
Beiträge zur Algebra und Geometrie
Contributions to Algebra and Geometry
Volume 46 (2005), No. 2, 575-580.

Transnormal Partial Tubes

Kamal Al-Banawi Sheila Carter

Department of Mathematics, Mu’tah University
Al-Karak, P.O.Box 7, Jordan

e-mail : kamal albanawi@yahoo.co.uk

School of Mathematics, University of Leeds
Leeds, LS2 9JT, England

e-mail: s.carter@leeds.ac.uk

Abstract. We construct transnormal partial tubes about transnormal submani-
folds. Particular cases are transnormal embeddings of a torus which are not product
embeddings.

1. Introduction and basic definitions

Throughout this paper M will denote a compact, connected, smooth (C∞) m-dimensional
manifold without boundary and f : M −→ Rn will be a smooth embedding of M into
Euclidean n-space. For each p ∈ M , let ν(p) denote the affine (n−m)-plane which is normal
to f(M) at f(p). The total space of the normal bundle is N = {(p, x) ∈ M ×Rn : f(p)+x ∈
ν(p)} and we let Σ denote the set of singularities of the endpoint map η : N −→ Rn defined
by η(p, x) = f(p) + x.

We are going to consider a class of subbundles of N called partial tubes. Let P ⊂ N be
a smooth subbundle with type fibre S, where S is a compact smooth submanifold of Rn−m,
P∩Σ = ∅ and P is invariant under parallel transport of normals along any curve in M . Then
P is a compact smooth manifold and g ≡ η|P : P −→ Rn is a smooth immersion called a
partial tube about f [3]. Since P is compact, if P lies in a sufficiently small neighbourhood
of the zero section of N , then g : P −→ Rn is an embedding.

The embedding f : M −→ Rn is said to be transnormal (and f(M) is a transnormal
submanifold of Rn) if for all p, q ∈ M , f(q) ∈ ν(p) implies ν(q) = ν(p). Then ϕ(p) =
ν(p) ∩ f(M) is called the generating frame at p. It can be shown that, for all p, q ∈ M ,
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ϕ(p) is isometric to ϕ(q) [4]. If the number of elements of ϕ(p) is r, then f is said to be
r-transnormal . The idea of transnormality was introduced by S. A. Robertson in [4]. See [5]
for a survey article.

So suppose that f : M −→ Rn is a transnormal embedding and for p ∈ M let νϕ(p)
denote the smallest affine subplane of ν(p) which contains ϕ(p). Let N ϕ = {(p, x) ∈ N :
f(p) + x ∈ νϕ(p)} and put N ′

= (N ϕ)⊥, the orthogonal complement of N ϕ in N . Then N ϕ

is invariant under the normal holonomy [6] and hence so is N ′
.

We are going to consider partial tubes g : P −→ Rn about a transnormal embedding,
where P is a subbundle of N ′

. Some examples of these are considered by B. Wegner in [7]. He
started with a 2-transnormal embedding f of S1 in R4 given by f(t) = (cos t, sin t, R cos 3t,
R sin 3t), 0 < R < 1

3
. The image of f lies on a sphere and the generating frame at t

is {f(t), f(t + π)}. Then νϕ(t) is the radial normal line {sf(t) : s ∈ R}. The normal
holonomy map of this curve is a rotation, by an angle depending on R, around the radial
normal. If n is a normal to f , perpendicular to the radial normal and with sufficiently
small length, then the orbit of n, under the normal holonomy group, is a transnormal curve
parallel to f , say h(t) = f(t) + n(t). For any positive integer r, R can be chosen so that h
is 2r-transnormal. This 2r-transnormal curve can be thought of as a partial tube with type
fibre {h(0), h(2π), . . . , h(2(r − 1)π)}, the set of vertices of a regular r-gon. See also [2] for
descriptions of the generating frames of such curves.

The construction we describe in the next section will generalize some of these examples
but we will take the type fibre of the partial tube to be a compact connected transnormal
submanifold with dimension ≥ 1.

2. A construction of transnormal partial tubes

In this section f : M −→ Rn will be a transnormal embedding and g : P −→ Rn will be
an embedding as a partial tube about f , where P is a subbundle of N ′

. For p ∈ M , Sp will
denote the image of the fibre of P at p, so Sp = g(P ∩ ({p} ×Rn)).

For p ∈ M , put ϕ̂(p) = f−1(ϕ(p)) and for u ∈ Rn let τu : Rn −→ Rn denote the
translation τu(x) = x+u. We will say that g has translational symmetry if ∀p ∈ M, ∀q ∈ ϕ̂(p),
τf(p)−f(q)(Sq) = Sp.

Theorem 1. Let f : M −→ Rm+d+k be an r-transnormal embedding of a compact, connected
manifold M , where m ≥ 1, d = dim νϕ(p) ≥ 1 (for any p ∈ M) and k ≥ 2. Let S
be a compact connected s-transnormal submanifold of Rk and let g : P −→ Rm+d+k be
an embedding as a partial tube about f , where P ⊂ N ′

and has type fibre S, and g has
translational symmetry. Then, if P lies in a sufficiently small neighbourhood of the zero
section of N , g is an rs-transnormal embedding.

We first prove a lemma.

Lemma 1. Let f : M −→ Rn be a transnormal embedding and, for ε > 0, let Bε = {(p, x) ∈
N : ||f(p) − x|| < ε}. There exists ε > 0 such that η|Bε : Bε −→ Rn is an embedding and
∀p ∈ M , ∀(q, y) ∈ Bε, η(q, y) ∈ ν(p) iff q ∈ ϕ̂(p).

Proof. Since M is compact we can take ρ sufficiently small so that η|Bρ is an embedding.
Then q ∈ ϕ̂(p) implies that ν(q) = ν(p) and hence ∀(q, y) ∈ Bρ, η(q, y) ∈ ν(q) = ν(p).
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To see the converse, for each p ∈ M , let Πp : Rn −→ ν(p) be orthogonal projection
and define Π : M ×M −→ N by Π(p, q) = (p, Πp(f(q)) − f(p)). Then as Π is continuous,
Π−1(B ρ

2
) is an open set in M ×M which contains the diagonal {(p, p) : p ∈ M}.

Let p1 ∈ M and let ϕ̂(p1) = {p1, . . . , pr}. For i = 1, . . . , r, let Vi be an open neigh-
bourhood of pi in M such that Vi × Vi ⊂ Π−1(B ρ

2
). Now Vi ∩ Vj = ϕ if i 6= j since

Πpi
= Πpj

as ν(pi) = ν(pj), and therefore if p ∈ Vi ∩ Vj then ||f(pi) − f(pj)|| ≤ ||f(pi) −
Πpi

(f(p))|| + ||Πpj
(f(p)) − f(pj)|| < ρ

2
+ ρ

2
= ρ. So (pi, f(pj) − f(pi)), (pj, 0) ∈ Bρ with

η(pi, f(pj)− f(pi)) = f(pj) = η(pj, 0), which contradicts η|Bρ is injective.
Now the map ν : M ×M −→ Hn−m,n, the Grassmannian of affine (n−m)-planes in Rn,

which assigns to each p ∈ M the normal (n−m)-plane ν(p), is a covering map to its image
[4] and hence ν : M −→ ν(M) is open, where ν(M) is topologized as a subspace of Hn−m,n.
Thus, U = ν−1(∩r

i=1ν(Vi)) is an open neighbourhood of ϕ̂(p1) = ν−1(ν(p1)) in M , and for all
p ∈ U , ϕ̂(p) ⊂ U .

Put V = ∪r
i=1Vi. Then U ⊂ V , for if q ∈ U , then ν(q) ∈ ν(Vi), ∀i = 1, . . . , r. So

there exists qi ∈ Vi such that ν(qi) = ν(q). Now q1, . . . , qr are distinct and q1, . . . , qr ∈ ϕ̂(q)
which has r elements. Hence q = qi for some i = 1, . . . , r and hence q ∈ Vi ⊂ V . Put
Ui = U ∩ Vi. Then, for all i = 1, . . . , r, Ui is an open neighbourhood of pi in M with Ui ⊂ Vi

and ν−1(ν(Ui)) = U . So, for all p ∈ U , ϕ̂(p) has an element in Ui, i = 1, . . . , r.
Next we show that for all p ∈ U , if there exists (q, y) ∈ B ρ

2
with q ∈ V and η(q, y) ∈

ν(p), then q ∈ ϕ̂(p). To see this suppose that p ∈ Ui and q ∈ Vj. Now there exists
p̃ ∈ ϕ̂(p) ∩ Uj. So η(q, y) ∈ ν(p̃), q ∈ Vj and p̃ ∈ Uj ⊂ Vj. Therefore, (p̃, q) ∈ Π−1(B ρ

2
)

and hence ||Πp̃(f(q)) − f(p̃)|| < ρ
2
. As η(q, y) ∈ ν(p̃) we have η(q, y) = η(p̃, x) for some

x ∈ Rn such that f(p̃) + x ∈ ν(p̃). So we have Πp̃(f(q)) = f(q) or Πp̃(f(q)) = f(p̃) + x =
f(q) + y or Πp̃(f(q)), f(q) and f(q) + y are the vertices of a triangle with a right angle at
Πp̃(f(q)). Hence ||Πp̃(f(q)) − (f(p̃) + x)|| ≤ ||f(q) − (f(q) + y)|| = ||y|| < ρ

2
. Therefore

||x|| = ||f(p̃) − (f(p̃) + x)|| ≤ ||f(p̃) − Πp̃(f(q))|| + ||Πp̃(f(q)) − (f(p̃) + x)|| < ρ
2

+ ρ
2

= ρ.
Hence (p̃, x) ∈ Bρ. But (q, y) ∈ Bρ and η(p̃, x) = η(q, y). As η|Bρ is injective it follows that
q = p̃ ∈ ϕ̂(p).

The next step is to take an open neighbourhood W of p1 in M with W ⊂ U1. Put
C = M \ V , so C is compact and W ∩C = ∅. For all c ∈ C, let ζc = inf{||f(c)−Πp(f(c))|| :
p ∈ W} > 0 and let ζ = min{ρ

2
, inf{ζc, c ∈ C}} > 0. We show that for all p ∈ W , if there

exists (q, y) ∈ Bζ with η(q, y) ∈ ν(p), then q ∈ ϕ̂(p). To see this, if q /∈ V , then q ∈ C. Now
η(q, y) = f(p) + x for some x ∈ Rn and ||f(q)− (f(p) + x)|| ≥ ||f(q)− Πp(f(q))|| ≥ ζq ≥ ζ.
But ||f(q) − (f(q) + y)|| = ||y|| < ζ, so we must have q ∈ V and then, as above, q ∈ ϕ̂(p)
since ζ ≤ ρ

2
.

Summarizing the situation, for all p ∈ M we have found an open neighbourhood Wp of p
in M and εp > 0 such that for all p̃ ∈ Wp, if (q, y) ∈ Bεp with η(q, y) ∈ ν(p̃), then q ∈ ϕ̂(p̃).
Now since M is compact, the open cover of M , {Wp : p ∈ M}, has a finite subcover, say
{Wq1 , . . . ,Wqk

}. Taking ε = min{εq1 , . . . , εqk
} gives the required result. �

Proof of Theorem 1. We will modify our notation in this proof so νf (p), νg(p, x) will denote
the normal plane to f at p, g at (p, x) respectively, and νS(p, x) will denote the normal to
the submanifold Sp at g(p, x) in ν

′

f (p), the orthogonal complement of νϕ
f (p) in νf (p) at f(p).

Similarly modified notation will be used for generating frames. We are assuming here that f
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is 2-transnormal and for all p ∈ M , Sp is a transnormal submanifold in ν
′

f (p).
From the calculations in [3], for (p, x) ∈ P , νg(p, x) is the (d+ l)-subplane in νf (p) which

is normal to Sp in νf (p) at g(p, x). It is spanned by νϕ
f (p) and νS(p, x). Take ε > 0 sufficiently

small as in Lemma 1 and P ⊂ Bε. Then g(q, y) ∈ νg(p, x)∩g(P) implies g(q, y) ∈ νf (p)∩η(Bε).
Therefore, by Lemma 1, q ∈ ϕ̂f (p). Since g has translational symmetry, τf(p)−f(q)(g(q, y)) =
f(p) + y ∈ Sp. Also, as f(p), f(q) ∈ νϕ

f (p) and f(q) + y ∈ νg(p, x) ⊃ νϕ
f (p), it follows that

f(p) + y ∈ νg(p, x). Therefore f(p) + y ∈ Sp ∩ νg(p, x) = Sp ∩ νS(p, x), as Sp ⊂ ν
′

f (p). But
Sp∩νS(p, x) is the generating frame of Sp at g(p, x). Thus, f(p)+y is a point of this generating
frame and therefore νS(p, y) = νS(p, x) and hence νg(p, y) = νg(p, x). Now νg(q, y) = νg(p, y)
since νS(q, y) = τf(q)−f(p)(νS(p, y)) and f(p), f(q) ∈ νϕ

f (p). Thus, νg(q, y) = νg(p, x) , so g
is transnormal. Further we have shown that ϕg(p, x) = {f(q) + y : q ∈ ϕf (p), f(p) + y ∈
ϕS(p, x)}, so g is rs-transnormal. �

Corollary 1. Let f : M −→ Rm+d+k be an r-transnormal embedding of a compact, connected
manifold M , where m ≥ 1, d = dim νϕ(p) ≥ 1 (for any p ∈ M) and k ≥ 2. Then there exists
a 2r-transnormal embedding g : P −→ Rm+d+k where P is a (k − 1)-sphere bundle over M .

Proof. In Theorem 1 take the fibre of P to be a (k − 1)-sphere, that is, Sp = {f(p) + x ∈
ν

′

f (p) : ||x|| = ε}. Then g has translational symmetry since if q ∈ ϕf (p), then ν
′

f (q) is parallel

to ν
′

f (p) as both are orthogonal to νϕ
f (p) in νf (p). So the conditions of Theorem 1 are satisfied

and g is 2r-transnormal. �

3. Transnormal tori

Example 1. In Section 1 we described a 2-transnormal embedding f of S1 in R1+1+2,
f(t) = (cos t, sin t, R cos 3t, R sin 3t), 0 < R < 1

3
[7]. Applying the construction in Corollary 1

to this embedding gives a 4-transnormal embedding of S1×S1 in R4 which is not the product
embedding.

Example 2. Here we start with a slight modification to the f in Example 1. Take f(t) =
(cos t, sin t, R cos 5t, R sin 5t). An orthonormal set of normals to f is given by

n1(t) =
−f(t)√
1 + R2

,

n2(t) =
1√

1 + 25R2
(−5R cos t, 5R sin t, cos 5t,− sin 5t),

n3(t) =
1√

1 + R2
(−R sin t,−R cos t, sin 5t, cos 5t).

To find the range of R for which f is 2-transnormal, let t ∈ R, then

〈f(t + a)− f(t),
df

dt
(t)〉 = 0 ⇐⇒ sin a + 5R2 sin 5a = 0

⇐⇒ sin a(1 + 5R2(5− 20 sin2 a + 16 sin4 a)) = 0.



K. Al-Banawi, S. Carter: Transnormal Partial Tubes 579

The equation 1 + 5R2(5 − 20 sin2 a + 16 sin4 a) = 0 is quadratic in sin2 a with discriminant
80 − 64

5R2 which is negative when 0 < R < 2
5
. Thus, if 0 < R < 2

5
, then ν(t) ∩ f(S1) =

{f(t), f(t + π)} and ν(t + π) = ν(t) . Therefore f is 2-transnormal.
It is straightforward to calculate that the normal holonomy map of f is a rotation by an

angle 10π
√

1+R2√
1+25R2 around the radial normal. See [1] for more details.

Now consider the equation

10π
√

1 + R2

√
1 + 25R2

= 2πk, k ∈ N (1)

For k = 3, equation (1) has solution R =
√

2
5

< 2
5
. For this value of R, f is 2-transnormal

and the normals
ξ2(t) = n2(t) cos 3t + n3(t) sin 3t,

ξ3(t) = n2(t) sin 3t− n3(t) cos 3t

are parallel, and ξi(t + π) = ξi(t) = ξi(t + 2π), i = 2, 3.
Now let h : S −→ Rl be an s-transnormal embedding and let f̃ : S1 −→ R4+l be defined

by f̃(t) = (f(t), 0) ∈ R4 × Rl. Put ξ̃i(t) = (ξi(t), 0),i = 2, 3. Then any parallel normal α
to f̃ is a linear combination, with constant coefficients, of ξ̃2(t), ξ̃3(t) and constant vectors in
0×Rl ⊂ R4 ×Rl. So α(t + π) = α(t) = α(t + 2π).

Let α1, . . . , αl be a set of orthogonal parallel normals to f̃ and define
g̃ : S1 × S −→ R4+l by

g̃(t, x) = f̃(t) + ε

l∑
i=1

hi(x)αi(t),

where h(x) = (h1(x), . . . , hl(x)). Then g̃ has the same image as the partial tube given by
P = {(t, ε

∑l
i=1 hi(x)αi(t)), t ∈ S1, x ∈ S}.

Now τf̃(t)−f̃(t+π)(g̃(t+π, x)) = g̃(t+x) so g̃ has translational symmetry and therefore, by
Theorem 1, for ε sufficiently small, g̃ is 2s-transnormal.

As a particular case of this take l = 2, h : S1 −→ R2 given by h(s) = (cos s, sin s), α1(t) =
(ξ2(t) cos θ, sin θ, 0), α2(t) = (ξ3(t) cos θ, 0, sin θ) for any θ ∈ R and define g̃θ : S1×S1 −→ R6

by
g̃θ(t, s) = f̃(t) + ε(α1(t) cos s + α2(t) sin s).

Then, for sufficiently small ε, g̃θ is a 4-transnormal embedding. Now

g̃0(t, s) = (f(t) + ε(ξ2(t) cos s + ξ3(t) sin s), 0) ∈ R4 ×R2.

This is similar to the embedding given in Example 1 but with our modified f , and then
included in R6. The embedding g̃π

2
is the product embedding f×εh. Therefore H : S1×S1×

[0, π
2
] −→ R6 defined by H(t, s, θ) = g̃θ(t, s) is an isotopy through transnormal embeddings

from a non product embedding of a torus to a product embedding.

Example 3. With the same notation as in Example 2 we now solve equation (1) when k = 4

and get R =
√

3
125

< 2
5
. For this value of R, f is 2-transnormal and the normals

ξ2(t) = n2(t) cos 4t + n3(t) sin 4t,
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ξ3(t) = n2(t) sin 4t− n3(t) cos 4t

are parallel. But now ξi(t+π) = −ξi(t), ξi(t+2π) = ξi(t), i = 2, 3. Define f̃ : S1 −→ R4×R
by f̃(t) = (f(t), 0). For i = 2, 3, gi : S1 × S1 −→ R5 defined by

gi(t, s) = f̃(t) + ε(ξi(t) cos s, sin s)

is the image of a partial tube, as in Example 2, but here

τf̃(t)−f̃(t+π)(gi(t + π, s)) = f̃(t) + ε(−ξi(t) cos s, sin s) = gi(t, π − s).

So gi has translational symmetry and therefore, by Theorem 1, for i = 2, 3, gi is a 4-
transnormal embedding of S1 × S1 in R5.
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