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Abstract. We give a proof of the monotonicity of the volume of nonobtuse-angled
compact convex polyhedra in terms of their dihedral angles. More exactly we prove
the following. Let P and Q be nonobtuse-angled compact convex polyhedra of the
same simple combinatorial type in hyperbolic 3-space. If each (inner) dihedral
angle of Q is at least as large as the corresponding (inner) dihedral angle of P ,
then the volume of P is at least as large as the volume of Q. Moreover, we extend
this result to nonobtuse-angled hyperbolic simplices of any dimension.
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1. Introduction

A compact convex polyhedron in hyperbolic 3-space H3 is the convex hull of finitely many
points with nonempty interior or equivalently is the bounded intersection of finitely many
closed halfspaces with nonempty interior. The different dimensional faces of a compact convex
polyhedron are called vertices, edges and faces. Any two faces meeting along an edge are
called adjacent faces. Finally, a compact convex polyhedron in H3 is called nonobtuse-angled
if the inner dihedral angles at all edges do not exceed π

2
. In a sequence of highly influential

papers Andreev gave a description of the geometry of nonobtuse-angled compact convex
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polyhedra in H3. (For more details on the Koebe-Andreev-Thurston theorem see for example
[6].) In [3] he proved that the planes of any two nonadjacent faces of a nonobtuse-angled
compact convex polyhedron do not intersect in H3. It is easy to see that the combinatorial
type of any nonobtuse-angled compact convex polyhedron is simple that is at any vertex
exactly 3 faces (resp. 3 edges) meet. More importantly it is shown in [1] that if P and Q
are nonobtuse-angled compact convex polyhedra of the same simple combinatorial type in
H3 such that the corresponding inner dihedral angles of P and Q are equal, then P and Q
are congruent. All these results have been extended to higher dimensions by Andreev in [1]
and [3]. However, the most striking result of Andreev is a 3-dimensional one. Namely, for a
given simple combinatorial type of a polyhedron, not a tetrahedron, Andreev [1] determined
necessary and sufficient conditions on the inner dihedral angles under which there exists a
compact convex polyhedron with the given dihedral angles not greater than π

2
and with the

given simple combinatorial type. ([2] extends this result to finite-volume convex polyhedra
in H3.)

Based on this, in this note we prove the monotonicity of the volume of 3-dimensional
nonobtuse-angled compact convex polyhedra in terms of their inner dihedral angles. More
exactly we prove the following:

Theorem 1. Let P and Q be nonobtuse-angled compact convex polyhedra of the same simple
combinatorial type in H3. If each inner dihedral angle of Q is at least as large as the corre-
sponding inner dihedral angle of P , then the volume of P is at least as large as the volume
of Q.

The author believes that the conclusion of Theorem 1 fails to hold if one drops the assump-
tion that P and Q are nonobtuse-angled. However, it is highly possible that the following
conjecture holds as a natural extension of Theorem 1 to higher dimensions. A proof of that,
however, would require fundamentally new ideas as well.

Conjecture 1. Let P and Q be nonobtuse-angled compact convex polytopes of the same
simple combinatorial type in Hd, d ≥ 4. If each inner dihedral angle of Q is at least as large
as the corresponding inner dihedral angle of P, then the d-dimensional hyperbolic volume of
P is at least as large as that of Q.

Remark 1. Theorem 2 of the proof of Theorem 1 shows that Conjecture 1 holds when P
and Q are nonobtuse-angled hyperbolic simplices of any dimension.

Remark 2. It is not hard to see via proper limit procedure (for details see [2]) that Theorem
1 extends to nonobtuse-angled convex polyhedra of finite volume in H3.

2. Proof of Theorem 1

Case 1. P and Q are simplices.

Let Xn be the spherical, Euclidean or hyperbolic space Sn, En or Hn of constant curvature
+1, 0, −1, and of dimension n ≥ 2. By an n-dimensional simplex ∆n in Xn we mean a com-
pact subset with nonempty interior which can be expressed as an intersection of n + 1 closed
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halfspaces. (In case of spherical space we require that ∆n lies on an open hemisphere.) Let
F0, F1, . . . , Fn be the (n− 1)-dimensional faces of the simplex ∆n. Each (n− 2)-dimensional
face can be described uniquely as an intersection Fij = Fi∩Fj. We will identify the collection
of all inner dihedral angles of the simplex ∆n with the symmetric matrix α = [αij] where αij

is the inner dihedral angle between Fi and Fj for i 6= j, and where the diagonal entries αii

are set equal to π by definition. Then the Gram matrix G(∆n) = [gij(∆
n)] of the simplex

∆n ⊂ Xn is the (n + 1) × (n + 1) symmetric matrix defined by gij (∆n) = − cos αij. Note
that all diagonal entries gii(∆

n) are equal to one. Finally, let

Gn
+ = {G(∆n) | ∆n is an n-dimensional simplex is Sn} ,

Gn
0 = {G(∆n) | ∆n is an n-dimensional simplex in En} ,

Gn
− = {G(∆n) | ∆n is an n-dimensional simplex in Hn} and

Gn = Gn
+ ∪Gn

0 ∪Gn
−.

The following lemma summarizes some of the major properties of the sets Gn
+, Gn

0 , Gn
− and

Gn that have been studied on several occasions including the papers of Coxeter [4], Milnor
[7] and Vinberg [8].

Lemma 1. (1) The determinant of G(∆n) is either positive or zero or negative depending
on whether the simplex ∆n is spherical or Euclidean or hyperbolic.

(2) Gn is a convex open set in RN with N = n(n+1)
2

. (Note that the affine space consisting

of all symmetric unidiagonal (n + 1)× (n + 1) matrices has dimension N = n(n+1)
2

.)

(3) Gn
0 is an (N − 1)-dimensional topological cell that cuts Gn into two open subcells Gn

+

and Gn
−.

(4) Gn
+ (resp., Gn

+ ∪Gn
0 ) is a convex open (resp. convex closed) set in RN .

We will need the following property for our proof of Theorem 1 that seems to be a new prop-
erty of Gn

+ (resp., Gn
+ ∪Gn

0 ) not yet mentioned in the literature. It is useful to introduce the
notations RN

<0 = {(x1, x2, . . . , xN) | xi < 0 for all 1 ≤ i ≤ N } and RN
≤0 = {(x1, x2, . . . , xN) |

xi ≤ 0 for all 1 ≤ i ≤ N}.

Lemma 2. Gn
+∩RN

<0 (resp.,
(
Gn

+ ∪Gn
0

)
∩RN

≤0) is a convex corner i.e. if g = (g1, g2, . . . , gN) ∈
Gn

+ ∩ RN
<0 (resp., g ∈

(
Gn

+ ∪Gn
0

)
∩ RN

≤0), then for any g′ = (g′1, g
′
2, . . . , g′N) with g1 ≤ g′1 <

0, . . . , gN ≤ g′N < 0 (resp., g1 ≤ g′1 ≤ 0, . . . , gN ≤ g′N ≤ 0) we have that g′ ∈ Gn
+ ∩ RN

<0

(resp. g′ ∈
(
Gn

+ ∪Gn
0

)
∩ RN

≤0).

Proof. Due to Lemma 1 it is sufficient to check the claim of Lemma 2 for the set Gn
+ ∩RN

<0

only.
Let g=(g1, g2, . . . , gN) ∈ Gn

+∩RN
<0. Then it is sufficient to show that for any ε1, ε2, . . . , εN

with g1 ≤ ε1 < 0, g2 ≤ ε2 < 0, . . . , gN ≤ εN < 0 we have that

g1 = (ε1, g2, . . . , gN) ∈ Gn
+ ∩ RN

<0,

g2 = (g1, ε2, g3, . . . , gN) ∈ Gn
+ ∩ RN

<0,

(5)
...

gN = (g1, . . . , gN−1, εN) ∈ Gn
+ ∩ RN

<0.



612 K. Bezdek: On the Monotonicity of the Volume of . . .

(Namely, it is easy to see that (5) and the convexity of Gn
+ ∩ RN

<0 imply that Gn
+ ∩ RN

<0 is
indeed a convex corner. Although it is not needed here, for the sake of completeness we
note that the origin of RN is in fact, an interior point of Gn

+.) Let ∆n be the n-dimensional
simplex of Sn whose Gram matrix G(∆n) = [gij (∆n)] corresponds to g = (g1, g2, . . . , gN) i.e.

(g1, g2, . . . , gN) = (− cos α01,− cos α02, . . . ,− cos α0n,− cos α12, . . . ,− cos α(n−1)n).

As g ∈ Gn
+ ∩ RN

<0 we have that 0 < α01 < π
2
, 0 < α02 < π

2
, . . . , 0 < α0n < π

2
, 0 <

α12 < π
2
, . . . , 0 < α(n−1)n < π

2
. In order to show that g1 = (ε1, g2, . . . gN) ∈ Gn

+ ∩ RN
<0

we have to show the existence of an n-dimensional simplex ∆n
1 of Sn with dihedral angles

arccos(−ε1), α02, . . . , α0n, α12, . . . , α(n−1)n. (As the task left for the remaining parts of (5) is
the same we do not give details of that here.) We will show the existence of ∆n

1 via polarity.
Let ∗∆n = {x ∈ Sn | x · y ≤ 0 for all y ∈ ∆n} be the spherical polar of ∆n, where x·y denotes
the inner product of the unit vectors x and y. As it is well-known ∗∆n is an n-dimensional
simplex of Sn with edgelength π − α01, π − α02, . . . , π − α0n, π − α12, . . . , π − α(n−1)n each
being larger than π

2
.

Let F be the (n− 2)-dimensional face of ∗∆n disjoint from the edge of length π − α01 of
∗∆n. Let v0 and v1 be the endpoints of the edge of length π − α01 of ∗∆n. By assumption
π
2

< π−arccos(−ε1) ≤ π−α01 < π. Now, rotate v1 towards v0 about the (n−2)-dimensional
greatsphere Sn−2 of F in Sn until the rotated image v̄1 of v1 becomes a point of the (n− 1)-
dimensional greatsphere Sn−1 of the facet of ∗∆n disjoint from v1. Obviously, the above
rotation about Sn−2 decreases the (spherical) distance v0v1 in a continuous way. We claim
via continuity that there is a rotated image say, v01 of v1 such that the spherical distance v0v01

is equal to π−arccos(−ε1). Namely, the n+1 points formed by v0, v̄1 and the vertices of F all
belong to an open hemisphere of Sn−1 with the property that all pairwise spherical distances
different from v0v̄1 are larger than π

2
. (Here we assume that v0 and v̄1 are distinct since if

they coincide, then the existence of v01 is trivial.) But, then a theorem of Davenport and
Hajós [5] implies that v0v̄1 ≤ π

2
and so, the existence of v01 follows. Thus, the spherical polar

of the n-dimensional simplex of Sn spanned by v0, v01 and F gives us ∆n
1 . This completes the

proof of Lemma 2. �

Now, we are in a position to show that Gn
− ∩ RN

≤0 is monotone-path connected.

Lemma 3. Gn
− ∩ RN

≤0 is monotone-path connected in the following strong sense: if g =
(g1, . . . , gN) ∈ Gn

− ∩ RN
≤0 and g′ = (g′1, . . . , g′N) ∈ Gn

− ∩ RN
≤0 with g′1 ≤ g1, . . . , g′N ≤ gN , then

[λg′ + (1− λ)g] ∈ Gn
− ∩ RN

≤0 for all 0 ≤ λ ≤ 1.

Proof. Lemma 1 implies that [λg′ + (1− λ)g] ∈ Gn for all 0 ≤ λ ≤ 1 and so it is sufficient
to prove that [λg′ + (1− λ)g] 6∈ Gn

+ ∪ Gn
0 for all 0 ≤ λ ≤ 1. As g 6∈ Gn

+ ∪ Gn
0 and Gn

+ ∪ Gn
0

is convex moreover,
(
Gn

+ ∪Gn
0

)
∩ RN

≤0 is a convex corner (Lemma 2) therefore there exists
a supporting hyperplane H in RN that touches Gn

+ ∪ Gn
0 at some point h ∈ Gn

0 ∩ RN
≤0 and

is disjoint from g and separates g from Gn
+ ∪ Gn

0 . In fact, using again the convex corner
property of

(
Gn

+ ∪Gn
0

)
∩ RN

≤0 we get that H separates h + RN
≤0 from Gn

+ ∪Gn
0 and therefore

H separates g + RN
≤0 from Gn

+ ∪Gn
0 as well. Finally, notice that g′ ∈ g + RN

≤0 and g + RN
≤0 is

disjoint from H and therefore g + RN
≤0 is disjoint from Gn

+ ∪ Gn
0 . This finishes the proof of

Lemma 3. �
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Now, we are ready to give a proof of the following volume monotonicity property of hyperbolic
simplices.

Theorem 2. Let P and Q be nonobtuse-angled n-dimensional hyperbolic simplices. If each
inner dihedral angle of Q is at least as large as the corresponding inner dihedral angle of P,
then the n-dimensional hyperbolic volume of P is at least as large as that of Q.

Proof. By moving to the space of Gram matrices of n-dimensional hyperbolic simplices
and then applying Lemma 3 we get that there exists a smooth one-parameter family P (t),
0 ≤ t ≤ 1 of nonobtuse-angled n-dimensional hyperbolic simplices with the property that
P (0) = P and P (1) = Q moreover, if α01(t), α02(t), . . . , α0n(t), α12(t), . . . , α(n−1)n(t) denote
the inner dihedral angles of P (t), then αij(t) is a monotone increasing function of t for all
0 ≤ i < j ≤ n. Now, Schläfli’s classical differential formula [7] yields that

(6)
d

dt
Voln(P (t)) =

−1

n− 1

∑
0≤i<j≤n

Voln−2(Fij(t)) ·
d

dt
αij(t),

where Fij(t) denotes the (n− 2)-dimensional face of P (t) on which the dihedral angle αij(t)
sits and Voln(·), Voln−2(·) refer to the corresponding dimensional volume measures. Thus,
as d

dt
αij(t) ≥ 0 (6) implies that d

dt
Voln(P (t)) ≤ 0 and so indeed P (0) ≥ P (1), finishing the

proof of Theorem 2. �

Case 2. The combinatorial type of P and Q is different from that of a tetrahedron.

First, recall the following classical theorem of Andreev [1].

Andreev Theorem. A nonobtuse-angled compact convex polyhedron of a given simple com-
binatorial type, different from that of a tetrahedron and having given inner dihedral angles
exists in H3 if and only if the following conditions are satisfied:

(1) if 3 faces meet at a vertex, then the sum of the inner dihedral angles between them is
larger than π;

(2) if 3 faces are pairwise adjacent but, not concurrent, then the sum of the inner dihedral
angles between them is smaller than π;

(3) if 4 faces are cyclically adjacent, then at least one of the dihedral angles between them
is different from π

2
;

(4) (for triangular prism only) one of the angles formed by the lateral faces with the bases
must be different from π

2
.

Second, observe that Andreev theorem implies that the space of the inner dihedral angles of
nonobtuse-angled compact convex polyhedra of a given combinatorial type different from that
of a tetrahedron in H3 is an open convex set. As a result we get that if P and Q are given as
in Theorem 1 and are different from a tetrahedron, then there exists a smooth one-parameter
family P (t), 0 ≤ t ≤ 1 of nonobtuse-angled compact convex polyhedra of the same simple
combinatorial type as of P and Q with the property that P (0) = P and P (1) = Q moreover,
if αE(t) denotes the inner dihedral angle of P (t) which sits over the edge corresponding to
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the edge E of P, then αE(t) is a monotone increasing function of t for all edges E of P .
Applying Schläfli’s differential formula [7] to the smooth one-parameter family P (t) we get
that

(7)
d

dt
Vol(P (t)) = −1

2

∑
Et

length (Et) ·
d

dt
αE(t)

where Et denotes the edge of P (t) corresponding to the edge E of P and E (resp., Et) runs
over all edges of P (resp., P (t)). Hence, as d

dt
αE(t) ≥ 0 (7) implies that d

dt
Vol(P (t)) ≤ 0 and

so indeed P (0) ≥ P (1), completing the proof of Theorem 1. �
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