On the Subgroups of the Picard Group

Nihal Yılmaz Özgür
Department of Mathematics, University of Balikesir
10100 Balikesir, Turkey
e-mail: nihal@balikesir.edu.tr

Abstract

In this paper, the normal closure of the modular group $\operatorname{PSL}(2, \mathbb{Z})$ in the Picard group $P S L(2, \mathbb{Z}[i])$ is given. Also, it is given some results about all power subgroups $\mathbf{P}^{6 n}$ of the Picard group.

MSC 2000: 20H10, 11F06, 20E06, 20E07
Keywords: normal closure, modular group, Picard group

1. Introduction

It is known that if X is a nonempty subset of a group G, the normal closure of X in G is the intersection of all the normal subgroups of G which contain X. Clearly this is a normal subgroup. So, the notion of "normal closure" is important to find normal subgroups of a given group. Using this notion, in [2] and [4], it was determined some properties of the normal subgroups of the Picard group \mathbf{P} and given a complete classification of the normal subgroups for indices less than 60 . The Picard group \mathbf{P} is $P S L(2, \mathbb{Z}[i])$, the group of linear fractional transformations with Gaussian integer coefficients. \mathbf{P} is a free product with amalgamation of the following form, [2]:

$$
\mathbf{P} \cong G_{1} *_{\mathrm{M}} G_{2}
$$

with $G_{1} \cong S_{3} *_{Z_{3}} A_{4}, G_{2} \cong S_{3} *_{Z_{2}} D_{2}$ (S_{3} is the symmetric group on three symbols, A_{4} is the alternating group on four symbols and D_{2} is the Klein 4 -group) and \mathbf{M} is the modular group $\operatorname{PSL}(2, \mathbb{Z})$. Modular group play a very important role to determine subgroups of the Picard group because of this decomposition. Modular group is a Fuchsian subgroup of \mathbf{P} and is not normal. In [9], the normaliser of \mathbf{M} in \mathbf{P} that is a maximal subgroup of \mathbf{P} in which \mathbf{M} is normal was obtained. Here we determine the group structure of the normal closure of \mathbf{M} in \mathbf{P}. Furthermore we obtain some results about the power subgroups $\mathbf{P}^{6 n}$ of the Picard group.

0138-4821/93 \$ 2.50 © 2003 Heldermann Verlag

2. The normal closure of the modular group

It is known that a presentation for \mathbf{P} is given by

$$
\begin{equation*}
\mathbf{P}=\left\langle x, u, y, r ; x^{3}=u^{2}=y^{3}=r^{2}=(x u)^{2}=(x y)^{2}=(r y)^{2}=(r u)^{2}=1\right\rangle \tag{2.1}
\end{equation*}
$$

where

$$
x(z)=\frac{i}{i z+1}, u(z)=-\frac{1}{z}, y(z)=\frac{z+1}{-z}, r(z)=\frac{i}{i z}
$$

[1]. Also a presentation of \mathbf{M} given by $\mathbf{M} \cong\left\langle u, y ; u^{2}=y^{3}=1\right\rangle$. Let $N\left(g_{1}, g_{2}, \ldots, g_{k}\right)$ denote the normal closure of the subgroup generated by $\left\{g_{1}, g_{2}, \ldots, g_{k}\right\} . \mathbf{P} / N\left(g_{1}, g_{2}, \ldots, g_{k}\right)$ is the group obtained by adding the relations $g_{1}=1, g_{2}=1, \ldots, g_{k}=1$ to the relations of \mathbf{P}, [7]. Now we can determine the $N(u, y)$, the normal closure of \mathbf{M} in \mathbf{P}. To do this we use Reidemeister-Schreier method, (see [7] and [3] for more details).

Theorem 2.1. The normal closure of \mathbf{M} in \mathbf{P} is

$$
N(u, y)=M_{1} *_{\mathrm{M}} M_{2}
$$

where $M_{1} \cong M_{2} \cong S_{3} *_{\mathbb{Z}_{3}} A_{4}$. Further the index of $N(u, y)$ in \mathbf{P} is two.
Proof. The proof is straightforward computations. We adjoin the identical relations $u=$ $1, y=1$ to the standard presentation (2.1) for \mathbf{P}. This gives us a presentation for $\mathbf{P} / N(u, y)$ of which order gives us the index. We have

$$
\mathbf{P} / N(u, y)=\left\langle x, u, y, r ; x^{3}=u^{2}=y^{3}=r^{2}=(x u)^{2}=(x y)^{2}=(r y)^{2}=(r u)^{2}=1, u=y=1\right\rangle .
$$

Since $x^{3}=x^{2}=1$, this implies that $x=1$. Therefore

$$
\mathbf{P} / N(u, y)=\left\langle r ; r^{2}=1\right\rangle \cong \mathbb{Z}_{2}
$$

Thus $|\mathbf{P}: N(u, y)|=2$. Let $\{1, r\}$ be a Schreier transversal for $N(u, y)$. Applying the Reide-meister-Schreier process we get all the possible products as follows:

$$
\begin{aligned}
& S_{1 x}=x \cdot 1=x, S_{r x}=r x r \\
& S_{1 u}=u \cdot 1=u, S_{r u}=r u r=u \\
& S_{1 y}=y \cdot 1=y, S_{r y}=r y r=y^{-1} \\
& S_{1 r}=r \cdot r=1, S_{r r}=r^{2} \cdot 1=1
\end{aligned}
$$

We get $x_{1}=x, x_{2}=u, x_{3}=y$ and $x_{4}=r x r$ as generators for $N(u, y)$. Using the Reidemeister rewriting process we get the relations

$$
\begin{aligned}
\tau(x x x) & =S_{1 x} \cdot S_{1 x} \cdot S_{1 x}=x^{3}, \\
\tau(u u) & =S_{1 u} \cdot S_{1 u}=u^{2}, \\
\tau(y y y) & =S_{1 y} \cdot S_{1 y} \cdot S_{1 y}=y^{3}, \\
\tau(x u x u) & =S_{1 x} \cdot S_{1 u} \cdot S_{1 x} \cdot S_{1 u}=x u x u=(x u)^{2}, \\
\tau(x y x y) & =S_{1 x} \cdot S_{1 y} \cdot S_{1 x} \cdot S_{1 y}=x y x y=(x y)^{2}, \\
\tau(r x x x r) & =S_{1 r} \cdot S_{r x} \cdot S_{r x} \cdot S_{r x} \cdot S_{r r}=1 . r x r \cdot r x r \cdot r x r .1=(r x r)^{3}, \\
\tau(r x u x u r) & =S_{1 r} \cdot S_{r x} \cdot S_{r u} \cdot S_{r x} \cdot S_{r u} \cdot S_{r r}=1 . r x r \cdot u \cdot r x r \cdot u \cdot 1=(r x r u)^{2}, \\
\tau(r x y x y r) & =S_{1 r} \cdot S_{r x} \cdot S_{r y} \cdot S_{r x} \cdot S_{r y} \cdot S_{r r}=1 . r x r \cdot y^{-1} \cdot r x r \cdot y^{-1} \cdot 1=\left(r x r y^{-1}\right)^{2} .
\end{aligned}
$$

Hence we obtain

$$
\begin{aligned}
N(u, y)= & \left\langle x, u, y, r x r ; x^{3}=u^{2}=y^{3}=(x u)^{2}=(x y)^{2}=(r x r)^{3}\right. \\
& \left.=(r x r u)^{2}=\left(r x r y^{-1}\right)^{2}=1\right\rangle .
\end{aligned}
$$

Now let

$$
M_{1}=\left\langle x, u, y ; x^{3}=u^{2}=y^{3}=(x u)^{2}=(x y)^{2}=1\right\rangle
$$

and

$$
M_{2}=\left\langle r x r, u, y ;(r x r)^{3}=u^{2}=y^{3}=(r x r u)^{2}=\left(r x r y^{-1}\right)^{2}=1\right\rangle .
$$

Then $N(u, y)$ is generated by M_{1} and M_{2} with the identifications $u=u, y=y$. In M_{1}, the subgroup generated by u, y is their free product $\mathbb{Z}_{2} * \mathbb{Z}_{3}$ which is the modular group, while this is also true in M_{2}. Therefore $N(u, y)$ is a free product with the amalgamated subgroup M. In M_{1}, let

$$
\begin{aligned}
& M_{11}=\left\langle x, u ; x^{3}=u^{2}=(x u)^{2}=1\right\rangle \\
& M_{12}=\left\langle x, y ; x^{3}=y^{3}=(x y)^{2}=1\right\rangle
\end{aligned}
$$

So $M_{1} \cong M_{11} * M_{12}$ with the identification $x=x$. This induces a subgroup isomorphism, so $M_{1}=S_{3} *_{\mathbb{Z}_{3}} A_{4}$. Again similarly we get

$$
\begin{aligned}
M_{2} & =\left\langle r x r, u ;(r x r)^{3}=u^{2}=(r x r u)^{2}=1\right\rangle *\left\langle r x r, y ;(r x r)^{3}=y^{3}=\left(r x r y^{-1}\right)^{2}=1\right\rangle \\
& =S_{3} *_{\mathbb{Z}_{3}} A_{4} .
\end{aligned}
$$

Therefore the normal closure of the modular group in the Picard group is $\left(S_{3} *_{\mathbb{Z}_{3}} A_{4}\right) *_{\mathbf{M}}$ $\left(S_{3} *_{\mathbb{Z}_{3}} A_{4}\right)$.

In [4], it was proved that, there are exactly three normal subgroups of index 2 in \mathbf{P}. So $N(u, y)$ is one of these normal subgroups of index 2 in \mathbf{P}. Furthermore $N(u, y)$ is not Fuchsian since xuyrxr is a loxodromic element.

3. Power subgroups

Now we obtain some results about the structure of the power subgroups $\mathbf{P}^{6 n}$ of the Picard group. The power subgroups \mathbf{P}^{n} are the normal subgroups of \mathbf{P} generated by nth powers of elements of \mathbf{P} where n is a positive integer. From the definition one can easily deduce that

$$
\begin{equation*}
\mathbf{P}^{m} \supset \mathbf{P}^{m k} \tag{3.1}
\end{equation*}
$$

and that

$$
\begin{equation*}
\left(\mathbf{P}^{m}\right)^{k} \supset \mathbf{P}^{m k} \tag{3.2}
\end{equation*}
$$

In the modular group case, it is known that $\mathbf{M}^{n}=\mathbf{M}, \mathbf{M}^{2}$ or \mathbf{M}^{3} if $6 \nmid n$ and the exact structure of $\mathbf{M}^{6 k}$ is unknown if $k>1 . \mathbf{M}^{6}$ is free of rank $37, \mathbf{M}^{6} \supset \mathbf{M}^{6 k}$ and the groups $\mathbf{M}^{6 k}$ are free groups, [8]. Similar results hold for P. From [4], we have

1) $\mathbf{P}^{2}=\mathbf{P}^{\prime}$, the commutator subgroup of \mathbf{P},
2) $\mathbf{P}^{3}=\mathbf{P}$ and $\mathbf{P}^{n}=\mathbf{P}$ if $2 \nmid n$,
3) $\mathbf{P}^{n}=\mathbf{P}^{2}$ if $2 \mid n$ but $6 \nmid n$,
4) $\left(\mathbf{P}^{\prime}\right)^{3}=\mathbf{P}^{\prime \prime}$.

From (3.2), we get

$$
\begin{equation*}
\mathbf{P}^{\prime \prime} \supset \mathbf{P}^{6} \tag{3.3}
\end{equation*}
$$

since $\mathbf{P}^{\prime \prime}=\left(\mathbf{P}^{\prime}\right)^{3}=\left(\mathbf{P}^{2}\right)^{3}$. Also from (3.1), we get

$$
\begin{equation*}
\mathbf{P}^{6} \supset \mathbf{P}^{6 n} \text { so } \mathbf{P}^{\prime \prime} \supset \mathbf{P}^{6 n} \tag{3.4}
\end{equation*}
$$

Therefore we get the following corollary:
Corollary 3.1. The power subgroups $\mathbf{P}^{6 n}$ of the Picard group are the subgroups of the second commutator subgroup $\mathbf{P}^{\prime \prime}$.

In [4], it was proved that $\mathbf{P}^{\prime \prime}=K_{1} *_{K} K_{2}$ where $K_{1} \simeq K_{2}=D_{2} * D_{2}$ and $K=\mathbb{Z} * \mathbb{Z},\left|\mathbf{P}: \mathbf{P}^{\prime \prime}\right|=$ 12. Also $\mathbf{P}^{\prime \prime}$ is the only subgroup of index 12 and $\mathbf{P}^{\prime \prime}=N(l t u)$ where l, t and u are the generators in the another presentation of \mathbf{P} given in [4]. Since $\mathbf{P}^{\prime \prime}$ is a free product with amalgamation, $\mathbf{P}^{6 n}$ is an $H N N$ group. This follows from the Karrass-Solitar subgroup theorems, [6]. We then have the following result.

Theorem 3.2. The groups $\mathbf{P}^{6 n}$ are $H N N$ groups.
Now we are going to determine the structure of the quotient groups $\mathbf{P} / \mathbf{P}^{6 n}$. Let us consider the following presentation of \mathbf{P} given in [1]:

$$
\mathbf{P}=\left\langle a, w, b ; b=a w^{2} a^{-1} w^{-2} a w^{2},\left(a^{2} w a w^{-1}\right)^{2}=\left(a w a w^{-1}\right)^{3}=(w b)^{2}=(a b)^{2}=b^{2}=1\right\rangle
$$

where $a=x r$ and $w=u r y$. If we write $a w a w^{-1}=v$, we have

$$
\mathbf{P}=\left\langle a, w, b, v ;(a v)^{2}=v^{3}=(w b)^{2}=(a b)^{2}=b^{2}=1\right\rangle
$$

Firstly, to find the factor group $\mathbf{P} / \mathbf{P}^{6}$, we adjoin the identical relation $X^{6}=1$ to this presentation. Then we have

$$
\mathbf{P} / \mathbf{P}^{6}=\left\langle a, w, b, v ;(a v)^{2}=v^{3}=(w b)^{2}=(a b)^{2}=b^{2}=1, a^{6}=w^{6}=1\right\rangle .
$$

Hence we get

$$
\begin{aligned}
\mathbf{P} / \mathbf{P}^{6} & =\left\langle a, b, v ; a^{6}=v^{3}=b^{2}=(a v)^{2}=(a b)^{2}=1\right\rangle *\left\langle b, w ; w^{6}=b^{2}=(w b)^{2}=1\right\rangle \\
& =\left(\left\langle a, b ; a^{6}=b^{2}=(a b)^{2}=1\right\rangle *\left\langle a, v ; a^{6}=v^{3}=(a v)^{2}=1\right\rangle\right) *_{\mathbb{Z}_{2}} D_{6} \\
& =\left(D_{6} *_{\mathbb{Z}_{6}} D(6,3,2)\right) *_{\mathbb{Z}_{2}} D_{6} .
\end{aligned}
$$

and similarly

$$
\begin{aligned}
\mathbf{P} / \mathbf{P}^{6 n} & =\left\langle a, w, b, v ;(a v)^{2}=v^{3}=(w b)^{2}=(a b)^{2}=b^{2}=1, a^{6 n}=w^{6 n}=1\right\rangle \\
& =\left\langle a, b, v ; a^{6 n}=v^{3}=b^{2}=(a v)^{2}=(a b)^{2}=1\right\rangle *\left\langle b, w ; w^{6 n}=b^{2}=(w b)^{2}=1\right\rangle \\
& =\left(D_{6 n} *_{\mathbb{Z}_{6 n}} D(6 n, 3,2)\right) *_{\mathbb{Z}_{2}} D_{6 n}
\end{aligned}
$$

where $D(6 n, 3,2)$ is the von Dyck group. It is known that the von Dyck group $D(l, m, n)$ is finite if and only if $\frac{1}{l}+\frac{1}{m}+\frac{1}{n}>1$, [5]. In our case, we conclude that the von Dyck groups $D(6 n, 3,2)$ are of infinite order since $\frac{1}{6 n}+\frac{1}{3}+\frac{1}{2}=\frac{5 n+1}{6 n} \leq 1$. Therefore the power subgroups $\mathbf{P}^{6 n}$ are of infinite index in the Picard group.

References

[1] Brunner, A. M.: A Two-Generator Presentation for the Picard Group. Proc. Amer. Math. Soc. 115(1) (1992), 45-46.

Zbl 0792.20037
[2] Fine, B.: Fuchsian Subgroups of the Picard Group. Canad. J. Math. 28 (1976), 481-485.
Zbl 0357.20026
[3] Fine, B.: Algebraic Theory of Bianchi Groups. Marcel Dekker, New York 1989.
Zbl 0760.20014
[4] Fine, B.; Newman, M.: The Normal Subgroup Structure of the Picard Group. Trans. Amer. Math. Soc. 302(2) (1987), 769-786.

Zbl 0624.20031
[5] Johnson, D. L.: Presentations of Groups. Cambridge University Press, Cambridge 1976.
Zbl 0324.20040
[6] Karrass, A.; Solitar, D.: The Subgroups of a Free Product of Two Groups With an Amalgamated Subgroup. Trans. Amer. Math. Soc. 150 (1970), 227-255. Zbl 0223.20031
[7] Magnus, W.; Karrass, A.; Solitar, D.: Combinatorial Group Theory. Dover Publications, Inc., New York 1976.

Zbl 0362.20023
[8] Newman, M.: Integral Matrices. Academic Press, New York 1974.
Zbl 0254.15009
[9] Yılmaz, N.; Cangül, İ. N.: The Normaliser of the Modular Group in the Picard Group. Bull. Inst. Math. Acad. Sinica. 28(2) (2000), 125-129.

Zbl 0981.20039

Received April 18, 2001

