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Abstract. In recent work we called a ring R a GGCD ring if the semigroup of
finitely generated faithful multiplication ideals of R is closed under intersection. In
this paper we introduce the concept of generalized GCD modules. An R-module M
is a GGCD module if M is multiplication and the set of finitely generated faithful
multiplication submodules of M is closed under intersection. We show that a ring
R is a GGCD ring if and only if some R-module M is a GGCD module.
Glaz defined a p.p. ring to be a GGCD ring if the semigroup of finitely generated
projective (flat) ideals of R is closed under intersection. As a generalization of a
Glaz GGCD ring we say that an R-module M is a Glaz GGCD module if M is
finitely generated faithful multiplication, every cyclic submodule of M is projective,
and the set of finitely generated projective (flat) submodules of M is closed under
intersection. Various properties and characterizations of GGCD modules and Glaz
GGCD modules are considered.
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0. Introduction

Let R be a ring and M an R-module. For submodules K and L of M , [K : L] is defined
as {x ∈ R : xL ⊆ K}. The annihilator of L is annL = [0 : L]. L is faithful if annL = 0.
M is multiplication if each submodule N of M has the form IM for some ideal I of R, [13].
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Equivalently, M is multiplication if and only if for all submodules N of M , N = [N : M ]M .
A submodule L of M is multiplication if and only if K ∩ L = [K : L]L for each submodule
K of M , [19, Lemma 3.1]. M is a cancellation module if for all ideals I and J of R,
IM ⊆ JM implies that I ⊆ J , [7] and [9]. Finitely generated faithful multiplication modules
are cancellation modules, [22, Corollary of Theorem 9]. Using this fact it is easy to see that
if M is a finitely generated faithful multiplication module then I[N : M ] = [IN : M ] for each
submodule N of M and each ideal I of R.

Let M be an R-module. Anderson, [5] and [6], defined θ(M) =
∑

m∈M

[Rm : M ]. He proved

[6, Proposition 1 and Theorem 1] that if M is a multiplication module then M = θ(M)M ,
and θ(M) = R if and only if M is also finitely generated. Let M be a multiplication module
and N a submodule of M. Then N = IM for some ideal I of R, and hence

N = Iθ(M)M = θ(M)(IM) = θ(M)N.

If N is finitely generated then R = θ(M)+annN , [16, Theorem 76]. If moreover N is faithful
then R = θ(M), and hence M is finitely generated. Also, M is faithful since annM ⊆
annN = 0. Thus modules that contain finitely generated faithful submodules are always
finitely generated and faithful, and hence they are cancellation modules. Multiplication
modules have received considerable attention in recent years, see for example [3], [5]–[10],
[18], and [22].

In [4] and [2] we studied the greatest common divisor and least common multiple of finitely
generated faithful multiplication and finitely generated projective ideals. The main purpose
of the present paper is to extend and generalize those results to finitely generated faithful
multiplication and finitely generated projective submodules of multiplication modules.

Let M be a multiplication module and S(M) the set of finitely generated faithful multi-
plication submodules of M. In Section 2 we investigate GCD and LCM of elements of S(M).
Let N, K ∈ S(M). If GCD(N, K) (resp. LCM(N, K)) exists then it is unique and is in
S(M). We show in Proposition 2.1 that if LCM(N, K) exists then so too does GCD(N, K),
and in this case

[GCD(N, K) : M ]LCM(N, K) = [LCM(N, K) : M ]GCD(N, K)

= [N : M ]K = [K : M ]N.

Proposition 2.4 extends Euclid’s Lemma to submodules. The relationships between GCD
and LCM of submodules of S(M) and ideals of S(R) are investigated in Proposition 2.5.
We prove that GCD(N, K) (resp. LCM(N, K)) exists for all N, K ∈ S(M) if and only if
gcd(I, J) (resp. lcm(I, J)) exists for all I, J ∈ S(R). We also show that GCD(N, K) exists
for all N, K ∈ S(M) if and only if LCM(N, K) exists for all N, K ∈ S(M).

In [4] we called a ring R a generalized GCD ring (GGCD ring) if S(R) is closed under
intersection. We extend this to modules: A generalized GCD module (GGCD module) M
is a multiplication module such that S(M) is closed under intersection. Proposition 2.5
shows that R is a GGCD ring if and only if some R-module is a GGCD module. Several
characterizations of GGCD module are given in Theorem 2.6.

For a GGCD module M and for N, K ∈ S(M), we define

ΦM
N,K = ΦN,K = {T : T is a submodule of M, T |N, GCD(T, K) = M}.
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In Section 3 we give several properties of this lattice of submodules of S(M). We show in
Theorem 3.4 that T ∈ ΦN,K is the smallest element if and only if the only submodule dividing
[N : T ]M and M -coprime to K (i.e. GCD(T, K) = M) is M . We also prove that if M is a
GGCD module and N, K ∈ S(M) and G = GCD(N, K), then ΦN,K = Φ[N :G]M,G, from which
we derive several consequences, see Corollary 3.7 and Theorem 3.8.

Let M be a finitely generated faithful multiplication module, and let S∗(M) be the set
of finitely generated projective submodules of M . In Section 4 we study the GCD and LCM
of elements of S∗(M). We relate the existence of GCD and LCM of elements of S∗(M) to
one another and to the existence of the gcd and lcm of certain annihilator ideals. We also
establish arithmetic relationships between them.

Glaz, [14] and [15], defined a GGCD ring to be a p.p. ring R such that S∗(R) is closed
under intersection. In this paper we generalize this to modules: An R-module M is a Glaz
GGCD module if M is a finitely generated faithful multiplication module, every cyclic sub-
module of M is projective, and S∗(M) is closed under intersection. Theorem 4.5 lists twenty
conditions equivalent to this.

All rings considered in this paper are commutative with identity, and all modules are
unital. For the basic concepts used, see [12], [13], [16], [17].

1. Preliminaries

Our first result collects several properties and characterizations of submodules of a finitely
generated faithful multiplication module from [1, Propositions 2.3 and 3.7] and [18, Lemma
1.4].

Lemma 1.1. Let R be a ring and N a submodule of a finitely generated faithful multiplication
module M.

(1) N is finitely generated if and only if [N : M ] is a finitely generated ideal of R.

(2) N is multiplication if and only if [N : M ] is a multiplication ideal of R.

(3) N is flat if and only if [N : M ] is a flat ideal of R.

(4) If N is finitely generated then N is projective if and only if [N : M ] is a projective ideal
of R.

(5) If N is finitely generated then N is projective if and only if N is multiplication and
annN = Re for some idempotent e.

(6) If N is finitely generated then N is flat if and only if N is multiplication and annN is
a pure ideal of R.

(7) annN = ann[N : M ]. In particular, N is faithful if and only if [N : M ] is faithful.

It is evident from the above lemma that N and [N : M ] are closely related. They are locally
isomorphic, but they need not to be isomorphic. In fact even if N is a faithful multiplication
module, N need not embed in R (see [21] for an example).

Corollary 1.2. Let R be a ring and M a finitely generated faithful multiplication R-module.
Let N, K be finitely generated submodules of M.
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(1) If K is a faithful multiplication then N ∩K is a finitely generated faithful multiplication
submodule if and only if [N : K] is a finitely generated faithful multiplication ideal of
R.

(2) If N and K are projective then N ∩ K is a finitely generated projective submodule of
M if and only if [N : K] is a finitely generated projective ideal of R.

Proof. (1) Suppose N ∩K is a finitely generated faithful multiplication submodule of M .
By Lemma 1.1, [N : K] = [(N ∩K) : K] is a finitely generated faithful multiplication ideal.
The converse follows by [10, Corollary 1.4] since N ∩K = [N : K]K.

(2) Let N ∩K be a finitely generated projective submodule of M . By Lemma 1.1, N ∩K
is multiplication. Moreover K is finitely generated, multiplication and annK = Re for some
idempotent e. It follows by [22, Corollary 2 to Theorem 11] that [N : K] = [N ∩ K : K]
is multiplication. Now [N : M ] ⊆ [N : K], and hence ann[N : K] ⊆ ann[N : M ] = annN .
Also, annK ⊆ [N : K], and ann[N : K] ⊆ ann(annK), and therefore ann[N : K] ⊆
annN ∩ ann(annK) = ann(N + annK). The reverse inclusion is also true (see the proof of
[2, Theorem 2.2(1)]). Hence, ann[N : K] = ann(N + annK). It follows by [18, Corollary 1 to
Lemma 1.5] that [N : K] is finitely generated. By [20, Theorem 2.1], [N : K] is projective.
The converse is true since

N ∩K = [N : K]K ∼= [N : K]⊗K,

see for example [12, Corollary 11.16]. �

We note that the above corollary may also be proved using Lemma 1.1, [4, Theorem 3.1], [2,
Theorem 2.3] and the fact that [N : K] = [[N : M ] : [K : M ]].

Let N, K be submodules of an R-module M . We say that N divides K, denoted N |K,
if there exists an ideal I of R such that K = IN . It is clear that if N |K then K ⊆ N ,
and if N is multiplication the converse is also true. A common divisor of N and K which is
divisible by every common divisor of N and K (which is clearly unique if it exists) is denoted
by GCD(N, K), and LCM is defined analogously. The existence and arithmetic properties of
these in the case of finitely generated faithful multiplication and finitely generated projective
ideals are investigated in [4] and [2] respectively.

Lemma 1.3. Let R be a ring and N, K submodules of a finitely generated faithful multipli-
cation R-module M.

(1) If GCD(N, K) exists then so too does gcd([N : M ], [K : M ]), and in this case
[GCD(N, K) : M ] = gcd([N : M ], [K : M ]).

(2) LCM(N, K) exists if and only if lcm([N : M ], [K : M ]) exists, and in this case
[LCM(N, K) : M ] = lcm([N : M ], [K : M ]).

Proof. (1) Let G = GCD(N, K). Then G|N and G|K and hence [G : M ]|[N : M ] and
[G : M ]|[K : M ], because M is finitely generated faithful and multiplication. Suppose that I
is any ideal of R such that I|[N : M ] and I|[K : M ]. Then IM |N and IM |K. Hence IM |G.
It follows that I|[G : M ], and hence [G : M ] = gcd([N : M ], [K : M ]).
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(2) Let L = LCM(N, K). Then N |L and K|L. It follows that [N : M ]|[L : M ] and
[K : M ]|[L : M ]. Suppose that I is an ideal of R such that [N : M ]|I and [K : M ]|I. Then
N |IM and K|IM , and hence IM |L. This implies that I|[L : M ], and hence [L : M ] =
lcm([N : M ], [L : M ]). Conversely, let J = lcm([N : M ], [K : M ]). Then [N : M ]|J and
[K : M ]|J , and hence N |JM and K|JM . Assume that H is a submodule of M such that
N |H and K|H. Then [N : M ]|[H : M ] and [K : M ]|[H : M ], and hence [H : M ]|J . This
gives that H|JM and hence JM = LCM(N, K). This also shows that lcm([N : M ], [K :
M ]) = [LCM(N, K) : M ]. �

The converse of Part (1) above is not true. Let R = k[x2, x3], k a field. Let N = x5R, K =
x6R and M = x3R. Then gcd([N : M ], [K : M ]) = gcd(x2R, x3R) exists, but GCD(N, K)
does not.

2. GCD and LCM of multiplication modules

Let R be a ring and M a multiplication module. Define S(M) to be the set of finitely
generated faithful multiplication submodules of M . As mentioned earlier, if S(M) is non-
empty then M ∈ S(M). In this section we investigate the GCD and LCM of modules in
S(M), generalizing our results in [4].

If N ∈ S(M) and G is any submodule of M such that G|N , then G ∈ S(M). For if
G|N then [G : M ]|[N : M ]. By Lemma 1.1, [N : M ] ∈ S(R), so that by [4, Lemma 1.4],
[G : M ] ∈ S(R), and hence G = [G : M ]M ∈ S(M). In particular, if N, K ∈ S(M) and
GCD(N, K) exists then it is in S(M). On the other hand, if LCM(N, K) exists then by
Lemma 1.3 lcm([N : M ], [K : M ]) exists, and hence by [4, Lemma 1.5] it is in S(R). Hence
LCM(N, K) = lcm([N : M ], [K : M ])M ∈ S(M).

It is easily verified that for all N, K ∈ S(M), LCM(N, K) exists (and hence is in S(M))
if and only if N ∩K ∈ S(M), and in this case LCM(N, K) = N ∩K. It follows by Lemma
1.3 that for all N, K ∈ S(M), the following are equivalent:

LCM(N, K)exists, N ∩K ∈ S(M), [N : K] ∈ S(R).

Compare the next result with [4, Theorem 2.1].

Proposition 2.1. Let R be a ring and M a multiplication R-module. For all submodules
N, K ∈ S(M), if LCM(N, K) exists then so too does GCD(N, K), and in this case

[GCD(N, K) : M ]LCM(N, K) = [LCM(N, K) : M ]GCD(N, K)

= [N : M ]K = [K : M ]N.

Proof. By Lemma 1.3, lcm([N : M ], [K : M ]) exists, and by [4, Theorem 2.1], gcd([N :
M ], [K : M ]) exists and

[N : M ][K : M ] = gcd([N : M ], [K : M ])lcm([N : M ], [K : M ]).

Let L = lcm([N : M ], [K : M ]). Then L|[N : M ][K : M ], and hence there exists an ideal
G such that [N : M ][K : M ] = LG. Hence [N : M ]K = [K : M ]N = LGM . We show
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that GM = GCD(N, K). Now [N : M ]K|LK since [N : M ]|L, and hence LGM |LK. It
follows that GM |K. Similarly, GM |N . Suppose that G′ is any common divisor of N and
K. Then G′ ∈ S(M) and [K : M ]G′|[K : M ]N . Hence [K : M ]N ⊆ [K : M ]G′, and hence
[[K : M ]N : G′] ⊆ [[K : M ]G′ : G′] = [K : M ]. Similarly, [[N : M ]K : G′] ⊆ [N : M ],
and hence [[K : M ]N : G′] = [[N : M ]K : G′] is a common multiple of [N : M ] and
[K : M ]. This gives that L|[[K : M ]N : G′], and hence there exists an ideal H of R such that
[[K : M ]N : G′] = HL. As [K : M ]N ⊆ G′, we infer that [K : M ]N = HLG′, and hence

LG = [N : M ][K : M ] = [[K : M ]N : M ] = [HLG′ : M ] = L[HG′ : M ].

It follows that G = [HG′ : M ], and hence GM = HG′. This shows that G′|GM , and
GM = GCD(N, K). Finally, by Lemma 1.3, G = gcd([N : M ], [K : M ]) and [LCM(N, K) :
M ] = lcm([N : M ], [K : M ]), and the second assertion follows. �

Let M be a multiplication module and N, K ∈ S(M) such that N + K ∈ S(M). By [4,
Theorem 3.6] and [22, Lemma 7], N ∩K ∈ S(M), and hence LCM(N, K) exists and equals
N ∩ K. By Proposition 2.1, GCD(N, K) exists, and hence by a remark made after [4,
Corollary 1.2],

[GCD(N, K) : M ] = [[N : M ]K : K ∩N ] = [[N : M ]K : K] + [[N : M ]K : N ]

= [[N : M ]K : K] + [[K : M ]N : N ] = [N : M ] + [K : M ] = [N + K : M ].

Hence GCD(N, K) = N + K.
Compare the next result with [4, Theorem 2.2].

Theorem 2.2. Let R be a ring and M a multiplication R-module. Let N, K ∈ S(M) and
I, J ∈ S(R).

(1) LCM(N, K) exists if and only if LCM(IN, IK) exists, and in this case LCM(IN, IK) =
ILCM(N, K).

(2) lcm(I, J) exists if and only if LCM(IN, JN) exists, and in this case LCM(IN, JN) =
lcm(I, J)N.

(3) If GCD(IN, IK) exists then so too does GCD(N, K), and in this case GCD(IN, IK) =
IGCD(N, K).

(4) If GCD(IN, JN) exists then so too does gcd(I, J), and in this case GCD(IN, JN) =
gcd(I, J)N.

Proof. (1) By Lemma 1.3, if LCM(IN, IK) exists then lcm([I[N : M ], I[K : M ]) exists, and
by [4, Theorem 2.2] lcm([N : M ], [K : M ]) exists. Again by Lemma 1.3, LCM(N, K) exists.
Next we infer from Lemma 1.3 and [4, Theorem 2.2] that

I[LCM(N, K) : M ] = Ilcm([N : M ], [K : M ]) = lcm(I[N : M ], I[K : M ])

= lcm([IN : M ], [IK : M ]) = [LCM(IN, IK) : M ].

Hence, ILCM(N, K) = LCM(IN, IK). The converse is now clear by Lemma 1.3 and [4,
Theorem 2.2].
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(2) Assume that lcm(I, J) exists. Then I ∩ J ∈ S(R), and by [10, Theorem 1.6] and [1,
Theorem 2.1] we obtain that IN ∩ JN = (I ∩ J)N ∈ S(M). Hence LCM(IN, JN) exists
and LCM(IN, JN) = lcm(I, J)N . Conversely, if LCM(IN, JN) exists then (I ∩ J)N =
IN ∩ JN = LCM(IN, JN) ∈ S(M), and hence I ∩ J = [(I ∩ J)N : N ] ∈ S(R). Hence
lcm(I, J) exists and LCM(IN, JN) = lcm(I, J)N.

(3) Suppose G = GCD(IN, IK). Then gcd(I[N : M ], I[K : M ]) = gcd([IN : M ], [IK : M ])
exists and equals [G : M ]. As I[N : M ] ⊆ [G : M ], we obtain that [N : M ] ⊆ [[G : M ] :
I] ⊆ [G : IM ], and hence N ⊆ [G : IM ]M . Similarly, K ⊆ [G : IM ]M . Since IM |IN and
IM |IK, we have IM |G, and hence G ⊆ IM , [G : IM ] ∈ S(R), and [G : IM ]M ∈ S(M). This
shows that [G : IM ]M is a common divisor of N and K. If D is any common divisor of N
and K, then ID|IN and ID|IK, and hence ID|G, (in other words G ⊆ ID). It follows that
[G : IM ] ⊆ [ID : IM ] = [D : M ]. Next, D ∈ S(M), and hence [D : M ] ∈ S(R). Therefore
[D : M ]|[G : IM ], and hence D|[G : IM ]M . This shows that [G : IM ]M = GCD(N, K), and
hence G = [G : IM ]IM = IGCD(N, K).

(4) Suppose GCD(IN, JN) exists. By Lemma 1.3, gcd([IN : M ], [JN : M ]) = gcd(I[N :
M ], J [N : M ]) exists, and by [4, Theorem 2.2], gcd(I, J) exists and

[GCD(IN, JN) : M ] = gcd(I[N : M ], J [N : M ]) = gcd(I, J)[N : M ],

and hence GCD(IN, JN) = gcd(I, J)N . �

Proposition 2.3. Let M be a multiplication R-module and N, K ∈ S(M).

(1) If G = GCD(N, K) exists then R = gcd([N : G], [K : G]).

(2) If L = LCM(N, K) exists (whence also G = GCD(N, K) exists) then [N : G] = [N : K],
and

R = gcd([L : K], [L : N ]) = gcd([N : K], [K : N ]).

(3) If L = LCM(N, K) exists then for all integers r ≥ 1,

(i) [L : M ]r = lcm([N : M ]r, [K : M ]r),

(ii) [G : M ]r = gcd([N : M ]r, [K : M ]r).

(iii) [N : K]r = [[N : M ]r : [K : M ]r]].

Proof. (1) If G = GCD(N, K) exists then by Theorem 2.2

G = GCD([N : G]G, [K : G]G) = gcd([N : G], [K : G])G.

Hence gcd([N : G], [K : G]) = R.

(2) If L = LCM(N, K) exists then by Proposition 2.1, G = GCD(N, K) exists and

[L : M ]G = [K : M ]N = [N : M ]K.

Hence
[N : G] = [[L : M ] : [K : M ]] = [L : K] = [N ∩K : K] = [N : K].

Similarly [K : G] = [K : N ]. The remaining assertions are now clear.
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(3) These results generalize [4, Lemma 2.4, Theorem 2.6 and some facts on p. 225], and the
proofs are similar. �

Let M be a multiplication R-module and N, K ∈ S(M). We say that N and K are M-
coprime if GCD(N, K) = M . Compare the following generalization of Euclid’s Lemma with
[4, Proposition 2.3].

Proposition 2.4. Let M be a multiplication R-module. Let N, K ∈ S(M) and I, J ∈ S(R).

(1) If N and K are M-coprime and GCD(IN, IK) exists then GCD(N, IM) =
GCD(N, IK).

(2) If I and J are relatively prime and GCD(IN, JN) exists then GCD(IM, N) =
GCD(IM, JN).

Proof. (1) By Theorem 2.2, GCD(IN, IK) = IGCD(N, K) = IM . It follows that

GCD(N, IM) = GCD(N, GCD(IN, IK)) = GCD(GCD(N, IN), IK) = GCD(N, IK).

(2) Again by Theorem 2.2, GCD(IN, JN) = gcd(I, J)N = N , and hence

GCD(IM,N) = GCD(IM, GCD(IN, JN)) = GCD(GCD(IM, IN), JN) = GCD(IM, JN),

as required. �

The third part of the next result generalizes [4, Theorem 2.5].

Proposition 2.5. Let M be a multiplication R-module.

(1) LCM(N, K) exists for all N, K ∈ S(M) if and only if lcm(I, J) exists for all I, J ∈
S(R).

(2) If GCD(N, K) exists for all N, K ∈ S(M) then gcd(I, J) exists for all I, J ∈ S(R).

(3) GCD(N, K) exists for all N, K ∈ S(M) if and only if LCM(N, K) exists for all N, K ∈
S(M).

(4) If gcd(I, J) exists for all I, J ∈ S(R) then GCD(N, K) exists for all N, K ∈ S(M).

Proof. (1) Suppose that LCM(N, K) exists for all N, K ∈ S(M), and let I, J ∈ S(R). Then
IM, JM ∈ S(M), and hence LCM(IM, JM) exists. By Theorem 2.2(1), the result follows.
Conversely assume that lcm(I, J) exists for all I, J ∈ S(R), and let N, K ∈ S(M). Then
[N : M ], [K : M ] ∈ S(R), and hence lcm([N : M ], [K : M ]) exists and by Lemma 1.3(2) the
result follows.

(2) Suppose that GCD(N, K) exists for all N, K ∈ S(M), and let I, J ∈ S(R). Then
GCD(IM, JM) exists and by Theorem 2.2(3) we obtain the existence of gcd(I, J).

(3) This follows by (1) and (2) above, [4, Theorem 2.5], and Proposition 2.1 above.

(4) If gcd(I, J) exists for all I, J ∈ S(R) then lcm(I, J) exists for all I, J ∈ S(R) [4, Theorem
2.5], and by (1) above LCM(N, K) exists for all N, K ∈ S(M), and the conclusion follows
from Proposition 2.1. �
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In [4] we called a ring R a generalized GCD ring (GGCD ring) if S(R) is closed under
intersection. We extend this to modules: An R-module M is a generalized GCD module
(GGCD module) if M is multiplication and S(M) is closed under intersection. It is clear
from Proposition 2.5 that R is a GGCD ring if and only if some R-module M is a GGCD
module. By Proposition 2.5, any multiplication module over a principal ideal ring, Bezout
ring, arithmetical ring, Prüfer domain, von Neumann regular ring or GGCD domain (an
integral domain in which the intersection of two invertible ideals is an invertible ideal, [8]) is
a GGCD module since each of these rings is a GGCD ring.

The next result summarizes several equivalent conditions for a multiplication module to
be a GGCD module by combining Proposition 2.5 and [4, Theorems 2.5 and 3.1].

Theorem 2.6. Let M be a multiplication R-module. The following conditions are equivalent.

(1) M is a GGCD module.

(2) R is a GGCD ring.

(3) GCD(N, K) exists for all N, K ∈ S(M).

(4) LCM(N, K) exists for all N, K ∈ S(M).

(5) [N : K] ∈ S(R) for all N, K ∈ S(M).

(6) lcm(I, J) exists for all I, J ∈ S(R).

(7) gcd(I, J) exists for all I, J ∈ S(R).

(8) [I : J ] ∈ S(R) for all I, J ∈ S(R).

The next result generalizes [4, Corollaries 3.2 and 3.4].

Corollary 2.7. Let M be a GGCD R-module. Then for all N, K, L ∈ S(M):

(1) [GCD(N, K) : L] = gcd([N : L], [K : L]).

(2) [L : LCM(N, K)] = gcd([L : N ], [L : K]).

(3) LCM(GCD(N, K), L) = GCD(LCM(N, L), LCM(K, L)).

(4) GCD(LCM(N, K), L) = LCM(GCD(N, L), GCD(K, L)).

Proof. (1) By Corollary 1.2, [N : L], [K : L] ∈ S(R), hence by Theorem 2.6,
gcd([N : L], [K : L]) exists. Using [4, Corollary 3.2(1)] and Lemma 1.3 we get that

[GCD(N, K) : L] = [[GCD(N, K) : M ] : [L : M ]]

= [gcd([N : M ], [K : M ]) : [L : M ]]

= gcd([[N : M ] : [L : M ]], [[K : M ] : [L : M ]]

= gcd([N : L], [K : L]).

(2) Again by Corollary 1.2, [L : N ], [L : K] ∈ S(R), and hence gcd([L : N ], [L : K]) exists.
By [4, Corollary 3.2(2)] and Lemma 1.3, we have that

[L : LCM(N, K)] = [[L : M ] : [LCM(N, K) : M ]] = [[L : M ] : [lcm([N : M ], [K : M ])]

= gcd([[L : M ] : [N : M ]], [[L : M ] : [K : M ]]) = gcd([L : N ], [L : K]),
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as required.

(3)It follows from Lemma 1.3 and [4, Corollary 3.4(1)] that

[LCM(GCD(N, K), L) : M ] = lcm([GCD(N, K) : M ], [L : M ])

= lcm(gcd([N : M ], [K : M ]), [L : M ])

= gcd([lcm([N : M ], [L : M ]), lcm([N : M ], [K : M ]))

= gcd(LCM(N, L) : M ], [LCM(N, K) : M ])

= [GCD(LCM(N, L), LCM(N, K)) : M ],

and the result follows.

(4) Again by Lemma 1.3 and [4, Corollary 34.(2)] we infer that

[GCD(LCM(N, K), L) : M ] = gcd([LCM(N, K) : M ], [L : M ])

= gcd(lcm([N : M ], [K : M ]), [L : M ])

= lcm(gcd([N : M ], [L : M ]), gcd([K : M ], [L : M ]))

= lcm([GCD(N, L) : M ], [GCD(K, L) : M ])

= [LCM(GCD(N, L), GCD(K, L)) : M ],

and the result is now clear. �

3. Lattice of submodules of multiplication modules

Let R be a GGCD ring and A, B finitely generated faithful multiplication ideals of R. In [4]
we defined

ΦA,B = {I : I is an ideal of R, I|A, gcd(I, B) = R},
and we investigated this lattice of ideals. We showed for example that X ∈ ΦA,B is smallest
if and only if the only ideal dividing [A : X] and relatively prime to B is R. In this section
we generalize various properties of this lattice of ideals to multiplication modules.

Let M be a GGCD R-module. For N, K ∈ S(M) we define

ΦM
N,K = ΦN,K = {T : T is a submodule of M, T |N, GCD(T, K) = M}.

ΦN,K is non-empty since M ∈ ΦN,K .
The proofs of the following are straightforward.

Lemma 3.1. Let R be a ring and M a GGCD module (equivalently, R is a GGCD ring and
M is a multiplication module). Let N, K ∈ S(M) and I ∈ S(R). Then

(1) T ∈ ΦN,K if and only if [T : M ] ∈ Φ[N :M ],[K:M ].

(2) I ∈ Φ[N :M ],[K:M ] if and only if IM ∈ ΦN,K .

(3) T is minimal in ΦN,K if and only if [T : M ] is minimal in Φ[N :M ],[K:M ].

(4) I is minimal in Φ[N :M ],[K:M ] if and only if IM is minimal in ΦN,K .

The following result extends [4, Theorem 3.5].
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Proposition 3.2. Let R be a ring and M a GGCD module. Let N, K ∈ S(M). Then ΦN,K

is a lattice of submodules. Moreover, if ΦN,K contains a minimal element then it is unique.

Proof. R is a GCCD ring, and by [4, Theorem 3.5] Φ[N :M ],[K:M ] is a lattice of ideals of R.
Let X,Y ∈ S(M), and let G = GCD(X, Y ) and L = LCM(X, Y ). Then [G : M ] = gcd([X :
M ], [Y : M ]) and [L : M ] = lcm([X : M ], [Y : M ]). Hence [G : M ], [L : M ] ∈ Φ[N :M ],[K:M ],
and by Lemma 3.1, G, L ∈ ΦN,K . Suppose that T is a minimal element of ΦN,K . By Lemma
3.1(3), [T : M ] is minimal in Φ[N :M ],[K:M ], and by [4, Theorem 3.5] [T : M ] is the smallest
element of Φ[N :M ],[K:M ]. For any X ∈ ΦN,K , [X : M ] ∈ Φ[N :M ],[K:M ]. Hence [T : M ] ⊆ [X : M ],
and this implies that T ⊆ X, so that T is smallest in ΦN,K . �

Let M be a multiplication R-module. Let N, K, T ∈ S(M) and suppose that GCD(N, T ) =
M = GCD(K, T ). Then

gcd([N : M ], [T : M ]) = R = gcd([K : M ], [T : M ]),

and by [4, Lemma 3.4], gcd([N : M ][K : M ], [T : M ]) = R. Hence

GCD([N : M ]K, T ) = M = GCD([K : M ]N, T ).

Lemma 3.3. Let R be a ring and M a GGCD module. Let N, K ∈ S(M). Then T is the
smallest element in ΦN,K if and only if [T : M ] is the smallest element in Φ[N :M ],[K:M ].

Proof. If [T : M ] is the smallest element in Φ[N :M ],[K:M ] then T is the smallest element in
ΦN,K , (see the proof of Proposition 3.2). Conversely, suppose that T is the smallest element in
ΦN,K . Let J be an ideal of R such that J |[[N : M ] : [T : M ]] and gcd(J, [K : M ]) = R. By [4,
Theorem 3.7] it is enough to show that J = R. Now [[N : M ] : [T : M ]] = [N : T ], and hence
JT |N . GCD(JM, K) = M since gcd(J, [K : M ]) = R. But GCD(T, K) = M . It follows
from the remark made above that GCD([JM : M ]T, K) = M , and hence GCD(JT, K) = M .
Therefore JT ∈ ΦN,K , and hence T ⊆ JT ⊆ T so that JT = T , and this finally gives that
J = R. �

Theorem 3.4. Let R be a ring and M a GGCD module, and let N, K ∈ S(M). Then
T ∈ ΦN,K is smallest if and only if the only submodule dividing [N : T ]M and M-coprime to
K is M.

Proof. Lemma 3.3 and [4, Theorem 3.7]. �

Compare the next result with [4, Theorem 3.8].

Proposition 3.5. Let M be a GGCD R-module, let N, K ∈ S(M), and let G = GCD(N, K).
Then ΦN,K = Φ[N :G]M,G.
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Proof. Let T ∈ ΦN,K . By Lemma 3.1, [T : M ] ∈ Φ[N :M ],[K:M ], and by [4, Theorem
3.8], [T : M ] ∈ Φ[[N :M ]:[G:M ]],[G:M ], so that [T : M ] ∈ Φ[N :G],[G:M ]. Hence by Lemma 3.1,
T ∈ Φ[N :G]M,G. Conversely, let T ∈ Φ[N :G]M,G. Then

[T : M ] ∈ Φ[[N :G]M :M ],[G:M ] = Φ[N :G],[G:M ] = Φ[[N :M ]:[G:M ]],[G:M ].

By [4, Theorem 3.8], [T : M ] ∈ Φ[N :M ],[K:M ], and hence T ∈ ΦN,K . �

Let M be a GGCD R-module and let N, K ∈ S(M). Define two sequences of ideals of R and
two sequences of submodules of M recursively as follows:

I0 = [N : M ], J0 = [K : M ], Ji+1 = gcd(Ii, Ji), Ii+1 = [Ii : Ji+1] for all i ≥ 0,

N0 = N, K0 = K, Ki+1 = GCD(Ni, Ki), Ni+1 = [Ni : Ki+1]M for all i ≥ 0.

Lemma 3.6. Let M be a GGCD R-module and N, K∈S(M) with the sequences Ii, Ji, Ni, Ki

as above. Then

(1) Ni = IiM and Ki = JiM for all i ≥ 0.

(2) Ki ⊆ Ki+1, and Ni ⊆ Ni+1 for all i ≥ 0.

(3) ΦN,K = ΦNi,Ki
for all i ≥ 0.

Proof. (1) Induction on i. The result is trivial if i = 0. If i ≥ 0 and Ni = IiM and
Ki = JiM , then

Ki+1 = GCD(Ni, Ki) = GCD(IiM, JiM) = gcd(Ii, Ji)M = Ji+1M,

and
Ni+1 = [Ni : Ki+1]M = [IiM : Ji+1M ]M = [Ii : Ji+1]M = Ii+1M.

(2) Ki ⊆ Ki+1, since Ki+1 = GCD(Ni, Ki). Now [Ni : Ki+1]M = Ni+1. Hence

Ni = [Ni : M ]M ⊆ [Ni : Ki+1]M = Ni+1.

(3) follows by Proposition 3.5. �

Combining Theorem 3.4, Lemma 3.6 and [4, Theorem 3.9], we have the following.

Corollary 3.7. Let M be a GGCD R-module and N, K ∈ S(M) with the sequences Ii, Ji, Ni,
Ki as above. Then the following are equivalent.

(1)
∞⋃
i=1

Ni is the smallest element in ΦN,K .

(2)
∞⋃
i=1

Ni ∈ ΦN,K .

(3)
∞⋃
i=1

Ni ∈ S(M).

(4)
∞⋃
i=1

Ni = Nn for some positive integer n.
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(5) Nn = Nn+1 for some positive integer n.

(6) Nn = M for some positive integer n.

We end this section with a result which may be compared with [4, Theorem 10]. Its proof
follows from Lemma 1.3 and [4, Theorem 10].

Theorem 3.8. Let M be a GGCD R-module and N, K ∈ S(M). Let L = LCM(N, K), and
let TN , TK be the smallest elements in ΦN,[L:N ]M and ΦK,[L:K]M respectively. Then

(1) LCM(TN , TK) = LCM(N, K).

(2) GCD([N : TN ]M, [K : TK ]GCD(TN , TK)) = M

= GCD([K : TK ]M, [N : TN ]GCD(TN , TK)).

(3) GCD(TN , [LCM(TN , TK) : TN ]M) = M

= GCD(TK , [LCM(TN , TK) : TK ]M).

4. GCD and LCM of projective modules

In this section we generalize and extend our study in [2] on GCD and LCM of projective
ideals. Compare the following result with [2, Theorem 2.1]. We denote by S∗(M) the set of
finitely generated projective submodules of M.

Proposition 4.1. Let R be a ring and M a finitely generated faithful multiplication R-
module. Let N, K ∈ S∗(M).

(1) If G = GCD(N, K) exists then G ∈ S∗(M) and annG = ann(N + K). In this case
lcm(annN, annK) exists and annG = lcm(annN, annK).

(2) If L = LCM(N, K) exists then L ∈ S∗(M) and

annL = ann([N : M ]K) = ann([K : M ]N).

In this case gcd(annN, annK) exists and annL = gcd(annN, annK).

(3) L = LCM(N, K) exists if and only if N ∩K ∈ S∗(M), and in this case L = N ∩K.

Proof. (1) By Lemmas 1.1, 1.3 and [2, Theorem 2.1(1)], we have [N : M ], [K : M ] ∈ S∗(R),
gcd([N : M ], [K : M ]) exists and is in S∗(R), and [G : M ] = gcd([N : M ], [K : M ]). Hence
G ∈ S∗(M). Also

annG = ann[G : M ] = ann gcd([N : M ], [K : M ])

= ann([N : M ] + [K : M ])

= ann[N : M ] ∩ ann[K : M ] = annN ∩ annK

= ann(N + K).

Since annN ∩ annK is a principal ideal generated by an idempotent and hence is multiplica-
tion, lcm(annN, annK) exists, and the result follows.
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(2) Suppose L = LCM(N, K) exists. By Lemmas 1.1, 1.3 and [2, Theorem 2.1(2)], lcm([N :
M ], [K : M ]) ∈ S∗(R), and hence L ∈ S∗(M). Moreover,

annL = ann[L : M ] = ann lcm([N : M ], [K : M ])

= ann([N : M ][K : M ])

= ann([[N : M ][K : M ] : M ])

= ann([N : M ]K)

= ann([K : M ]N).

Next, using the fact that finitely generated projective ideals are locally either zero or invert-
ible, it is easy to check that

ann([N : M ][K : M ]) = ann[N : M ] + ann[K : M ] = annN + annK.

Because annN + annK is a principal ideal generated by an idempotent and hence is multi-
plication, we infer that gcd(annN, annK) exists, and gcd(annN, annK) = annN + annK.

(3) Obvious. �

Lemma 4.2. Let R be a ring and M a finitely generated faithful multiplication R-module.
Let N, K ∈ S∗(M) and I, J ∈ S∗(R).

(1) If LCM(N, K) exists then so too does LCM(IN, IK), and in this case LCM(IN, IK) =
ILCM(N, K).

(2) If lcm(I, J) exists then so too does LCM(IN, JN), and in this case LCM(IN, JN) =
lcm(I, J)N.

Proof. (1) Since I ∈ S∗(R), it follows from [1, Theorem 3.1] that

[(IN ∩ IK) : M ] = [IN : M ] ∩ [IK : M ] = I[N : M ] ∩ I[K : M ]

= I([N : M ] ∩ [K : M ]) = I[(N ∩K) : M ],

and hence IN ∩ IK = I(N ∩K). Suppose that LCM(N, K) exists. Then

ILCM(N, K) = I(N ∩K) = IN ∩ IK ∈ S∗(M),

and hence LCM(IN, IK) exists and ILCM(N, K) = LCM(IN, IK).

(2) Since N ∈ S∗(M), we use [1, Theorem 3.1] to obtain that (I ∩ J)N = IN ∩ JN . Then

lcm(I, J)N = (I ∩ J)N = IN ∩ JN ∈ S∗(M),

and hence LCM(IN, JN) exists, and LCM(IN, JN) = lcm(I, J)N. �

Compare the next result with [2, Theorem 2.5].

Theorem 4.3. Let R be a ring and M a finitely generated faithful multiplication R-module.
Let N, K ∈ S∗(M) and I, J ∈ S∗(R).
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(1) LCM(IN, IK) exists if and only if LCM(N + (annI)M, K + (annI)M) exists, and in
this case

LCM(IN, IK) = ILCM(N + (annI)M, K + (annI)M).

(2) LCM(IN, JN) exists if and only if lcm(I + annN, J + annN) exists, and in this case

LCM(IN, JN) = lcm(I + annN, J + annN)N.

(3) If GCD(IN, IK) exists then so too does GCD(N + (annI)M, K + (annI)M), and in
this case

GCD(IN, IK) = IGCD(N + (annI)M, K + (annI)M).

(4) If GCD(IN, JN) exists then so too does gcd(I + annN, J + annN), and in this case

GCD(IN, JN) = gcd(I + annN, J + annN)N.

Proof. (1) If LCM(IN, IK) exists then by Lemma 1.3, lcm([IN : M ], [IK : M ]) =
lcm(I[N : M ], I[K : M ]) exists and LCM(IN, IK) = lcm(I[N : M ], I[K : M ])M . We obtain
from [2, Theorem 2.5] that lcm([N : M ] + annI, [K : M ] + annI) exists, and

lcm(I[N : M ], I[K : M ]) = Ilcm([N : M ] + annI, [K : M ] + annI).

As M ∈ S∗(M), [22, Theorem 11], the result follows by Lemma 4.2(2). The converse follows
by Lemma 4.2(1).

(2) Assume that LCM(IN, JN) exists. Then by Lemma 1.3, lcm(I[N : M ], J [N : M ]) exists
and LCM(IN, JN) = lcm(I[N : M ], J [N : M ])M . From Lemma 1.3 and [2, Theorem 2.5(1)]
we get that

lcm(I + ann[N : M ], J + ann[N : M ]) = lcm(I + annN, J + annN)

exists, and

[N : M ]lcm(I + annN, J + annN) = lcm(I[N : M ], J [N : M ]).

The result is now clear. The converse follows from Lemma 4.2.

(3) Let G = GCD(IN, IK). Then by Lemma 1.3, [G : M ] = gcd(I[N : M ], I[K : M ]).
As I|I[N : M ] and I|I[K : M ], we have I|[G : M ]. Hence G ⊆ IM and by Corollary 1.3,
[G : IM ] ∈ S∗(R). Now [N : M ] ⊆ [[G : M ] : I], and annI ⊆ [[G : M ] : I]. Hence

[N : M ] + annI ⊆ [[G : M ] : I] ⊆ [G : IM ].

Similarly [K : M ] + annI ⊆ [G : IM ], and hence [G : IM ] is a common divisor of [N :
M ]+ annI and [K : M ]+ annI, that is [G : IM ]M is a common divisor of N +(annI)M and
K + (annI)M . If G′ is another such common divisor then IG′|IN and IG′|IK. It follows
that IG′|G, so that G = FIG′ for some ideal F of R. Next,

[G : IM ] = [FIG′ : IM ] = [FG′ : M ] + annI

= F [G′ : M ] + annI = (F + annI)([G′ : M ] + annI),
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and hence [G : IM ]M = (F +annI)(G′+(annI)M). But (annI)M ⊆ G′. Thus [G : IM ]M =
(F + annI)G′, and hence G′|[G : IM ]M . This finally gives that

[G : IM ]M = GCD(N + (annI)M, K + (annI)M),

and hence
G = [G : IM ]M = IGCD(N + (annI)M, K + (annI)M).

(4) The proof is similar to (2) using Lemma 1.3 and [2, Theorem 2.5(2)]. �

Compare the next result with [2, Theorem 2.3].

Theorem 4.4. Let R be a ring and M a finitely generated faithful multiplication R-module.
Let N, K ∈ S∗(M) and let L = N ∩K. Then

(1) LCM(N, K) exists if and only if LCM(N +(annL)M, K +(annL)M) exists, and in this
case

LCM(N + (annL)M, K + (annL)M) = LCM(N, K) + (annL)M.

(2) If LCM(N, K) exists then so too does GCD(N +(annL)M, K +(annL)M, ) and in this
case

GCD(N + (annL)M, K + (annL)M) = GCD(N, K) + (annL)M.

(3) If GCD(N, K) exists then so too does GCD(N +(annL)M, K +(annL)M, ) and in this
case

GCD(N + (annL)M, K + (annL)M) = GCD(N, K) + (annL)M.

(4) If GCD(N, K) exists for all N, K ∈ S∗(M) then LCM(N, K) exists for all N, K ∈
S∗(M).

Proof. (1) Suppose LCM(N, K) exists. Then by Proposition 4.1 and Corollary 1.2,
LCM(N, K) = L, L ∈ S∗(M), [L : M ] ∈ S∗(R), and it follows that [L : M ](N ∩ K) =
[L : M ]N ∩ [L : M ]K. Next,

[[L : M ](N ∩K) : L] = [[L : M ]N : L] ∩ [[L : M ]K : L]

= [[L : M ]N : [L : M ]M ] ∩ [[L : M ]K : [L : M ]M ]

= ([N : M ] + ann([L : M ])) ∩ ([K : M ] + ann([L : M ]))

= ([N : M ] + annL) ∩ ([K : M ] + annL) ∈ S∗(R).

It follows from [1, Theorem 3.1] that

(N + (annL)M) ∩ (K + (annL)M) = (([N : M ] + annL) ∩ ([K : M ] + annL))M ∈ S∗(M).

This shows that LCM(N + (annL)M, K + (annL)M) exists. On the other hand,

[[L : M ](N ∩K) : L]M = [[L : M ](N ∩K) : [L : M ]M ]M

= ([(N ∩K) : M ] + ann([L : M ])M

= ([(N ∩K) : M ] + annL)M

= (N ∩K) + (annL)M

= LCM(N, K) + (annL)M,
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so that
LCM(N + (annL)M, K + (annL)M) = LCM(N, K) + (annL)M.

Conversely, suppose that LCM(N + (annL)M, K + (annL)M) exists. Then [N + (annL)M :
K + (annL)M ] ∈ S∗(R). But

[N + (annL)M : K + (annL)M ] = [N + (annL)M : K] ∩ [N + (annL)M : (annL)M ]

= [N : K] + [(annL)M : K].

Thus [N : K]K + [(annL)M : K]K ∈ S∗(M). Now by [1, Theorem 3.1],

[N : K]K ∩ [(annL)M : K]K = ([N : K] ∩ [(annL)M : K])K

= ([(N ∩K) : K] ∩ [ann(N ∩K)M : K])K

= [(N ∩K) ∩ ann(N ∩K)M : K]K

= (annK)K = 0,

which is a multiplication ideal of R. We obtain from [3, Theorem 3.2] and [22, Theorem 8]
that N ∩K is a multiplication module. Finally,

ann(N ∩K) = ann[(N ∩K) : M ] = ann([N : M ] ∩ [K : M ])

= ann([N : M ][K : M ]) = ann([N : M ]K),

which is generated by an idempotent. By [22, Theorem 11], N ∩ K ∈ S∗(M), and hence
LCM(N, K) exists.

(2) By Corollary 1.3, [N : M ] + annL = [[N : M ]L : L] ∈ S∗(R). It follows that N +
(annL)M = ([N : M ] + annL)M ∈ S∗(M). Moreover,

ann(N + (annL)M) = annN ∩ ann((annL)M)

= annN ∩ ann(annL) ⊆ annL ∩ ann(annL) = 0.

Thus N + (annL)M ∈ S(M). Similarly, K + (annL)M ∈ S(M). The result follows by (1)
and Proposition 2.1.

(3) Similar to the proof for ideals, see [2, Theorem 2.3].

(4) GCD(N, K) exists for all N, K ∈ S∗(M), hence for all N, K ∈ S(M). Let L = N ∩K.
By Proposition 2.5, LCM(N + (annL)M, K + (annL)M) exists. The result follows from (1).
�

S. Glaz, [14] and [15], defined a ring to be a generalized GCD ring if the following two
conditions are satisfied.

(1) R is a p.p. ring (that is, a ring in which every principal ideal is projective).

(2) The intersection of any two finitely generated flat ideals of R is finitely generated and
flat.

Since finitely generated flat and finitely generated projective ideals coincide in p.p. rings, one
can replace condition (2) by
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(2′) The intersection of any two finitely generated projective ideals of R is projective (equiv-
alently, lcm(I, J) exists for all finitely generated projective ideals I, J of R).

Glaz showed [14, Proposition 3.1] that if aR ∩ bR is a finitely generated projective ideal for
any non-zero divisors a, b ∈ R, then aR ∩ bR is a finitely generated projective ideal for any
non-zero a, b ∈ R. Thus R is a GGCD ring if

(1) R is a p.p. ring.

(2′′) The intersection of any two invertible ideals of R is invertible.

Suppose that R is a p.p. ring and P is a prime ideal of R. Then RP is a local p.p. ring,
hence an integral domain. Let I, J ∈ S∗(R) such that I ∩ J ∈ S∗(R), (equivalently lcm(I, J)
exists). Then IP , JP and IP ∩ JP = (I ∩ J)P are invertible ideals of RP . It follows by [4,
Theorem 2.1] (and see the remark made after [2, Corollary 1.5]) that gcd(IP , JP ) exists and
gcd(IP , JP ) = [IJ : (I ∩ J)]P . Since [IJ : (I ∩ J)]P is a common divisor of IP and JP

for all P , [IJ : (I ∩ J)] is a common divisor of I and J . Suppose that G is any common
divisor of I and J . Then GP |IP and GP |JP , and hence GP |[IJ : (I ∩ J)]P . This finally gives
that G|[IJ : (I ∩ J)], and hence gcd(I, J) = [IJ : (I ∩ J)]. Combining this remark and [2,
Corollary 2.4], we get that a ring R is a Glaz GGCD ring if and only if gcd(I, J) exists for
all I, J ∈ S∗(R).

We generalize this to modules as follows. An R-module M is a Glaz GGCD module if M
is finitely generated faithful multiplication, every cyclic submodule of M is projective, and
N ∩K ∈ S∗(M) (equivalently LCM(N, K) exists) for all N, K ∈ S∗(M).

Suppose that R is a Glaz GGCD ring and M is a finitely generated faithful multiplication
R-module. Using the fact that a ring R is p.p. if and only if every cyclic submodule of a
projective R-module is projective [11], we infer that every cyclic submodule of M is projective
since M is projective [22, Theorem 11]. Let N, K ∈ S∗(M). By Lemma 1.1, [N : M ], [K :
M ] ∈ S∗(R), and hence

[(N ∩K) : M ] = [N : M ] ∩ [K : M ] ∈ S∗(R).

Hence N∩K ∈ S∗(M), and M is a Glaz GGCD module. Conversely, let R be a ring and M a
Glaz GGCD module. Then M is a finitely generated faithful multiplication (hence projective)
R-module where every cyclic submodule of M is projective. By [11], R is a p.p. ring. Let
I, J ∈ S∗(R). Then IM, JM ∈ S∗(M), and hence (I ∩ J)M = IM ∩ JM ∈ S∗(M). This
implies that I ∩ J = [(I ∩ J)M : M ] ∈ S∗(R) by Lemma 1.1. Hence R is a Glaz GGCD
ring. This shows that a ring R is a Glaz GGCD ring if and only if some finitely generated
faithful multiplication R-module M is a Glaz GGCD module. On the other hand Glaz
GGCD modules are GGCD modules. For let M be a Glaz GGCD module. Then M is
finitely generated faithful multiplication. If N, K ∈ S(M), then N, K ∈ S∗(M), and hence
N ∩K ∈ S∗(M). By Lemma 1.1(5), N ∩K is a finitely generated multiplication submodule
of M . Since K is a faithful module and [N : M ] is a faithful ideal of R (Lemma 1.1(7)), we
obtain from the proof of Proposition 4.1(2) that 0 = ann([N : M ]K) = ann(N ∩K). Hence
M is a GGCD module.

Let M be a Glaz GGCD module and N, K ∈ S∗(M). Let P be a prime ideal of R. Then R
is a p.p. ring [11], and hence RP is an integral domain. It follows that NP , KP and NP ∩KP =
(N ∩K)P are finitely generated faithful multiplication submodules of M (Lemma 1.1). By
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Proposition 2.1, GCD(NP , KP ) exists and GCD(NP , KP ) = ([[K : M ]N : (N ∩K)]M)P . It
is easy to see now that GCD(N, K) exists and GCD(N, K) = ([[K : M ]N : (N ∩ K)])M .
Hence M is a Glaz GGCD module if and only if GCD(N, K) exists for all N, K ∈ S∗(M)
(Theorem 4.4(4)).

Combining the above remarks, Corollary 1.2, [2, Theorem 1.8 and Corollary 2.4], and the
fact that finitely generated flat and finitely generated projective submodules of a finitely gen-
erated faithful multiplication module over a p.p. ring coincide, we can state several conditions
on a ring R equivalent to GGCD ring as defined by Glaz. We will use I(R), F (R), F (M) to
denote the sets of invertible ideals of R, flat ideals of R, and flat submodules of M respectively.

Theorem 4.5. Let R be a p.p. ring and M a finitely generated faithful multiplication R-
module (equivalently, every cyclic submodule of M is projective). Then the following are
equivalent.

(1) R is a Glaz GGCD ring.

(2) M is a Glaz GGCD module.

(3) For all I, J ∈ I(R), I ∩ J ∈ I(R).

(4) For all I, J ∈ S∗(R), I ∩ J ∈ S∗(R).

(5) For all I, J ∈ I(R), [I : J ] ∈ I(R).

(6) For all I, J ∈ S∗(R), [I : J ] ∈ S∗(R).

(7) For all I, J ∈ F (R), [I : J ] ∈ F (R).

(8) For all I, J ∈ I(R), lcm(I, J) exists and is in I(R).

(9) For all I, J ∈ S∗(R), lcm(I, J) exists and is in S∗(R).

(10) For all I, J ∈ F (R), lcm(I, J) exists and is in F (R).

(11) For all I, J ∈ I(R), gcd(I, J) exists and is in I(R).

(12) For all I, J ∈ S∗(R), gcd(I, J) exists and is in S∗(R).

(13) For all I, J ∈ F (R), gcd(I, J) exists and is in F (R).

(14) For all N, K ∈ S∗(M), LCM(N, K) exists and is in S∗(M).

(15) For all N, K ∈ F (M), LCM(N, K) exists and is in F (M).

(16) For all N, K ∈ S∗(M), GCD(N, K) exists and is in S∗(M).

(17) For all N, K ∈ F (M), GCD(N, K) exists and is in F (M).

(18) For all N, K ∈ S∗(M), [N : K] ∈ S∗(R).

(19) For all N, K ∈ F (M), [N : K] ∈ F (R).

(20) For all N, K ∈ F (M), N ∩K ∈ F (M).
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