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0. Introduction

In this paper, A will denote a commutative ring with identity. The notion of radical
operations is a natural generalization of the usual radical of ideals, it was introduced and
studied by the author in [6] and [7]. In the first section of this paper, we study the ∗-
primes; i.e., the prime ideals of A which are ∗-ideals. In the second section, we introduce
radical operations of finite character and we prove that to any radical operation ∗, we can
associate a radical operation of finite character ∗s. Then ∗s is used to characterize the
acc property for the ∗-ideals of A. Among many other things, we prove that if ∗ is of
finite character and if each member in the class P of minimal ∗-primes over a given ideal
is ∗-finite, then P is finite. In the third section, we associate to each radical operation
∗ on a domain A a multiplicative system N∗ of the formal power series ring A[[X]] and
we study the quotient ring A[[X]]N∗ . The analog for the polynomial ring case is given in
the fourth section. The fifth section is devoted to the Kronecker functions domain. In the
rest of the paper, we extend the notion of radical operations to fractional ideals of integral
domains. This generalization allows us to define the ∗-invertibility of ideals. We then give
a characterization for a fractional ideal to be ∗-invertible. These results are applied to the
contents of polynomials.

There are some similarities between radical operations and star operations. But the
two concepts are very different. Indeed, the first notion concerns ideals in general commu-
tative rings and the second deals with fractional ideals of integral domains. And even when
we restrict ourselves to integral ideals of a domain the difference subsists. For example, in
ZZ, the usual radical of ideals is not a star operation and the v-operation is not a radical
operation. The good references for star operations are the books of Jaffard [10], Gilmer [8]
and Halter-Koch [9]. The paper [2] of D. D. Anderson deals with star operations satisfying
the relation (I ∩ J)∗ = I∗ ∩ J∗, which makes them more close to radical operations. The
paper [4] of D. F. Anderson concerns the ∗-invertibility for ∗-operations. The analog of
this notion for radical operations will be introduced in our paper. It is natural that a good
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knowledge of star operations and their classical properties helps in the study of radical op-
erations. In different places of this paper, we adapt many results coming essentially from
Gilmer’s book for general properties of radical operations and their associated Kronecker
function domains, from the papers [11] of Kang for links between radical operations and
polynomials ring, [3] of Anderson - Zafrullah for ∗-primes containing an ideal and [14] of
Zafrullah for ACC on ∗-ideals.

1. Generalities on radical operations

1.1. Definition. A radical operation on a ring A assigns to each ideal I of A an ideal I∗

of A, subject of the following conditions
(i) I ⊂ I∗; I∗∗ = I∗.
(ii) (I ∩ J)∗ = I∗ ∩ J∗ = (IJ)∗.

Examples. 1) For any radical operation ∗, since A ⊆ A∗ ⊆ A, then A∗ = A.

2) The trivial radical operation on a ring A is defined by I∗ = A, for any ideal I.

1.2. Lemma. [6] The following properties hold for each radical operation on the ring A
and each pair of ideals I and J of A:
(iii) I ⊆ J =⇒ I∗ ⊆ J∗.
(iv) (I + J)∗ = (I + J∗)∗ = (I∗ + J∗)∗.
(v) (IJ)∗ = (IJ∗)∗ = (I∗J∗)∗.
(vi) I∗ =

√
I∗.

1.3. Definition. An ideal I is said a ∗-ideal if I∗ = I.

1.4. Lemma. I is a ∗-ideal if and only if I = J∗, for some ideal J of A.

Proof. =⇒ Clear.
⇐= I∗ = J∗∗ = J∗ = I.

1.5. Proposition. For any family (Iα)α∈Λ of ideals of A,
( ∑

α∈Λ

Iα

)∗ =
( ∑

α∈Λ

I∗α
)∗ and⋂

α∈Λ

I∗α =
( ⋂

α∈Λ

I∗α
)∗. If each Iα is a ∗-ideal, then so is

⋂
α∈Λ

Iα.

Proof. (1) By (iii), for each β ∈ Λ, I∗β ⊆
( ∑

α∈Λ

Iα

)∗; so
∑
α∈Λ

I∗α ⊆
( ∑

α∈Λ

Iα

)∗, and then( ∑
α∈Λ

I∗α
)∗ ⊆ ( ∑

α∈Λ

Iα

)∗. The reverse inclusion is clear.

(2) For each β ∈ Λ,
⋂

α∈Λ

I∗α ⊆ I∗β ; so
( ⋂

α∈Λ

I∗α
)∗ ⊆ I∗β , and then

( ⋂
α∈Λ

I∗α
)∗ ⊆ ⋂

α∈Λ

I∗α. The

reverse inclusion is clear. The last assertion follows from the second equality.
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Notation. A ∗-ideal which is prime is said to be a ∗-prime.

1.6. Corollary. Let I be any ideal of A and P a ∗-prime containing I. Then P can be
shrunk to a ∗-prime minimal among the ∗-primes containing I.

Proof. The set F of the ∗-primes containing I is nonempty since P ∈ F . It is inductive
for the containment relation by the preceding proposition. A maximal element contained
in P is the desired ideal.

Notation. A maximal element in the set of proper ∗-ideals of A is called ∗-maximal. We
denote by ∗-Max A the set of ∗-maximal ideals of A.

1.7. Proposition. Any ∗-maximal ideal is ∗-prime; i.e., ∗−Max A ⊆ spec A.

Proof. Suppose that P is a ∗-maximal ideal of A which is not prime, and let a, b ∈ A \ P
such that ab ∈ P . Let I = P + aA and J = P + bA. Then P ⊂ I ⊆ I∗ and P ⊂ J ⊆ J∗.
By maximality, I∗ = J∗ = A; so (IJ)∗ = (I∗J∗)∗ = (AA)∗ = A∗ = A. On the other hand,
IJ = (P +aA)(P + bA) = P 2 +aP + bP +abA ⊆ P ; so A = (IJ)∗ ⊆ P ∗ = P , then A = P ,
which is impossible.

2. Radical operations of finite character

2.1. Proposition. For any radical operation ∗ on a ring A, the map ∗s defined by
I∗s =

⋃
{J∗ : J finitely generated sub-ideal of I} is a radical operation on A. Moreover,

I∗s ⊆ I∗ and if I is a finitely generated ideal of A, then I∗s = I∗.

Proof. First of all, we prove that I∗s is an ideal of A. Let a ∈ A and x, y ∈ I∗s . Then
there are two finitely generated sub-ideals J and L of I such that x ∈ J∗ and y ∈ L∗.
Thus x + y ∈ J∗ + L∗ ⊆ (J + L)∗ ⊆ I∗s and ax ∈ aJ∗ ⊆ (aJ∗)∗ = (aJ)∗ ⊆ I∗s .
(i) It is clear that I ⊆ I∗s for any ideal I and if J ⊆ L are ideals, then J∗s ⊆ L∗s .
In particular, I∗s ⊆ I∗s∗s . For the reverse inclusion, let J = (a1, . . . , an) be a finitely
generated sub-ideal of I∗s . For each i, there is a finitely generated sub-ideal Ji of I
such that ai ∈ J∗

i . Then L = J1 + · · · + Jn is a finitely generated sub-ideal of I with
J ⊆ J∗

1 + · · ·+ J∗
n ⊆ (J1 + · · ·+ Jn)∗ = L∗ ⊆ I∗s , so I∗s∗s ⊆ I∗s .

(ii) Let I and J be ideals of A. Since IJ ⊆ I ∩J , then (IJ)∗s ⊆ (I ∩J)∗s . Since I ∩J ⊆ I,
then (I ∩ J)∗s ⊆ I∗s . By the same argument (I ∩ J)∗s ⊆ J∗s ; so (I ∩ J)∗s ⊆ I∗s ∩ J∗s . We
have only to prove that I∗s∩J∗s ⊆ (IJ)∗s . Let x ∈ I∗s∩J∗s . There are a finitely generated
sub-ideal I1 of I and a finitely generated sub-ideal J1 of J such that x ∈ I∗1 and x ∈ J∗

1 .
Thus x2 ∈ I∗1J∗

1 ⊆ (I∗1J∗
1 )∗ = (I1J1)∗, and hence x ∈

√
(I1J1)∗ = (I1J1)∗ ⊆ (IJ)∗s .

For the last assertion, if J is a finitely generated sub-ideal of an ideal I, then J∗ ⊆ I∗.
Thus I∗s ⊆ I∗ and the reverse inclusion is true if I is finitely generated.

2.2. Definition. A radical operation ∗ on a ring A is said to be of finite character if
∗s = ∗; this means that for any ideal I of A, I∗ =

⋃
{J∗ : J finitely generated sub-ideal of
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I}, which is also equivalent to saying that for any ideal I of A and any x ∈ I∗, there is a
finitely generated sub-ideal J of I, such that x ∈ J∗.

Examples. 1) The trivial radical operation on any ring is of finite character.

2) For any radical operation ∗ on a ring A, the radical operation ∗s is of finite character.
Indeed, if I is any ideal of A, I∗s =

⋃
{J∗ : J finitely generated sub-ideal of I}, but

since J is finitely generated, J∗ = J∗s . We call ∗s the radical operation of finite character
associated to ∗.

3) The usual radical is of finite character.

2.3. Lemma. Let ∗ be a radical operation of finite character on a ring A and (Iα)α∈Λ be

a totally ordered family of ideals of A, then
⋃

α∈Λ

I∗α =
( ⋃

α∈Λ

Iα

)∗
. Moreover, if each Iα is

a ∗-ideal, then so is
⋃

α∈Λ

Iα.

Proof. For each β ∈ Λ, I∗β ⊆
( ⋃

α∈Λ

Iα

)∗
; so

⋃
α∈Λ

I∗α ⊆
( ⋃

α∈Λ

Iα

)∗
. For the reverse inclusion,

let J be a finitely generated sub-ideal of
⋃

α∈Λ

Iα, since the family is totally ordered, J ⊆ Iα0

for some α0 ∈ Λ, then J∗ ⊆ I∗α0
⊆

⋃
α∈Λ

I∗α. Since ∗ is of finite character, then
( ⋃

α∈Λ

Iα

)∗
⊆⋃

α∈Λ

I∗α.

2.4. Proposition. Let ∗ be a non trivial radical operation of finite character on a ring
A. Then any proper ∗-ideal of A is contained in a ∗-maximal ideal of A.

Proof. Since ∗ is non trivial, the set F of proper ∗-ideals of A is nonempty. By the
preceding lemma, it is inductive for the inclusion, since for any totally ordered family
(Iα)α∈Λ of elements of F ,

⋃
α∈Λ

Iα is a proper ∗-ideal. Zorn’s lemma applied.

Notation. Let ∗ be a radical operation on a ring A. An ideal I of A is ∗-finite if there is
a finitely generated ideal F of A such that I∗ = (F )∗. If F ⊆ I, we say that I is strictly
∗-finite. Note that if ∗ is of finite character, any ∗-finite ideal I is strictly ∗-finite. Indeed,
let F = (a1, . . . , an) be such that I∗ = F ∗, then ai ∈ F ∗

i , with Fi a finitely generated
sub-ideal of I, 1 ≤ i ≤ n. Let F ′ = F1 + · · · + Fn ⊆ I, F ′ is finitely generated and
F ⊆ F ∗

1 + · · ·+ F ∗
n ⊆ (F ′)∗. Since I∗ = F ∗ ⊆ (F ′)∗∗ = (F ′)∗ ⊆ I∗, then I∗ = (F ′)∗.

2.5. Proposition. Let ∗ be a radical operation of finite character on a ring A and I
a proper ideal of A. Let P be the class of minimal elements in the set of ∗-primes of A
containing I. If each element of P is ∗-finite, then P is finite.
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Proof. Since ∗-primes containing I and I∗ respectively are the same, we can suppose
that I is a proper ∗-ideal. Let S = {P1 . . . Pn; n ∈ IN∗, Pi ∈ P}. If there is some
C = P1 . . . Pn ∈ S such that C ⊆ I, then for each P ∈ P, Pi ⊆ P , for some i, and by
minimality, P = Pi; so P = {P1, . . . , Pn} is finite. Hence we may assume C 6⊆ I, for each
C ∈ S. The set T of all the ∗-ideals J of A containing I such that for each C ∈ S, C 6⊆ J ,
is then nonempty. It is inductive for the inclusion relation. Indeed, let (Ji) be a totally
ordered family of elements of T . By Lemma 2.3, J =

⋃
Ji is a ∗-ideal of A containing

I. Suppose that there is some C = P1 . . . Pn ∈ S such that C ⊆ J . By the hypothesis,
for each j, 1 ≤ j ≤ n, there is some finite subset Fj of Pj such that Pj = (Fj)∗. Since(
(F1) . . . (Fn)

)∗ =
(
(F1)∗ . . . (Fn)∗

)∗ = (P1 . . . Pn)∗ ⊆ J∗ = J , then (F1) . . . (Fn) ⊆ Ji,
for some i. So C = P1 . . . Pn ⊆ (P1 . . . Pn)∗ =

(
(F1) . . . (Fn)

)∗ ⊆ J∗
i = Ji, which is

impossible. Thus J ∈ T . By Zorn’s lemma, T admits a maximal element M . It is a
∗-ideal of A containing I and for each C ∈ S, C 6⊆ M . Suppose that M is not prime,
there are a, b ∈ A \ P , such that ab ∈ M . By the maximality of M in T , there are
P1, . . . , Pn, Q1, . . . , Qs ∈ P such that P1 . . . Pn ⊆ (M + aA)∗ and Q1 . . . Qs ⊆ (M + bA)∗.
So P1 . . . PnQ1 . . . Qs ⊆ (M + aA)∗ ∩ (M + bA)∗ =

(
(M + aA)(M + bA)

)∗ = (M2 + aM +
bM + abA)∗ ⊆ M∗ = M , which is impossible. By Corollary 1.6, there is P ∈ P such that
P ⊆ M , but this contradicts the definition of T .

2.6. Proposition. If ∗ is a radical operation of finite character, then any minimal prime
over a ∗-ideal is a ∗-prime.

Proof. Let P be a minimal prime over the ∗-ideal I in the ring A. Then PAP is the
only minimal prime over the ideal IAP in the ring AP ; so

√
IAP = PAP . If x ∈ P ,

then xn ∈ IAP , for some n ∈ IN∗; so sxn ∈ I, for some s ∈ A \ P . If J is a finitely
generated sub-ideal of P , we can find n ∈ IN∗ and s ∈ A \ P such that sJn ⊆ I, then
s(Jn)∗ ⊆

(
s(Jn)∗

)∗ = (sJn)∗ ⊆ I∗ = I ⊆ P . Since P is prime and s 6∈ P , then (Jn)∗ ⊆ P .
By (v), (J∗)n ⊆

(
(J∗)n

)∗ = (Jn)∗ ⊆ P , then J∗ ⊆ P . Since ∗ is of finite character,
P ∗ =

⋃
{J∗ : J finitely generated sub-ideal of P} ⊆ P .

2.7. Proposition. Let ∗ be a radical operation on a ring A and ∗s the radical operation
of finite character associated. The following statements are equivalent:
(1) Each ∗s-ideal of A is ∗s-finite.
(2) Each ∗s-prime ideal of A is ∗s-finite.
(3) A satisfies the ascending chain condition on ∗s-ideals.
(4) A satisfies the ascending chain condition on ∗-ideals.
(5) Each ideal of A is strictly ∗-finite.
Moreover, if any of the above equivalent statements hold then ∗ = ∗s.

Proof. (1) ⇐⇒ (2) ⇐⇒ (3) follow from [6; Lemma 3.4 and Corollary 3.6].
(3) =⇒ (4) Let (In)n∈IN be an ascending chain of ∗-ideals of A. For each n ∈ IN, In ⊆
I∗s
n ⊆ I∗n = In; so I∗s

n = In. By (3), this chain is finite.
(4) =⇒ (5) Suppose that I is an ideal of A not strictly ∗-finite. If a1 ∈ I, then (a1)∗ ⊂ I∗,
there is a2 ∈ I \ (a1)∗; so (a1)∗ ⊂ (a1, a2)∗ ⊂ I∗. If a3 ∈ (a1, a2)∗ \ I, then (a1)∗ ⊂
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(a1, a2)∗ ⊂ (a1, a2, a3)∗ ⊂ I∗, . . . . By this way, we construct an infinite ascending chain
of ∗-ideals of A, which is impossible.
(5) =⇒ (1) Let I be a ∗s-ideal of A. By (5), there is a finite subset F of I such that
I∗ = (F )∗. Since I ⊆ I∗ = (F )∗ = (F )∗s ⊆ I∗s = I, then I = (F )∗s .
For the last statement, let I be any ideal of A, by (5), there is a finite subset F of I such
that I∗ = (F )∗. Since I∗ = (F )∗ ⊆ I∗s ⊆ I∗, then I∗ = I∗s .

2.8. Remark. Since the ascending chain condition on ∗-ideals implies ∗ = ∗s, then the
hypothesis (vii) in [6, Theorem 4.5] is superfluous.

3. The radical operations and the formal power series ring

Notation. If A is a ring and f ∈ A[[X]], we denote by Af the content of f ; i.e., the ideal
of A generated by the coefficients of f .

3.1. Definition. Let ∗ be a radical operation on a ring A, we define N∗ = {f ∈
A[[X]]; A∗

f = A}.

3.2. Proposition. If ∗ is a radical operation of finite character on a ring A, then
N∗ = A[[X]] \

⋃
{M [[X]]; M ∈ ∗-Max A}.

Proof. The result is clear for the trivial operation. Suppose ∗ not trivial and let f ∈ A[[X]].
By Proposition 2.4, f ∈ N∗ ⇐⇒ A∗

f = A ⇐⇒ ∀M ∈ ∗-Max A, A∗
f 6⊆ M ⇐⇒ ∀M ∈ ∗-

Max A, Af 6⊆ M ⇐⇒ ∀M ∈ ∗-Max A, f 6∈ M [[X]] ⇐⇒ f ∈ A[[X]] \
⋃
{M [[X]]; M ∈ ∗-

Max A}.

3.3. Proposition. If ∗ is a radical operation of finite character on a ring A, then N∗ is
a saturated multiplicative subset of A[[X]].

Proof. By Proposition 1.7, any M ∈ ∗-Max A is prime in A; so M [[X]] is prime in A[[X]].
By Proposition 3.2, N∗ = A[[X]] \

⋃
{M [[X]]; M ∈ ∗-Max A} is a multiplicative subset

of A[[X]]. Let f and g ∈ A[[X]] such that fg ∈ N∗, then A∗
fg = A. Since Afg ⊆ Af , then

A = A∗
fg ⊆ A∗

f ⊆ A; so A∗
f = A and f ∈ N∗.

3.4. Proposition. Let ∗ be a radical operation of finite character on a domain A and I
an ideal of A. Then IA[[X]]N∗ ∩A ⊆ I[[X]]N∗ ∩A ⊆ I∗. Moreover, if I is a ∗-ideal, then
IA[[X]]N∗ ∩A = I[[X]]N∗ ∩A = I.

Proof. The first inclusion is clear. Let x ∈ I[[X]]N∗ ∩A, x ∈ A and x = f
g , with f ∈ I[[X]]

and g ∈ N∗. Since xg = f , then xAg = Axg = Af ; so (xAg)∗ = A∗
f . By (v), (xA∗

g)
∗ = A∗

f ;
so (xA)∗ = A∗

f ⊆ I∗ and x ∈ I∗. If I is a ∗-ideal, then I∗ = I ⊆ IA[[X]]N∗ ∩A.

3.5. Lemma. [5] Let A be a domain and S a multiplicative set of A. If P is a prime
ideal of A disjoint from S, then (AS)PAS

= AP .
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3.6. Proposition. Let ∗ be a radical operation of finite character on a domain A and M
a ∗-maximal ideal of A. Then (A[[X]]N∗)M [[X]]N∗ = A[[X]]M [[X]].

Proof. Since N∗ = A[[X]] \
⋃
{M ′[[X]]; M ′ ∈ ∗-Max A} is a multiplicative subset of

A[[X]] disjoint with M [[X]], we can use the preceding lemma.

4. The radical operations and the polynomials ring

4.1. Definition. Let ∗ be a radical operation on a ring A, we define N ∗ = {f ∈
A[X]; A∗

f = A}.

4.2. Proposition. Let A be a ring, ∗ a radical operation on A and ∗s the radical operation
of finite character associated. Then N ∗s = N ∗ is a saturated multiplicative subset of A[X].

Proof. By Proposition 2.1, for any finitely generated ideal I of A, I∗s = I∗, then N ∗s =
{f ∈ A[X]; A∗s

f = A} = {f ∈ A[X]; A∗
f = A} = N ∗. By Proposition 3.3, N ∗s is a

saturated multiplicative subset of A[X]. We can also furnish a direct proof based on the
Dedekind-Mertens lemma [13]. Let f, g ∈ N ∗, then A∗

f = A∗
g = A. There is m ∈ IN∗

such that Am
f Afg = Am+1

f Ag; so (Am
f Afg)∗ = (Am+1

f Ag)∗. By (v),
(
(A∗

f )mAfg

)∗ =(
(A∗

f )m+1Ag

)∗, then A∗
fg = A∗

g = A.

4.3. Proposition. Let ∗ be a radical operation on a ring A and ∗s the associated radical
operation of finite character, then N ∗ = A[X] \

⋃
{M [X];M ∈ ∗s-Max A}.

Proof. Since ∗s is of finite character, we can use Proposition 3.2.

4.4. Proposition. Let ∗ be a radical operation on a domain A and I an ideal of A, then
I[X]N∗ ∩A ⊆ I∗. Moreover, if I is a ∗-ideal, then I[X]N∗ ∩A = I.

Proof. Let x ∈ I[X]N∗ ∩ A, x ∈ A and x = f
g , with f ∈ I[X] and g ∈ N ∗. Since xg = f ,

then xAg = Axg = Af ; so (xAg)∗ = A∗
f . By (v), (xA∗

g)
∗ = A∗

f ; so (xA)∗ = A∗
f ⊆ I∗ and

x ∈ I∗. If I is a ∗-ideal, then I∗ = I ⊆ I[X]N∗ ∩A.

4.5. Corollary. Let ∗ be a radical operation on a domain A, ∗s the associated radical
operation of finite character and I a ∗s-ideal of A, then I[X]N∗ ∩A = I.

Proof. By the preceding proposition, I = I[X]N∗s ∩A = I[X]N∗ ∩A.

4.6. Proposition. Let ∗ be a radical operation on a domain A and ∗s the associated radical
operation of finite character. Then Max(A[X]N∗) = {M [X]N∗ : M ∈ ∗s-Max A}.

Proof. Let P ∈ spec(A[X]N∗), there is Q ∈ spec(A[X]) such that Q ∩ N ∗ = ∅ and
P = QN∗ . The set I of the coefficients of elements in Q is an ideal of A. Suppose that
1 ∈ I∗s , there is a finitely generated ideal J = (a1, . . . , ak) ⊆ I such that 1 ∈ J∗, ai is a
coefficient of some fi ∈ Q, let ni = deg fi, 1 ≤ i ≤ k, and f = f1+Xn1+1f2+Xn1+n2+2f3+
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· · · + Xn1+n2+···+nk−1+k−1fk ∈ Q. Since a1, . . . , ak are coefficients of f , then A∗
f = A; so

f ∈ N ∗, which is impossible because N ∗ ∩ Q = ∅. By Proposition 2.4, there is M ∈ ∗s-
Max A such that I ⊆ I∗s ⊆ M , then Q ⊆ M [X] and P = QN∗ ⊆ M [X]N∗ . Since by
Proposition 4.3, the M [X]N∗ are prime, to conclude that they are the maximal ideals of
A[X]N∗ , it is sufficient to prove that they are incomparable. But if M [X]N∗ ⊆ M ′[X]N∗ ,
with M,M ′ ∈ ∗s-Max A, by Corollary 4.5, M ⊆ M ′. By maximality, M = M ′ and
M [X]N∗ = M ′[X]N∗ .

4.7. Proposition. Let ∗ be a radical operation on a domain A and ∗s the associated
radical operation of finite character. Then for each M ∈ ∗s-aMax A,

(
A[X]N∗

)
M [X]N∗

=
A[X]M [X].

Proof. By Proposition 4.3, M [X] ∩N ∗ = ∅, the equality follows by Lemma 3.5.

5. Kronecker function domains

In this section, ∗ is a radical operation on a domain A, with quotient field K, satisfying the
property: for any ideals I, J, L of A, with L finitely generated, the inclusion (IL)∗ ⊆ (JL)∗

implies I∗ ⊆ J∗.

5.1. Lemma. If f, g ∈ A[X], then A∗
fg = (AfAg)∗.

Proof. By Dedekind-Mertens lemma [13], there is m ∈ IN∗ such that Am
f Afg = Am+1

f Ag,
then (Am

f Afg)∗ = (Am+1
f Ag)∗; so A∗

fg = (AfAg)∗.

5.2. Theorem. The set A∗ =
{

f
g : f, g ∈ A[X], g 6= 0, A∗

f ⊆ A∗
g

}
is a Bezout overring of

A[X].

Proof. First of all, we prove that A∗ is well defined.; i.e., if f, g, s, t ∈ A[X], with gt 6= 0,
f
g = s

t and A∗
f ⊆ A∗

g, then A∗
s ⊆ A∗

t . Since ft = gs, by the Lemma 5.1, (AgAs)∗ = A∗
gs =

A∗
ft = (AfAt)∗ = (A∗

fAt)∗ ⊆ (A∗
gAt)∗ = (AgAt)∗; so A∗

s ⊆ A∗
t .

It is clear that A[X] ⊆ A∗ ⊆ K(X). We will prove that A∗ is a sub ring of K(X), let
f
g , s

t ∈ A∗, with f, g, s, t ∈ A[X], gt 6= 0, A∗
f ⊆ A∗

g and A∗
s ⊆ A∗

t , then f
g −

s
t = ft−gs

gt

and f
g

s
t = fs

gt . Since Aft−gs ⊆ Aft + Ags, then A∗
ft−gs ⊆ (Aft + Ags)∗ = (A∗

ft + A∗
gs)

∗ =(
(AfAt)∗+(AgAs)∗

)∗ =
(
(A∗

fA∗
t )
∗+(A∗

gA
∗
s)
∗)∗ ⊆ (

(A∗
gA

∗
t )
∗+(A∗

gA
∗
s)
∗)∗ =

(
(A∗

gA
∗
t )
∗)∗ =

(A∗
gA

∗
t )
∗ = (AgAt)∗ = A∗

gt. We have also A∗
fs = (AfAs)∗ = (A∗

fA∗
s)
∗ ⊆ (A∗

gA
∗
t )
∗ =

(AgAt)∗ = A∗
gt. Then f

g −
s
t ,

f
g

s
t ∈ A∗.

Let α = f
h and β = g

h ∈ A∗, with f, g, h ∈ A[X], h 6= 0. Let n > deg f an integer and
γ = α + Xnβ ∈ (α, β). Since α

γ = f
f+Xng and β

γ = g
f+Xng ∈ A∗, because Af ⊆ Af+Xng

and Ag ⊆ Af+Xng, then (α, β) = γ and A∗ is a Bezout domain.

5.3. Proposition. If V is a valuation overring of A∗, then V is the trivial extension of
V ∩K to K(X).
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Proof. Let v the valuation associated with V and w its restriction to K. We show, for
each 0 6= f = a0 + a1X + · · ·+ anXn ∈ K[X], that v(f) = min{w(ai) : 0 ≤ i ≤ n}. Since
X, X−1 ∈ A∗ ⊆ V , v(X) = 0; so v(aiX

i) = w(ai) and v(f) ≥ min{w(ai) : 0 ≤ i ≤ n}.
On the other hand, for 0 ≤ i ≤ n, (ai) ⊆ Af ; so ai

f ∈ A∗ ⊆ V , then w(ai) ≥ v(f). It
follows that v(f) = min{w(ai) : 0 ≤ i ≤ n}.

6. Extension of radical operations to fractional ideals

Let A be a domain with quotient field K. A fractional ideal of A is a sub A-module I of K,
such that dI ⊆ A for some nonzero element d ∈ A. To avoid any confusion, when I ⊆ A,
we say that I is an integral ideal. In the sequel, F(A) will be the set of fractional ideals
of A. We will extend the notion of radical operations to F(A). Its restriction to integral
ideals induces the usual radical operation. It turns out that by treating radical operations
on fractional ideals, we achieve not only a simplicity of argument but also the introduction
of new tools such as ∗-invertibility. The problem of how and when can a radical operation
defined only on integral ideals be extended to fractional ideals is not considered in this
paper.

6.1. Definition. A radical operation on a domain A assigns to each element I ∈ F(A) an
element I∗ ∈ F(A) such that the set of integral ideals is closed under ∗ and the following
conditions are satisfied for each I, J ∈ F(A):
(i) I ⊂ I∗; I∗∗ = I∗.
(ii) (I ∩ J)∗ = I∗ ∩ J∗ = (IJ)∗.

Note that the restriction of ∗ to the integral ideals is a radical operation on A in the usual
sense. The following lemma can be proved as in [6].

6.2. Lemma. The following properties hold for each radical operation on the domain A
and each pair of elements I, J ∈ F(A):
(iii) I ⊆ J =⇒ I∗ ⊆ J∗.
(iv) (I + J)∗ = (I + J∗)∗ = (I∗ + J∗)∗.
(v) (IJ)∗ = (IJ∗)∗ = (I∗J∗)∗.
(vi) I∗ is strongly radical; i.e, if x ∈ K and xn ∈ I∗ for some n ∈ IN∗, then x ∈ I∗.

The following result can be proved in the same way as Proposition 2.1.

6.3. Proposition. For any radical operation ∗ on a domain A, the map ∗s defined by
I∗s =

⋃
{J∗ : J finitely generated sub-fractional ideal of I} is a radical operation on A.

Moreover, I∗s ⊆ I∗ and if I is a finitely generated fractional ideal of A, then I∗s = I∗.
Also ∗s is of finite character.

7. The ∗-invertibility of fractional ideals

7.1. Definition. Let ∗ be a radical operation on a domain A and I ∈ F(A). We say that
I is ∗-invertible if (IJ)∗ = A for some J ∈ F(A).
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7.2. Proposition. Let ∗ be a radical operation on a domain A and I ∈ F(A). Then I is
∗-invertible if and only if I∗ is ∗-invertible.

Proof. I is ∗-invertible ⇐⇒ (IJ)∗ = A for some J ∈ F(A). Since by (v), (IJ)∗ = (I∗J)∗,
then we have the result.

Notation. If I ∈ F(A), then I−1 = {x ∈ K : xI ⊆ A} is a fractional ideal of A. As
usual, we put (I−1)−1 = Iv. Note that II−1 ⊆ A and if the equality holds we say that I
is invertible.

7.3. Proposition. Let ∗ be a radical operation on a domain A and I, J ∈ F(A). If
(IJ)∗ = A, then J∗ = I−1.

Proof. Since IJ∗ ⊆ (IJ∗)∗ = (IJ)∗ = A, then J∗ ⊆ I−1. On the other hand, I−1 ⊆
(I−1)∗ = (I−1A)∗ = (I−1(IJ)∗)∗ = (I−1IJ)∗ ⊆ (AJ)∗ = J∗.

7.4. Corollary. Let ∗ be a radical operation on a domain A and I ∈ F(A). If I is
∗-invertible, then I−1 is a ∗-ideal.

Proof. If (IJ)∗ = A, then I−1 = J∗ is a ∗-ideal.

7.5. Corollary. Let ∗ be a radical operation on a domain A and I ∈ F(A). Then I is
∗-invertible if and only if (II−1)∗ = A.

Proof. If (IJ)∗ = A, for some J ∈ F(A), then by Proposition 7.3, I−1 = J∗; so A =
(IJ)∗ = (IJ∗)∗ = (II−1)∗.

7.6. Corollary. Let ∗ be a radical operation on a domain A and I ∈ F(A). If I is
∗-invertible, then I−1 is ∗-invertible.

7.7. Corollary. Let ∗ be a radical operation on a domain A. Then for any 0 6= x ∈ K,
(x)∗ = (x).

Proof. Since ( 1
x )(x) = A, then

(
( 1

x )(x)
)∗ = A and ( 1

x ) is ∗-invertible. By Corollary 7.4,
(x) is a ∗-ideal.

7.8. Corollary. Let ∗ be a radical operation on a domain A and I ∈ F(A). If I is
∗-invertible, then I∗ = Iv. In particular, if every nonzero fractional ideal is ∗-invertible,
then ∗ = v.

Proof. Since (II−1)∗ = A, by Proposition 7.3, I∗ = (I−1)−1 = Iv.

7.9. Corollary. Let ∗ be a radical operation on a domain A. If every nonzero fractional
ideal is ∗-invertible, then A is completely integrally closed.
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Proof. Let 0 6= x ∈ K an almost integral element over A and I = (xi; i ∈ IN), then xI ⊆
I =⇒ xI + I = I =⇒ (x, 1)I = I =⇒

(
(x, 1)II−1

)∗ = (II−1)∗ = A =⇒
(
(x, 1)(II−1)∗

)∗ =
A =⇒ (x, 1)∗ = A =⇒ x ∈ A.

7.10. Lemma. Let ∗ be a radical operation on a domain A, ∗s the associated radical
operation of finite character and I, J ∈ F(A). Then (IJ)∗s =

{
(I0J0)∗ : I0 ⊆ I, J0 ⊆ J

finitely generated fractional ideals
}
.

Proof. Let L = (a0, . . . , an) be a finitely generated sub-ideal of IJ , for 1 ≤ i ≤ n, ai =
bi,1ci,1+· · ·+bi,mi

ci,mi
, with bi,j ∈ I and ci,j ∈ J . If I0 =

(
bi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ mi

)
⊆ I

and J0 =
(
ci,j , 1 ≤ i ≤ n, 1 ≤ j ≤ mi

)
⊆ J , then L ⊆ I0J0; so L∗ ⊆ (I0J0)∗ and the first

containment is proved. The second one is clear.

Example. If ∗ is a radical operation of finite character on A and I, J ∈ F(A), then
(IJ)∗ =

{
(I0J0)∗ : I0 ⊆ I, J0 ⊆ J finitely generated fractional ideals

}
.

We recall from [12, Theorems 58 and 59] that if a fractional ideal I is invertible, then
it is finitely generated. Moreover, if A is local then I is principal.

7.11. Theorem. Let ∗ be a radical operation of finite character on a domain A and
(0) 6= I ∈ F(A). Then I is ∗-invertible if and only if it is ∗-finite and ∗-locally principal;
i.e., for each M ∈ ∗-Max A, IAM is a principal fractional ideal of AM .

Proof. =⇒ Let J ∈ F(A) such that (IJ)∗ = A. By the preceding example, there are two
finitely generated ideals I0 ⊆ I and J0 ⊆ J such that 1 ∈ (I0J0)∗. Hence A ⊆ (I0J0)∗ ⊆
(IJ)∗ = A; so (I0J0)∗ = A. By Proposition 7.3, I∗0 = J−1

0 and I∗ = J−1. Since J0 ⊆ J ,
then J−1 ⊆ J−1

0 ; so I∗ ⊆ I∗0 , but the reverse containment is clear; so I∗ = I∗0 and I is
∗-finitely generated.

Let M ∈ ∗-Max A, if II−1 ⊆ M , then A = (II−1)∗ ⊆ M∗ = M , so M = A, which
is impossible because M is a prime ideal, by Proposition 1.7. Hence II−1 6⊆ M and
II−1AM = (IAM )(I−1AM ) = AM . Since IAM is invertible, it is principal, by the preced-
ing remark.

⇐= Since I is ∗-finite and ∗ is of finite character, there is a finitely generated fractional
ideal J ⊆ I such that I∗ = J∗. Suppose that (II−1)∗ 6= A, by Proposition 2.4, there
is M ∈ ∗-Max A such that (II−1)∗ ⊆ M . Since IAM is principal, IAM = aAM , with
0 6= a ∈ I. Since J is finitely generated and 1

aJ ⊆ 1
aI ⊆ AM , then s

aJ ⊆ A, for some
s ∈ A \M . Hence s

aI ⊆ ( s
aI)∗ = ( s

aI∗)∗ = ( s
aJ∗)∗ = ( s

aJ)∗ ⊆ A∗ = A. We conclude that
s
a ∈ I−1; so s ∈ aI−1 ⊆ II−1 ⊆ (II−1)∗ ⊆ M , which is impossible.

7.12. Corollary. Let ∗ be a radical operation of finite character on a domain A and I
a proper nonzero integral ideal of A. Let P be the class of minimal elements in the set of
the ∗-primes of A containing I. If each element of P is ∗-invertible, then P is finite.

Proof. By the preceding theorem, each ∗-invertible ideal is ∗-finite, we use Proposition 2.5.
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8. Application of the ∗-invertibility to polynomial contents

Notation. For a domain A, the set A(X) =
{

f
g ; f, g ∈ A[X], Ag = A

}
is an overring of

A[X].

8.1. Proposition. [5] If P is a prime ideal of a domain A, then AP (X) = A[X]P [X].

8.2. Corollary. Let A be a domain, ∗ a radical operation on A and ∗s the associated rad-
ical operation of finite character. Then for each M ∈ ∗s-Max A, AM (X) = A[X]M [X] =(
A[X]N∗

)
M [X]N∗

.

Proof. The first equality follows from Proposition 8.1 and the second from Proposition 4.7.

8.3. Theorem. [1] Let A be a domain and 0 6= f ∈ A[X], the following assertions are
equivalent:
(1) Af is locally principal.
(2) fA(X) = AfA(X).
(3) fA(X) = IA(X), for some integral ideal of A.

8.4. Corollary. Let A be a local domain and 0 6= f ∈ A[X], the following assertions are
equivalent:
(1) Af is principal.
(2) fA(X) = AfA(X).
(3) fA(X) = IA(X), for some integral ideal of A.

8.5. Lemma. Let ∗ be a radical operation of finite character on a domain A and 0 6= f ∈
A[X]. Then Af is ∗-invertible if and only if fA[X]N∗ = AfA[X]N∗ .

Proof. Since Af is finitely generated, by Theorem 7.11, Af is ∗-invertible if and only if
Af is locally principal; i.e., for each M ∈ ∗-Max A, (Af )M = (AM )f is a principal ideal.
Since AM is a local domain, by Corollary 8.4, (AM )f is a principal ideal of the domain AM

if and only if fAM (X) = AfAM (X). By Corollary 8.2, AM (X)=
(
A[X]N∗

)
M [X]N∗

; so the

equality fAM (X)=AfAM (X) becomes f
(
A[X]N∗

)
M [X]N∗

=Af

(
A[X]N∗

)
M [X]N∗

. But by
Proposition 4.6, Max(A[X]N∗) = {M [X]N∗ ; M ∈ ∗-Max A}, hence Af is ∗-invertible if
and only if fA[X]N∗ = AfA[X]N∗ .

8.6. Theorem. Let ∗ be a radical operation of finite character on a domain A and
0 6= f ∈ A[X], the following assertions are equivalent:
(1) Af is ∗-locally principal.
(2) fA[X]N∗ = AfA[X]N∗ .
(3) fA[X]N∗ = IA[X]N∗ , for some integral ideal I of A.

Proof. (1) =⇒ (2) By hypothesis, Af is ∗-locally principal. Since Af is finitely generated,
it is ∗-finitely generated. By Theorem 7.11, Af is ∗-invertible and by the preceding lemma,
fA[X]N∗ = AfA[X]N∗ .
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(2) =⇒ (3) Take I = Af .

(3) =⇒ (1) By Proposition 4.6, for any M ∈∗-Max A, M [X]N∗ ∈spec
(
A[X]N∗

)
. By local-

izing the equality fA[X]N∗ =IA[X]N∗ , we obtain f
(
A[X]N∗

)
M [X]N∗

=I
(
A[X]N∗

)
M [X]N∗

.

By Corollary 8.2,
(
A[X]N∗

)
M [X]N∗

=AM (X); so fAM (X)= IAM (X). By Corollary 8.4,
(AM )f = (Af )M is a principal ideal. Hence Af is ∗-locally principal.

8.7. Lemma. Let ∗ be a radical operation on a domain A and I a nonzero fractional
ideal of A. Then

(
I[X]N∗

)−1 = I−1[X]N∗ .

Proof. ⊇ Since I−1[X]N∗I[X]N∗ =
(
I−1[X]I[X]

)
N∗ ⊆ (I−1I)[X]N∗ ⊆ A[X]N∗ , then

I−1[X]N∗ ⊆
(
I[X]N∗

)−1.

⊆ Let u ∈
(
I[X]N∗

)−1, then uI[X]N∗ ⊆ A[X]N∗ ; in particular, uI ⊆ A[X]N∗ . Let
0 6= a ∈ I be a fixed element, since ua ∈ A[X]N∗ , then u ∈ 1

aA[X]N∗ ⊆ K[X]N∗ , where K

is the quotient field of A. Put u = f
h , with f ∈ K[X] and h ∈ N ∗ ⊆ A[X], then f = uh ∈(

I[X]N∗
)−1; so fI[X]N∗ ⊆ A[X]N∗ and in particular fI ⊆ A[X]N∗ . For each b ∈ I, there

is some g ∈ N ∗ such that bfg ∈ A[X]. By Dedekind-Mertens theorem [13], Am
g Abfg =

Am+1
g Abf for some m ∈ IN∗. Hence

(
Am+1

g Abf

)∗ =
(
Am

g Abfg

)∗ =⇒
(
(A∗

g)
m+1Abf

)∗ =(
(A∗

g)
mAbfg

)∗. Since A∗
g = A, then A∗

bf = A∗
bfg ⊆ A∗ = A; in particular, bAf ⊆ A, for

each b ∈ I. Then IAf ⊆ A =⇒ Af ⊆ I−1 =⇒ f ∈ I−1[X] =⇒ u = f
h ∈ I−1[X]N∗ .

8.8. Theorem. Let ∗ be a radical operation of finite character on a domain A and I a
nonzero integral ideal of A. Then I is ∗-invertible in A if and only if I[X]N∗ is invertible
in A[X]N∗ .

Proof. =⇒ Since (II−1)∗ = A, for each M ∈ ∗-Max(A), II−1 6⊆ M . If (II−1)[X]N∗ ⊆
M [X]N∗ , by Proposition 4.4, II−1 ⊆ (II−1)[X]N∗ ∩ A ⊆ M [X]N∗ ∩ A = M , which
is impossible. But by Proposition 4.6, Max(A[X]N∗) = {M [X]N∗ ; M ∈ ∗-Max A},
then (II−1)[X]N∗ = A[X]N∗ . By the preceding lemma, A[X]N∗ = I[X]N∗I−1[X]N∗ =
I[X]N∗

(
I[X]N∗

)−1.

⇐= Since I[X]N∗ is invertible, by Lemma 8.7, A[X]N∗ = I[X]N∗
(
I[X]N∗

)−1 = I[X]N∗

I−1[X]N∗ = (II−1)[X]N∗ . By Proposition 4.4, A = A[X]N∗ ∩ A = (II−1)[X]N∗ ∩ A ⊆
(II−1)∗ ⊆ A, hence (II−1)∗ = A.
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