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Abstract. We find the conditions under which a curve in the generalized Heisen-
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1. Introduction

First we should recall some notions and results related to the harmonic and the biharmonic
maps between Riemannian manifolds, as they are presented in [2], [9] and in [5].

Let f: M — N be a smooth map between two Riemannian manifolds (M, g) and (V, h).
Let f~!(TN) be the induced bundle over M of the tangent bundle, TN, defined as follows.
Denote by 7w : TN — N the projection. Then

fUTN) = {(z,u) € M x TN, n(u) = f(z),z € M} = U Ty N.

zeM

The set of all C*°-sections of f~1(T'N), denoted by T'(f (T N)),isT(f 1 (TN))={V : M —
TN,C>®-map, V(z) € TN, x € M}. Denote by VM, V¥, the Levi-Civita connections on
(M, g) and (N, h) respectively. For a smooth map f between (M, g) and (N, h), we define
the induced connection V on the induced bundle f~}(T'N) as follows. For X € x(M), V €
L(f~(TN)), define VxV € D(f~1(TN)) by VxV =V} (V.
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The differential of the smooth map f can be viewed as a section of the bundle A'(f~}(T'N)) =
T*M @ f~1(TN), and we denote by |df| its norm at a point x € M.

Suppose that M is a compact manifold. Define the energy density of f by e(f) = |df|?,
and the energy of f by E(f) = fM e(f) *1, where 1 is the volume form on M. The map
f is a harmonic map if it is a critical point of the energy, E(f). In [9] it is proved that a
map f : M — N is a harmonic map if and only if it satisfies the Euler-Lagrange equation
7(f) = 0, where 7(f) = trace Vdf is an element of I'(f~1(T'N)) called the tension field
of f. The Laplacian acting on I'(f~}(T'N)), induced by the connection V, is given by the
Weitzenbock formula

AV = —trace V2V,

for some V € T'(f~Y(T'N)).

The bienergy of f is defined by Ea(f) = 5 [, |7(f)]? * 1. We say that f is a biharmonic
map if it is a critical point of the bienergy, Fs(f). It is proved in [5] that a map f: M — N
is a biharmonic map if and only if it satisfies the equation 7»(f) = 0, where

no(f) = —A7(f) — trace R¥(df (-), 7()df (), (1.1)

where RY denotes the curvature tensor field on (N, h).
Note that any harmonic map is a biharmonic map and, moreover, an absolute minimum
of the bienergy functional.

2. Generalized Heisenberg group

Consider R*"*!1 with the elements of the form X = (2, y1,%2,%2, ..., Tn, Yn, 2). Define the
product on R?**! by

~ _ _ _ ~ I _
XX:(:1:1+x1,y1+y1,---,:lrn+a:n,yn+yn,2+2+52(%%—%%)),
=1

where X = (z1,y1, .., Tn, Yn, 2), X = (T1, Y1y s Ty Uny 2)-
Let Hy, 1 = (R?**1 ¢) be the generalized Heisenberg group endowed with the Rieman-
nian metric g which is defined by

n n

g= Z(dm? + dy?) + [dz + % Z(yidzi — xidyi)r. (2.1)

=1 =1

Note that the metric g is left invariant.
We can define a global orthonormal frame field in Hy,, 1 by

Esiv=-——F75 Eru=-+—-75, Eowmy1= 4,
2l or; 20z 2 y; + 2 0z T 92

for i = 1,...,n. The Levi-Civita connection of the metric g is given by, (see [7] for the



D. Fetcu: Biharmonic Curves in the Generalized Heisenberg Group

3-dimensional case),

015

vEgi_lEQj—l = O’ VEQrL'_lEQj = %5Z]E2n+17
Vg, Faj =0, Vi EBajo1 = —16ijFania,
Vi Boict = —3F2, Vi, Ea = —5F, (2.2)
V Eypir Boi = %E%fl’ Vg, Eong1 = %E%fla
vE2n+1 E2n+1 = 07
fori,j =1,...,n. We have too
[EZiflv Eijl] = 07 [EQia EQ]] = 07
[Eai1, Eony1] = 0, [Eaiy Eony1] = 0,
[Eai1, Eyj) = 04 Eapa.
The curvature tensor field of V is
R(X,)Y)Z =VxVyZ - VyVxZ —VixyZ,
and Riemann-Christoffel tensor field is
R(X,Y, Z, W) =g(R(X, Y)W, Z),
where X, Y, Z, W € x(R?"*!). We will use the notations
Rabc = R(Eaa Eb)Eca Rabcd - R<Ea7 Eba Eca Ed)a
where a,b,c,d = 1,...,2n + 1. Then the non-zero components of the curvature tensor field
and of the Riemann-Christoffel tensor field are, respectively
[ R(2i-1)(2j-1)(2k) = —;115jkE21' + %ﬁikEzj,
Ri—1)@j)@er-1) = }15jk:E2i + %(Z‘jE%,
Resi—1)@j)ok) = — 30 Eoj_1 — 20; Fop_1,
Rii-1)@nt1)2i-1) = —10i; Eant1,
1 (2.3)
Rai-1)@nt1)@nt1) = 70iFai-1,
Reoiy@iyon—1) = —50jkF2i1 + 301 Eaj_1,
R(2z)(2n+1)( 25) — _1513E2n+17
| Rei@nri@ntt) = 30 B,
( Riai—1)(2j-1)@i)2k) = —350k + 30ik0ij,
R2i—1)2j)2i)(2k—1) = 15]k + 15114;5”,
R 505 + 3005k,
(2i—1)(24)(2k) (2k—1) i T 10ik0jk (2.4)

R2)(2j-1)(2j-1)(2k) = 45Z’€ 45]1652]»

R2i—1)2n+1)(2n+1)2j-1) = — 1045,
6ij7

 Rei)@en+1)2n41)(27) _%

fore,7,k=1,...,n
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3. Biharmonic curves in Hy, 41

Let v : I — Hy, 1 be a non-inflexionar curve, parametrized by its arc length. Let {T, Ny, ...,
Ny, } be the Frenet frame in Hy, 1 defined along 7, where T' =~/ is the unit tangent vector
field of v, Vi is the unit normal vector field of 7, with the same direction as V77T and the

vectors Ny, ..., Ny, are the unit vectors obtained from the following Frenet equations for ~.
VT = x1lVy,
VrN =  —x11" + x2 NV,
VrNon—1 = —Xon—2Nan—2 + Xon—1Non,
V1 Nay, = —X2n—1N2n—1,

where x1 = [|V2T|| = |[7(7)|], and x2 = xa($),- .., X2n = X2n(S) are real valued functions,
where s is the arc length of v. If x4y € R, k=1,...,2n+ 1 we say that v is a helix.
The biharmonic equation of v is

() = V3T — R(T,V¢T)T = 0. (3.2)
Using the Frenet equations one obtains
VT = (=3xax)T + (X = x7 = x1x3) N1 + (2xix2 + x1x5) Nz + x1x2x3Ns. (3:3)

Using (2.3) we get

n

R(T,VT)T = Z(f%—lE%—l + &2iE9) + Eant1Eong1,

i=1
with

3 - 2j 2j—1 1 o+l Lo 21
Eoim1 = ZT% jzl(—T2j—1N1 + To;N;777) + ZTQi—1T2n+1N1 — ZTQ"HNl ;

3 - 2j 9j—1y , 1 ont1 Lo 2

§oi = 7 Toina Z(sz—lj\ﬁ — TNy ) + 1 L2ilon et Ny = T o NY

j=1

1 & o .

Sont1 = 1 Z(—nglean — TQQJ-NE”H + Toj 1 Ton 1 NY/ 1 4 TojTon i1 N,
j=1

where T = Z2n+1 T,E, and N; = ZQ"H N{E,. After a straightforward computation, we
have

R(T,V;T)T anNk, (3.4)
with
3 & 2i—1 21 2 1 2 1 2n+41\2
= L[ DO TNE = Ty NP = TR — (N2, (3.5)

=1
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n n

3 , , , A 1
=g [Z(TQiNfZ_l — TQZ‘_1N122)} [Z(Tzi]\/}?l_l — To NP — == NN (3.6)

, : 4
i=1 i=1
where Ny = S22 NeE,.
From (3.2), (3.3) and (3.4) it follows that the biharmonic equation of v is

7(y) = VT — R(T,V+T)T = (=3xax)T + (X1 — X3 — xaxs — xam) N1+

2n

(2X5x2 + X1X5 — Xam2) N2 + (xixaxs — x1m3)Ns — x1 Y Vi,
=4

where 1,, a =1,...,2n are given by (3.5) and (3.6). Hence

Theorem 3.1. Let v : I — Hy, 1 be a curve, parametrized by its arc length. Then v is a
biharmonic and non-harmonic curve if and only if

x1 € R\ {0},
X% + X% = -,
Xz = 12, (3.7)
X2X3 = 13,
77k:0, /{:4,...,271,
where ng, k=1,...,2n, are given by (3.5) and (3.6).

Corollary 3.2. If xy; € R\ {0} and x2 = 0 for a curve v : I — Ha,y1, parametrized by
its arc length, then ~y is a biharmonic and non-harmonic curve if and only if X3 = —m and
’f]k:O, ]{322,...,271.

Corollary 3.3. Lety: 1 — Hy, 1 be a curve, parametrized by its arc length. If ny > 0 then
v cannot be a btharmonic and non-harmonic curve.

In [7] the following two results for the usual Heisenberg group, Hs, are proved.
Theorem 3.4. Let v be the heliz given by

v(s) = (rcos(as), rsin(as),c a s),
where r > 0, a% =r?(1+ %17’2). Then vy is a btharmonic and non-geodesic curve.

1+v5
2

Remark 3.5. In the case above if r = , then ~ is a biharmonic and non-harmonic

curve with y, = 0.

In the case of the higher dimensions, we find a similar example related to Theorem 3.1. We
consider a curve in R*"*! given by

v(s) = (c1 cos(ays), ey sin(ays), .. ., ¢, cos(a,s), ¢, sin(a,s), cs),
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where ¢; >0, a; #0, ¢# 0, 1 =1,...,n. Then one obtains
T(s)=+'(s) = Z[—Ciai sin(a;s)Fa;_1 + ¢;a; cos(a;s) Fa| + AFa, 11,
i=1
where A = ¢ — 33" cfa;. From [[T(s)|| = 1 we have A% + Y cfal = 1. After a
straightforward computation, using (2.2), one obtains

n

VTT = Z[Czaz(A — CLZ‘) COS(CLZ'S>E22‘_1 + CZ'CLZ'(A — CLZ') sin(ais)Egi].

i=1
From the first equation in (3.1) and from ||Ny|| = 1, we have

- 1/2

X1 = [Z cai(A— ai)Q] e R,

i=1

and
- c;a;| A — a; '
Ny = Z ’ ’ 1/2 [COS<aiS)E2i—1 + Sll'l(az‘S)Egi].

i=1 [Z;L 1 Cja] (A o aj)2i|
Note that N?"™ = 0. Next, one obtains

n

1
VTNl + XlT = K Z {cZaZHA — CLZ|(A — 2&1) — ZX%]}[Sin(aiS>EQZ‘_1—
1

i=1
cos(a;s) Eo;| + [2X1A Z —a; } Eopyi1.

From (3.1), using || N2|| = 1 we have |X2|2 = ||X2N2||2.
In order to find a curve which satisfies conditions of Corollary 3.2 we assume that y, = 0
and x? = —n;. From this conditions, after a straightforward computation we get

Proposition 3.6. Let v : I — Hy,, 1 be the curve defined by

v(s) = (¢1 cos(ays), ¢g sin(ays), . . ., ¢p cos(ays), ¢, sin(a,s), cs),
where ¢; >0, a; #0, ¢ # 0. Ifai:a:A—ﬁ, S = % and ¢ = #3_1, where
3n? — 1+ (9n* + 6n% + 5)Y/291/2

A:i[ 7
6n2 + 2

then ~v is a biharmonic and non-harmonic curve in Ha, 1.

Note that, for such a curve and for k£ # 1, one obtains
Z(Tzilei_l — T N} =
i=1
That is g, = 0, for any k= 2,...,2n.
Also, note that the Proposition 3.6 is a generalization of the result in the Remark 3.5.
Next, one obtains

Z N22 1N22 1 + N?legz) o X1 N2n+1N2n+1 0.

IA— al = A4l
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Proposition 3.7. Let v : I — Hy,, 1 be the curve defined by
v(s) = (rcos(as), rsin(as),...,rcos(as), rsin(as), cs),
where r >0, a; #0, ¢ #0. If xo =0, x1 # 0 and v is btharmonic then n = 1.

In the following we obtain a class of biharmonic and non-harmonic curves for which the
second curvature does not necessarily vanish, (see[l] for the similar result in 3-dimensional
case).

Proposition 3.8. Let v : I — Hauy1, ¥(s) = (x1(5),y1(5), ..., 2n(5), yn(s), 2(s)), be the
curve with the parametric equations

zi(s) = 5 f < sin(fs + a;) + by,
yi(s) = ési?)‘ cos(fs + a;) + ¢,
2(s) = (cosa + (Smﬁa)Q)S — i # sin a cos(fs + a;)
> 257 Sinacos(8s + a;) + d,
cosatn/ a)?2—
with i = 1,...,n, where = - 52(COS ) 4, a € (0,arccos 2‘[]
a;, b, ¢;, d € R. Then v is a biharmonic and non-harmonic curve.

(3.8)

[arccos(—%g), ) and

Proof. The covariant derivative of the unit tangent vector field, T'; of v, is

n

Vol = Z[(Tgll 1+ ToiToni1) Eoir + (T, — Toim1Tont1) Eo) 4+ Ty Eonta,

=1

and T is given by

sin o
T(S) = 7’(5) = \/ﬁ Z[COS(ﬁS -+ ai)EQi—l + sin(ﬁs + CLZ‘)EQi] -+ cos O[E2n+1.
i=1

Taking into account the first Frenet equation one obtains
X1 = |sina(cosa — ()]

and, since we can assume, without loss of generality, that sin a(cosa — 3) > 0, we have

B " /sin(Bs + a;) cos(fs + a;)
= (R - )

After a straightforward computation one obtains that 17, = (sin «)
k=2,...,2n.
In order to find xo we obtain, using the equations (2.2),

2 — 1 and n, = 0, for any

cosBs tai g Loosat (cosa—@)(sin 04)2] Eaiy

VN +xiT = Z{ Jn 5
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sin(fs + a;)
HRVE

Then, using Frenet equations, we have

8 — cosa + (cos v — ) (sin a)Q] Egz} —sina [% — (cosa — f3) cos a] Eony1.

1
s = VN +xiT|* = 82 — Beosa + 1 (sin a)?(cosa — B)2.

Hence xs is a constant and, from hypothesis, one obtains

1 :
Xi+ X3 =~ (sina)” = —n.
Since xaNo = Vo Ny + xiT and x3 = ||[V7 Ny + x2N1]|?, we obtain, after a straightforward
computation, that y; = 0.

Hence, all conditions from Theorem 3.1 are verified by v and then + is a biharmonic and

non-harmonic curve.

Remark 3.9. In the same way as above it is easy to see that all biharmonic and non-
harmonic curves in Hy,; with constant second curvature and with the unit tangent vector
field, T', of the form

_ sina Z cos(fi(s))Eqi—1 + sin(fi(s)) Ea;] + cos aFap 1,

where f; are some smooth functions of the arc length, such that f/ = j'-, foranyi,j=1,...,n,
and a € R, are given by Proposition 3.8.

Finally, we have
Proposition 3.10. Let v : 1 — Hay, 1 be the curve defined by
v(s) = (¢18, €28, ..., Cony15)
with ZQnH 2 = 1. Then v is biharmonic if and only if is harmonic.

Proof. We have

2n+1 n

T(s) = 7/(5) = Z ¢ By, |7 =1, VoT = canta Z(CZiEQifl — Coi—1Fy;).

=1

It follows that x1 = cany1v/D iy (€31 + ¢3;), and

One obtains

VN +xiT = Eoi_1+

ZZ:1(C%k—1 + Cgk) - anﬂ _ [Zn: ( C2i—1C2n+1
2 VIS + )

=1
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n
CoiC
_ 2i zn+1 - EQZ) — Z(ng‘fl + ¢3;) Bont1 |-
\/23:1(023'—1 + CQj)

j=1

That means .
kZl(C%k_l + C%k) - C%n+1
X2 = — 5

Thus x? + x3 = 1. But, one obtains that 5 = 2 — ¢}, ,, and from (3.7) we have that if ~
is biharmonic then x} 4+ x3 = —m1 = —2 + ¢3,,,. Thus if  is biharmonic then x; = 0, and

then v is a harmonic curve.
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