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Abstract. Given any non-trivial, connected topological space X, it is possible
to define an equivalence relation ∼ on it such that the topological quotient space
X/ ∼ is the Sierpinski space. Locally Sierpinski spaces are generalizations of the
Sierpinski space and here we address the following question. Does a statement like
the one above hold if Sierpinski is replaced by (proper) locally Sierpinski ? The
answer is no and we will give below a few counterexamples. The situation where a
homeomorphism group acts on a topological n-manifold will also be analysed, the
conclusion being that the cases n = 1, n > 1 are radically different.
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1. Locally Sierpinski spaces

A topological space X is said to be a locally Sierpinski space, l. S. space in short, if ev-
ery point x ∈ X has an open neighbourhood Ux homeomorphic to the Sierpinski space
({0, 1}, {∅, {0}, {0, 1}}). If in an l. S. space X a unitary set {x} is open we say that x is a
centre. The remaning points will be called satellites. The centres and the open sets home-
omorphic to the Sierpinski space form a base for the topology of X. Therefore X is locally
(path-)connected and its (path-)connected components are open. Moreover there is a bijec-
tion between the set of centres and the set of components of X. Such a bijection associates
to each centre the component which contains it. Examples of connected l. S. spaces are often
referred to in topology textbooks [3]. They are obtained as follows. Let X be a set with,
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at least, two points. Fix p ∈ X and define a set to be open if it is either the empty set
or contains p. L. S. spaces can be characterized as locally (path-)connected spaces whose
(path-)components are subspaces of the same type as X.

2. Existence of quotient maps

Proposition 1. Let X be a connected topological space. If X can be partitioned as X =

A ∪ (
⋃
i∈I

Ai), I 6= ∅, where A is open and, for each i ∈ I, Ai is closed and A ∪ Ai is open,

then there is a quotient map p : X → S, where S is an l. S. space with #I as the number of
satellites. Conversely, if there is a quotient map p : X → S, where S is l. S., then X can be

partitioned as X = A ∪ (
⋃
i∈I

Ai), with A open, for each i ∈ I, Ai closed, A ∪Ai open and #I

the number of satellites.

Proof. Assume that there is a quotient map p : X → S, c is the centre of S and xi, i ∈ I,
are the satellites. Let then A = p−1(c) and Ai = p−1({c, xi}), i ∈ I. Assume now that

X = A∪ (
⋃
i∈I

Ai), I 6= ∅, where A is open and, for each i ∈ I, Ai is closed and A∪Ai is open.

Add an extra point c to I to obtain a new set J and make this new set into an l. S. space
by taking as a topological basis the subsets {c}, {c, i}, i ∈ I. Then define p : X → S by
p(A) = c, p(Ai) = i, i ∈ I. This map is obviously surjective and continuous. It is also a
quotient map. Suppose that U ⊂ J , nonempty and different from J , is such that p−1(U) is
open. Then c ∈ U and therefore U is open in J . If c were not in U then U would be closed
and p−1(U) would also be closed. This contradicts the connectedness of X. �

By assuming that X is locally connected, we can actually formulate the first part of the
proposition, but not the second, in terms of the components Xλ, λ ∈ Λ, of X. The proof
would follow as above. For each λ ∈ Λ, we would have a map p : Xλ → Sλ and would use these
maps to obtain p : X → S, where S is the disjoint union of the Sλ’s. As to a counterexample
for the converse consider the disjoint union of a Sierpinski space and a trivial two point space.
That is, consider X = {a, b, c, d}, with topology τX = {∅, X, {a, b, c}, {a, b}, {c}, {c, d}}, and
the Sierpinski space {c, d}, with {c} open. The map p : X → S given by p({a, b, d}) =
{d}, p(c) = c is a quotient map.

3. Examples

1. Let X be a T1 connected space and r be an integer such that 1 ≤ r < #X. Then a
connected l. S. space with r satellites is obtainable from X. One fixes r points in X,
one takes for A their complement and each Ai is formed by just one of the fixed points.

2. Let X be a set with at least 2 points and let us fix p ∈ X. Define U ⊂ X to be open if
U = X or p /∈ U . This space is connected and the only l. S. space which is obtainable
from it is the Sierpinski space itself.

3. Let X now be the real numbers and define U to be open if it is empty or an open interval
of the form (−∞, a) or (−∞, +∞). Again only the Sierpinski space is obtainable.
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4. S1 and other spheres

As mentioned earlier any finite, connected l. S. space can be obtained from the circle S1.
However if the quotient space is a space of orbits originated by the action of a subgroup G of
the homeomorphism group of S1 the possibilities are severely restricted. For R this problem
was solved in [1]. From now on we will assume that a group of homeomorphisms G acts on
S1.

Proposition 1. No free action on S1 gives rise to an l. S. space.

Proof. Assume that S1/G is l. S., p : X → S1/G is the projection and c is the centre of
S1/G. If p−1(c) is S1 with one point removed then that point would be a fixed point for
every element of G. Suppose then that p−1(c) is not S1 with one point removed. Take a

component
_

x0y0 of p−1(c) and choose distinct x1, y1 in it. There is f ∈ G which maps x1 to

y1. Since f maps the closed arc
_

x0y0 to itself, it must have a fixed point. �

Proposition 2. If S1/G is an l. S. space then it has one or two satellites. Both cases can
occur.

Proof. Let c be the centre of S1/G, p the projection which, since we are dealing with a group

action, is open, and p−1(c) =
⋃
i∈I

Ci, where the Ci’s are the connected components. We will

show that the inverse image of the set of satellites is precisely the set of end points of the
open arcs Ci. Obviously the end points of the Ci’s project to satellites. If x ∈ p−1(s), where
s is a satellite, consider the open set {c, s} and its inverse image. Let C denote the connected
component in that inverse image which contains x. If no point other than x lies in C∩p−1(s),
x is an end point of one of the Ci’s. On the other hand, if there is another x′ in C ∩ p−1(s)

then there must exist a component Ci such that Ci ⊂
_
xx

′
. The end points of Ci are in the

orbit of x and, consequently, x must be an end point of a component Cj. If the inverse image
of the set of satellites is a singleton then S1/G is the Sierpinski space. If not the Ci’s are arcs
with distinct end points. These end points give rise to one or two orbits and therefore the
quotient is the Sierpinski space or has two satellites. The Sierpinski space can be obtained
by letting G be the group of S1 homeomorphisms which fix, for instance, the north pole or,
alternatively, fix the subset formed by the north and south pole. An l. S. space with two
satellites can be obtained by letting G be the group of S1 homeomorphisms which fix, for
instance, the north pole and the south pole. �

Combining the corresponding result for R [1] and the next lemma gives us another way of
recovering Proposition 2.

Lemma 1. Let X be a connected, locally path-connected, semilocally simply connected topo-
logical space and let (X̃, π) be its universal covering. Assume there is a homeomorphism

group G such that X/G is l. S. Then there is also a group G̃ such that X̃/G̃ and X/G are
homeomorphic.

Proof. Let G̃ = {f̃ : X̃ → X̃ | π ◦ f̃ = f ◦ π, for some f ∈ G} and let it act on X̃. Then

x1, x2 ∈ X̃ are in the same orbit iff the same happens to π(x1), π(x2). Consider now the
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projection p : X → X/G and compose it with π. This composition is a quotient map which

induces exactly the same equivalence relation on X̃ as the G̃-action. Therefore the spaces
X̃/G̃ and X/G are homeomorphic. �

Let now X be a topological space and G be a homeomorphism group. If Y is a homogeneous
topological space and H is its homeomorphism group then the quotient spaces X/G and
X × Y/G×H are homeomorphic. Hence, for instance, the torus S1 × S1 can be acted upon
by a group of homeomorphisms such that the quotient is an l. S. space with one or two
satellites.

In the case of Sn, n ≥ 2, we have

Proposition 3. Given a positive integer r, there is a group G of Sn homeomorphisms, n ≥ 2,
such that Sn/G is an l. S. space with r satellites.

Proof. The result follows from the following facts: Sn is the 1-point compactification of Rn

and any homeomorphism of Rn extends naturally to a homeomorphism of Sn. It is known
[2] that given two n-sequences (x1, . . . , xr), (y1, . . . , yr) of distinct points in Rn, n ≥ 2, there
is a homeomorphism f : Rn → Rn such that f(xi) = yi, i = 1, . . . , r. We can therefore take
the group G formed by the Sn homeomorphisms which fix r points. �

5. Topological n-manifolds

In view of the results of the previous section it is only natural to ask what sort of l. S. spaces
can be obtained if one starts with a topological n-manifold, n ≥ 2. We start with an
independent proof of a particular case of Proposition 5 in [2]. In what follows each time we
refer to a chart for an n-manifold it will be understood that the codomain is Rn.

Proposition 1. Let F be a finite subset of Rn, n ≥ 2, and let x, y ∈ Rn \ F . Then there
is a homeomorphism h : Rn → Rn which is pointwise fixed on F , is the identity outside a
compact set and such that h(x) = y.

Proof. We will write xy for the line segment determined by x and y.

Case 1: xy ∩ F = ∅
There is no loss of generality in supposing x = (0,−1), y = (0, 1) ∈ Rn−1×R. Then there exist
r, s > 0 such that (Dn−1(r)× [−1−s, 1+s])∩F = ∅, where Dn−1(r) = {p ∈ Rn−1 | ‖ p ‖≤ r}.
Let f : [−1 − s, 1 + s] → [−1 − s, 1 + s] be a homeomorphism which fixes the end-points
and maps −1 to 1 and define h : Dn−1(r) × [−1 − s, 1 + s] → Dn−1(r) × [−1 − s, 1 + s] by

h(p, t) = (p, (1 − ‖p‖
r

)f(t) + ‖p‖
r

t). This h is a continuous bijection and, due to compactness
and Hausdorfness, it is a homeomorphism. On the boundary of Dn−1(r) × [−1 − s, 1 + s]
the homeomorphism h is the identity and we get the required homeomorphism for Rn if we
extend it by taking it to be the identity outside Dn−1(r)× [−1− s, 1 + s].

Case 2: xy ∩ F 6= ∅
We can find z ∈ Rn such that xz ∩ F = ∅ and zy ∩ F = ∅. By Case 1, there are Rn-
homeomorphisms h1 and h2, both of which are pointwise fixed on F , are the identity outside
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compact subsets K1, K2, respectively, and such that h1(x) = z, h2(z) = y. If we take
h = h2 ◦ h1 we have a homeomorphism as required. �

Then we get

Corollary 1. Let F be a finite subset of a topological n-manifold, n ≥ 2, and let x, y belong
to the same chart domain. Then there exists a homeomorphism h of M which is pointwise
fixed on F and such that h(x) = y.

Proof. Let φ : U → Rn be a chart with x, y ∈ U . Use it and Proposition 1 to obtain a
homeomorphism h : U → U which maps x to y, is pointwise fixed on U ∩ F and is the
identity outside a compact subset of U . Then extend h to M by defining it to be the identity
outside U . �

It is now easy to show that n-dimensional manifolds behave quite differently from 1-dimen-
sional ones as it was to be expected from previous results in this paper and [1].

Proposition 2. Let M be a connected, topological n-manifold, n ≥ 2. For any positive
integer r, there is a homeomorphism group G such that M/G is an l. S. space with r satellites.

Proof. Let F be a subset of M with r elements and let G be the group of homeomorphisms
of M which fix each point of F . We need to show that, for x, y ∈ M \ F , there is h ∈ G
such that it maps x to y. It will then follow that M/G is an l. S. space with r satellites. We
can find a sequence x = x1, x2, . . . , xn−1, xn = y in M such that, for i = 1, . . . , n− 1, xi, xi+1

are both in a chart domain [3]. By the previous corollary, there are homeomorphisms hi ∈ G
such that hi(xi) = xi+1. Then h = hn−1 ◦ · · · ◦ h2 ◦ h1 is the required homeomomorphism. �
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