the Abelian part
of the isotropy.
We have

[
6∑

j=1

ajivj, λ1e1 + λ2e2

]

= −λ1

(
6∑

j=1

aj

)

Uη − λ2

(
a1 +

1

2
a3 +

1

3
a4 +

1

2
a5 + a6

)
Uβ11 .

Hence the Abelian part of the isotropy is the subspace determined by the two coefficients
equal to zero which in turn yields

a1 = −
1

2
a3 −

1

3
a4 −

1

2
a5 − a6,

a2 = −
1

2
a3 −

2

3
a4 −

1

2
a5.

Replacing these expressions in the original sum, we obtain the form of the mentioned subspace
which we shall denote by A.

a3

(
iv3 −

1

2
iv2 −

1

2
iv1

)
+ a4

(
iv4 −

2

3
iv2 −

1

3
iv1

)
+ (11)

a5

(
iv5 −

1

2
iv2 −

1

2
iv1

)
+ a6 (iv6 − iv1) ,

where aj ∈ R, j = 3, 4, 5, 6 are arbitrary. Then

kx =
∑

j

RUδj ⊕RU−δj ⊕ A j = 1, 2, 4, 6, 12, 16.

Here we have to check that h, 〈∗, ∗〉 and Kx satisfy conditions (i), (ii) and (iii) of Subsection
4.1. Since K ⊂ (Aut (V ))0 it leaves 〈∗, ∗〉 invariant and we are taking in M the induced
metric from V.

(i) If Z ∈ h, iZ = JE (Z) ∈ h, 〈iZ, iZ〉 = i (−i) 〈Z,Z〉 .

(ii) By definition sx = (ρ|M) and ρ ∈ K since iµ ∈ Int (V ) . Furthermore it fixes x then
sx ∈ Kx.

(iii) If g ∈ Kx we have to see that Ad (g) h ⊂ h and Ad (g) iZ = iAd (g)Z.

The last identity holds in V sinceK ⊂ Aut (V ) and automorphisms are C-linear by definition.
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To show that Ad (g) h ⊂ h ∀g ∈ Kx is tantamount to showing that [kx, h] ⊂ h in the
algebra k .
Since the Abelian part A of kx leaves h invariant, we need to verify that the root

part also does. By considering (10) we see that if γ = ±δj (j = 1, 2, 4, 6, 12, 16) and
ε = ±δs (s = 3, 5, 7, 11, 13, 14, 15, 17, 18, 20) then either (γ + ε) = 0 or (γ + ε) = ±δh
(h = 3, 5, 7, 11, 13, 14, 15, 17, 18, 20). Hence

[kx, h] ⊂ h.

Now according to Subsection 4.1 we have to see that the subalgebra b of k generated by the
subspace h ⊂ k plus the isotropy subalgebra kx equals the whole algebra k.
We first analyze which new roots of k there appear when we generate the subalgebra b.

Since
δ3 − δ5 = α3
δ5 − δ11 = α4
δ17 − δ20 = α5

and h already contains δ11 = α2 and δ20 = α6 we see that
{
U±αj : j = 2, . . . , 6

}
∈ b.

Since [
Uαj , U−αj

]
= iHαj ,

we clearly have {
iHαj : j = 2, . . . , 6

}
∈ b. (12)

Now we compute the abelian subalgebra that we obtain with the subspace (11) and the
subspace generated by (12). That is

U = {v : a3, . . . , a6, b2, . . . , b6 ∈ R}

where

v = a3

(
iv3 −

1

2
iv2 −

1

2
iv1

)
+ a4

(
iv4 −

2

3
iv2 −

1

3
iv1

)
+

a5

(
iv5 −

1

2
iv2 −

1

2
iv1

)
+ a6 (iv6 − iv1) +

6∑

j=2

bjiHαj .

We need to prove that the subalgebra U coincides with the Cartan subalgebra in k which is
none other than the Cartan subalgebra of e6 i.e.

{
6∑

j=1

ajivj : aj ∈ R, ∀j

}

.

This is easy to see, by checking that the vectors ivs are in U for s = 1, . . . , 6 and therefore

k = kx + b.

Then our manifold M is a minimal symmetric CR-manifold with symmetry sx at x.
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4.3. Example in MIII (2, 3)

We take as V the tangent space, at some point, to the compact irreducible Hermitian sym-
metric space MIII(2, 3) = SU(5)/S (U(2)× U(3)). Once more, to introduce the structure
of Jordan triple system in V, we use the canonical isometric Euclidean embedding of MIII
in su (5) , the compact Lie algebra of SU(5), and define V = TE(MIII) with

L(x, y)z = Aα(x,y)z +R(x, y)z ∀x, y, z ∈ V.

Then we have a Hermitian positive simple Jordan triple system associated to our space
MIII.
The Lie algebra su (5) is of type A4 so we have simple roots {α1, α2, α3, α4} . The complex

dimension of V is 6 and it is generated by the root vectors of those roots of A4 which contain
the root α2. The rank of V is clearly 2 and we have our basic point E = iv2.
The root η = α1 + α2 + α3 + α4 is the maximal one and the pair

γ1 = η = α1 + α2 + α3 + α4

γ2 = α2 + α3,

is a strongly orthogonal pair of roots in V so we may consider the following pair of orthogonal
primitive tripotents

e1 = U−η, e2 = U−γ2 .

We have the Pierce subspaces for each one of them namely

V0 (e1) = {γ2, α2} ,

V0 (e2) = {γ1, α1 + α2} ,

V1 (e1) = {α1 + α2, α1 + α2 + α3, α2 + α3 + α4} ,

V1 (e2) = {α2, α1 + α2 + α3, α2 + α3 + α4} ,

V2 (e1) = Ce1, V2 (e2) = Ce2,

and the simultaneous Pierce decomposition for the frame {e1, e2} .

V00 = V0 (e1) ∩ V0 (e2) = {0} ,

V01 = V1 (e1) ∩ V0 (e2) = {α1 + α2} ,

V02 = V0 (e1) ∩ V1 (e2) = {α2}

V12 = V1 (e1) ∩ V1 (e2) = {α1 + α2 + α3, α2 + α3 + α4} ,

V11 = Ce1, V22 = Ce2.

The dimensions a = 2 and b = 1 agree with [4, p. 525].
Let us take now, as in the previous example, x =

√
2e1 +

1√
2
e2 and obtain the same

eigenvalues and eigenspaces of L (x, x) (see (6)).
Set µ = L (x, x) and ρ = exp (2πiµ) . Since iµ ∈ Int (V ) = k we clearly have ρ ∈ K. We

see that we have ”formally” the same expressions for µ and ρ as before (see (7) and (8)).
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This means that ρ acts as the identity on V11 ⊕ V22 ⊕ V01 and as (−id) on V02 ⊕ V12. On
the other hand ρ leaves M invariant and fixes x so ρ ∈ Kx. We define, as before,

sx = (ρ|M)

and have to see that M is a minimal symmetric CR-manifold with symmetry sx at x.
To that end we take

Hx (M) = V02 ⊕ V12 = {α2, α1 + α2 + α3, α2 + α3 + α4} .

We have to find the corresponding subspace in the algebra k = Riv2 ⊕ su (2) ⊕ su (3) =
A1⊕A2⊕Riv2. The way in which this subalgebra is contained in su (5) is as the roots which
do not contain α2 and

∑4
j=1Rivj.

Since we have

−η + α1 = − (α2 + α3 + α4) ,

−η + α4 = − (α1 + α2 + α3) ,

−γ2 + α3 = −α2,

it is clear that the subspace of k which satisfies h.x = Hx (M) is

h = {α1, α3, α4} . (13)

Now we compute the isotropy subalgebra. Since dimRM = 10 and dimR k = 12 we see that
the isotropy subalgebra kx is Abelian and has dimension 2 which yields

kx = {a3 (iv3 − iv2) + a4 (iv4 − iv1) : a3, a4 ∈ R} .

It is now clear from (13) that in the subalgebra b of k generated by h we have

{
U±αj : j = 1, 3, 4

}
∈ b

and hence {
iHαj : j = 1, 3, 4

}
∈ b.

We have to verify that
k = kx + b

and to that end we consider the subspace

U =

{

a3 (iv3 − iv2) + a4 (iv4 − iv1) +
∑

j=1,3,4

bjiHαj : a3, a4, b1, b3, b4 ∈ R

}

.

It is easy to see that U contains the basis vectors{iv1, iv2, iv3, iv4} .
Then we have

k = kx + b.

and we need to check that the conditions (i), (ii) and (iii) of Subsection 4.1 are satisfied.
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(i) 〈iZ.x, iZ.x〉R = 〈Z.x, Z.x〉 for all Z.x ∈ h.x.

(ii) Kx contains the element sx.

(iii) Every element g ∈ Kx leaves the subspace h invariant and commutes there with multi-
plication by i, i.e. Z ∈ h implies Ad (g)Z ∈ h ∀g ∈ Kx and Ad (g) iZ = iAd (g)Z.
That sx ∈ Kx is obvious since sx ∈ K and it fixes x so we have (ii). (i) is clearly satisfied

and that Kx leaves h invariant is immediate since kx is Abelian.
Then this manifold M is also a minimal symmetric CR-manifold with symmetry sx at x.

4.4. The general situation in EIII and MIII (2, 3)

In this section we want to consider which are all the spaces that can be constructed by this
method in EIII and MIII (2, 3) . For the sake of briefness we do not include the spaces of
Kaup-Zaitsev that are present in these Hermitian positive simple Jordan Triple Systems. We
do not claim that these are all the possible extrinsic SCR-spaces in EIII and MIII (2, 3) .
These are the ones constructible by this method.
Let us set

x =
a1√
2
e1 +

a2√
2
e2 (14)

where e1 and e2 are the primitive idempotents chosen in each case and a1, a2 are integers.
We have always the simultaneous Pierce decomposition for {e1, e2}.

V = V11 ⊕ V22 ⊕ V01 ⊕ V02 ⊕ V12.

For our general x from (14) the eigenvalues are

L (x, x) y =
a21
2
y y ∈ V01,

L (x, x) y =
a22
2
y y ∈ V02,

L (x, x) y =
a21+a

2
2

2
y y ∈ V12,

L (x, x) y = 2
a21
2
y y ∈ V11,

L (x, x) y = 2
a22
2
y y ∈ V22.

The cases a1 = 1, a2 = 0 (and vice versa) and a1 = a2 = 1 are the spaces of Kaup-Zaitsev [8]
and our Proposition 5. Note that e1 + e2 is a maximal tripotent here [4, p. 503].
We have the following table that indicates which is the space Hx (M) to be taken in each

case

1
2
3
4

a1 a2 Hx (M)
even odd V02 ⊕ V12
odd odd V01 ⊕ V02
odd even V01 ⊕ V12
even even ρ = id.

For the space V associated to EIII the case (1) considered in the table is essentially the one
studied in detail in the previous subsection.
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In the case (2) we have

Hx (M) = V01 ⊕ V02 = {7, 9, 10, 12, 13, 14, 15, 16}

and then one sees that
h = {δ8, δ9, δ10, δ14, δ17, δ18, δ19, δ20} ,

and the isotropy subalgebra kx is the same as in case (1).
Since

δ9 − δ8 = α4
δ10 − δ9 = α5
δ19 − δ18 = α2
δ14 − δ18 = α3
δ20 = α6,

we immediately see that
k = kx + b

and so the spaces of case (2) for EIII are extrinsic SCR-manifolds.
Case (3) of EIII also works since here

Hx (M) = V01 ⊕ V12 = {2, 3, 4, 5, 6, 7, 8, 9, 10, 12, } ,

and then
h = {δ3, δ5, δ7, δ8, δ9, δ10, δ11, δ13, δ15, δ19} .

Here again
δ3 − δ5 = α3
δ7 − δ3 = α5
δ8 − δ7 = α6
δ9 − δ8 = α4
δ11 = α2,

yielding immediately that
k = kx + b.

Case (4) does not have to be considered since here ρ = id in V.
For the space V associated toMIII (2, 3) again the case (1) is essentially the one studied

in detail in the previous section.
In the case (2) we have

Hx (M) = V01 ⊕ V02 = {α1 + α2, α2}

and then one sees that
h = {α3 + α4, α3} .

Clearly the isotropy subalgebra kx is the same as in case (1) and since in the subalgebra b,
generated by h, the root α1 is missing and it is in k we see that

k % kx + b
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and so the construction does not work in this case.
In case (3) we have

Hx (M) = V01 ⊕ V12 = {α1 + α2, α1 + α2 + α3, α2 + α3 + α4}

and then
h = {α1, α4, α3 + α4, α3} .

Here we get the roots α1, α3 and α4 and then we see that

k = kx + b.

This completes the analysis of the different cases.

5. Appendix

5.1. Notation on compact Hermitian symmetric spaces

We recall the definition of an irreducible Hermitian symmetric space in order to fix some
notation used in the paper.
Let gC be a complex simple Lie algebra and let hC ⊂ gC be a Cartan subalgebra. Let

∆ = ∆(gC , hC) be the root system of gC relative to hC and π = {α1, . . . , α`} ⊂ ∆ be a system
of simple roots of ∆. Let us denote by ∆+ the set of positive roots and by η the maximal
root of ∆. Let us assume that there is some αj ∈ π such that the coefficient m(αj) of αj in η
is m(αj) = 1 (this is the necessary and sufficient condition for the existence of the Hermitian
symmetric space M associated to the Lie algebra gC). To distinguish this particular simple
root we denote it by αo.
Let us consider now the following subsets of ∆.

Φr = {α ∈ ∆ : c (α, αo) = 0}
Φu = {α ∈ ∆ : c (α, αo) = 1}

where c (α, αo) indicates the coefficient of the simple root αo in α. Then ∆ = Φ
r∪Φu∪(−Φu).

The subalgebra

pC = p
r
C ⊕ p

u
C =

[

hC ⊕
∑

α∈Φr

gCα

]

⊕
∑

α∈Φu

gCα

is called the parabolic subalgebra defined by hC , π, and αo.
Let GC be the complex simply connected Lie group whose Lie algebra is gC and let PC

be the analytic subgroup of GC corresponding to pC . It is closed in GC because it is the
normalizer of its own Lie algebra. Then M = GC/PC is a complex manifold which is a
Hermitian symmetric space. All irreducible Hermitian symmetric spaces can be constructed
in this way.
Let {Hα : α ∈ π} ∪ {Xα : α ∈ ∆} be the canonical basis of gC (as in [6, p. 176]). Then

the subalgebra

gu =
∑

α∈π

RiHα +
∑

α∈∆+

R(Xα −X−α) +Ri(Xα +X−α) ,
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(i =
√
−1) is a compact real form of gC .

Let Gu ⊂ GC be the analytic subgroup of GC corresponding to gu. Gu is compact and it
is well known that if M is compact Gu acts transitively on M , so M = Gu/(Gu ∩ PC).
It is usual to define, associated to the roots in π = {α1, . . . , α`} , the vectors {v1, . . . , v`}

in
∑`
j=1RHαj by the rule

αj (vk) = δj,k/m(αj) 1 ≤ j, k ≤ `. (15)

Let vo denote the vector associated to our chosen root αo.
The set {iv1, . . . , iv`} is clearly a basis for hu and obviously s = ivoR. Let k = gu ∩ prC ,

and m ⊂ gu denote the orthogonal complement of k with respect to the Killing form B =
BC |gu × gu .
It is clear that

k =
∑
α∈π RiHα +

∑
α∈∆∩Φr R(Xα −X−α) +Ri(Xα +X−α)

m =
∑
α∈Φu R(Xα −X−α) +Ri(Xα +X−α).

(16)

We define, for α in ∆+,
Uα =

1√
2
(Xα −X−α)

U−α =
i√
2
(Xα +X−α).

(17)

5.2. The canonical Euclidean embedding

The orbit of E = ivo by the adjoint action of Gu on gu is a homogeneous space of type
Gu/(Gu ∩ PC) and we may consider it an embedding of M into gu. In fact we have f :
M → gu defined as f(g (Gu ∩ PC)) = Ad(g)E. If we take in gu the scalar product defined by
〈X, Y 〉 = −B (X,Y ) then it becomes a Euclidean space. We take on M the induced metric
and so f becomes an isometry. However, since M is irreducible, any other invariant metric
on M is a positive constant multiple of 〈, 〉 . Clearly, the metric on M is determined by our
choice of the point E. Since TE (M) = [gu, E] = [m, E] , by taking λE (λ ∈ R) instead of
E to generate the embedding, the induced metric is multiplied by λ2 and so by taking an
adequate factor of E, we may get all possible invariant metrics on M . Let us notice that
[m, E] = m (then TE (M)

⊥ = k) but ad(E) does not act trivially on m. In fact ad(E) = JE is
the almost complex structure at E.
By [6, 6.1(ii), p.382], our compact connected irreducible Hermitian symmetric space M

can be written as M = G/K where G is a compact connected centerless simple Lie group
and K has nondiscrete center Z (K) and is a maximal connected proper subgroup of G. Also
by [6, 6.2, p. 382], Z (K) is analytically isomorphic to S1. Here G = Gu/Z (Gu) whose Lie
algebra is also gu and K is the analytic subgroup of G corresponding to the subalgebra k.

5.3. Necessary formulae

We include here some formulae which are used in the text. See for instance [3, p. 223]. Let
ε, ρ ∈ ∆+, ε 6= ρ. Then
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[Uε, Uρ] =
1
√
2

{
Nε,ρUε+ρ + sg (ρ− ε)Nε,−ρU|ε−ρ|

}
,

[Uε, U−ρ] =
1
√
2

{
Nε,ρU−(ε+ρ) +Nε,−ρU−|ε−ρ|

}
,

[U−ε, U−ρ] =
1
√
2

{
N−ε,−ρUε+ρ + sg (ε− ρ)N−ε,ρU|ε−ρ|

}
,

[Uε, U−ε] = iHε,

[U±ε, H] = ±ε(iH)U∓ε.

where the terms are zero if ε± ρ is not a root, Nα,β is as in [6, p. 176, 5.5] and

|ε− ρ| =

{
ε− ρ if (ε− ρ) ∈ ∆+

ρ− ε if (ρ− ε) ∈ ∆+
,

sg (ε− ρ) =

{
1 if (ε− ρ) ∈ ∆+

−1 if (ρ− ε) ∈ ∆+
,

5.4. Auxiliary computations

Set Y = U−γ. We want to compute αE (Y, Y ) = [Y, [Y,E]] .

[Y,E] = [U−γ, iv1] = −γ (−v1)Uγ = Uγ

since γ (v1) = 1 ∀γ ∈ Φu. Then

αE (Y, Y ) = [U−γ, Uγ] = − [Uγ, U−γ] = −iHγ.

Set
X =

∑

βj∈Φu

ajUβj + a−jU−βj

then
ad (αE (Y, Y ))X =

∑

βj∈Φu

aj[−iHγ, Uβj ] + a−j[−iHγ, U−βj ].

Then using the above formulae

ad (αE (Y, Y ))X =
∑

βj∈Φu

−ajβj (Hγ)U−βj + a−jβj (Hγ)Uβj .

Furthermore

− [ad (E)]−1 :

{
Uγ = U−γ
U−γ = −Uγ;

and hence

L (Y, Y )X = Aα(Y,Y )X = − [ad (E)]
−1
ad (αE (Y, Y ))X =

=
∑

βj∈Φu

ajβj (Hγ)Uβj + a−jβj (Hγ)U−βj .
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This shows that
L (Y, Y )Y = 2Y

and since βj (Hη) = 2 if and only if βj = η and βj (Hβ11) = 2 if and only if βj = β11 then we
have

V2 (ej) = Rej + iRej = Cej.

5.5. A useful fact

We need the following fact which must be well known but we have not seen remarked in the
literature.

Theorem 6. Let N be a compact connected irreducible Hermitian symmetric space. We may
write it as N = G/K where G is a compact, connected centerless simple Lie group and K has
nondiscrete center and is a maximal connected proper subgroup [6, p. 382]. Let V = TE (N)
be the Hermitian positive simple Jordan triple system associated to N and let k denote the
Lie algebra of K. Then

k = Int (V ) .

Proof. As we indicated above the subalgebra Int (V ) = SpanR {iL (x, x) : x ∈ V } of D
contains the set {(L (x, y)− L (y, x)) : x, y ∈ V } ([4, p. 518]). On the other hand

(L (x, y)− L (y, x)) = Aα(x,y) +R(x, y)−
(
Aα(y,x) +R(y, x)

)

= 2R(x, y) ∀x, y ∈ V

and by [6, p. 243, (4.1), (iii)] the algebra k is generated by {R (x, y) : x, y,∈ V } . Then we
clearly have that

k ⊂ Int (V ) .

In order to prove the other inclusion we only need to show that dim k ≥ dim Int (V ) .
We use the notation from the Appendix concerning the canonical embedding of the

compact Hermitian symmetric space N. It is well known that this embedding of N is extrinsic
symmetric in the sense of Ferus [5]. It is also well known that this property of the embedding
implies that its second fundamental form is onto which means that the set {α (x, x) : x ∈ V }
generates TE (N)

⊥
. For the particular case of the canonical embedding of our space N , it is

easy to see that if E = [K] in G/K then TE (N)
⊥ = k (the Lie algebra of K).

Let us take now in V a set of elements {z1, . . . , zt} such that the corresponding set

{iL (zj, zj) : j = 1, . . . , t}

is a basis of Int (V ) . Then, for any collection {b1, . . . , bt} , of real numbers such that∑t
j=1 bjiL (zj, zj) = 0 we have bj = 0 for j = 1, . . . , t.
Now consider the set

{α (zj, zj) : j = 1, . . . , t} ⊂ TE (N)
⊥
.
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It is linearly independent in TE (N)
⊥ because, if for some real coefficients {b1, . . . , bt} ,

t∑

j=1

bjα (zj, zj) = 0

then

0 = A(
∑t
j=1 bjα(zj ,zj))

=
t∑

j=1

bjAα(zj ,zj) =
t∑

j=1

bjL (zj, zj) .

which yields bj = 0 for j = 1, . . . , t. Then dim k ≥ dim Int (V ) and the proof is complete. �
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