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Abstract. A compact Riemann surface X of genus ¢ > 1 is said to be p-
hyperelliptic if X admits a conformal involution p, called a p-hyperelliptic invo-
lution, for which X/p is an orbifold of genus p. Here we give a new proof of the
well known fact that for ¢ > 4p + 1, p is unique and central in the group of all
automorphisms of X. Moreover we prove that every two p-hyperelliptic involutions
commute for 3p+2 < g < 4p+ 1 and X admits at most two such involutions if
g > 3p+2. We also find some bounds for the number of commuting p-hyperelliptic
involutions and general bound for the number of central p-hyperelliptic involutions.
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1. Introduction

A Riemann surface X = H/T" of genus g > 2 is said to be p-hyperelliptic if X admits a
conformal involution p, called a p-hyperelliptic involution, such that X/p is an orbifold of
genus p. This notion has been introduced by H. Farkas and I. Kra in [1] where they also
proved that for g > 4p + 1, p-hyperelliptic involution is unique and central in the group of
all automorphisms of X. We prove these facts in a combinatorial way using the Hurwitz-
Riemann formula and certain theorem of Macbeath [2] about fixed points of an automorphism
of X; the Hurwitz-Riemann formula asserts that a p-hyperelliptic involution has 2g + 2 — 4p
fixed points. The advantage of our approach is that it allows us to study of p-hyperelliptic
involutions in case g < 4p + 1 also. First we show that for ¢ in range 3p +2 < g < 4p + 1,

0138-4821/93 $ 2.50 (© 2005 Heldermann Verlag



582 E. Tyszkowska: On p-hyperelliptic Involutions of Riemann Surfaces

every two p-hyperelliptic involutions commute and afterwards we argue that X admits at
most two such involutions for 3p 4+ 2 < g < 4p + 1 and at most 6 for ¢ = 3p + 2. Finally
we find some bounds for the number of commuting p-hyperelliptic involutions and general
bound for the number of central p-hyperelliptic involutions.

2. Preliminaries

We shall approach the problem using Riemann uniformization theorem by which each com-
pact Riemann surface X of genus g > 2 can be represented as the orbit space of the hyperbolic
plane ‘H under the action of some Fuchsian surface group I'. Furthermore a group G of au-
tomorphisms of a surface X = H/I" can be represented as G = A/I' for another Fuchsian
group A. Each Fuchsian group A is given a signature o(A) = (g;m4,...,m,), where g, m;
are integers verifying g > 0, m; > 2. The signature determines the presentation of A:

generators: xq,...,%., ay,by,.. ag, by,
relations : 2" = .- =2 =2y 2. (a1, b1 - [ag, by = 1.

Such set of generators is called the canonical set of generators and often, by abuse of language,
the set of canonical generators. Geometrically x; are elliptic elements which correspond to
hyperbolic rotations and the remaining generators are hyperbolic translations. The integers
my, Mo, ..., m, are called the periods of A and g is the genus of the orbit space H/A. Fuchsian
groups with signatures (g; —) are called surface groups and they are characterized among
Fuchsian groups as these ones which are torsion free.

The group A has associated to it a fundamental region whose area p(A), called the area
of the group, is:

((A) = 2 (29 —2+) (1- 1/mi)> . (1)

i=1
If T is a subgroup of finite index in A, then we have the Riemann-Hurwitz formula which
says that

(L)
A:T] = =52, (2)
A1) f(A)
The points of H with non-trivial stabilizers in A fall into r A-orbits oy, ..., 0, such that every

point belonging to o; has a stabilizer which is a cyclic group of order m;. The points of X
with non-trivial stabilizers fall into r G-orbits Oy, ..., O,, where O; = 7(0;) and 7 : H — X
is a projection map. Furthermore a homomorphism 6 : A — G induces an isomorphism
between stabilizers and so the stabilizer of y € O; is cyclic of order m;. The number of fixed
points of an automorphism of X can be calculated by the following theorem of Macbeath [2].

Theorem 2.1. Let X = H/T' be a Riemann surface with the automorphism group G = A/T
and let xq,...,x, be elliptic canonical generators of A with periods mq,..., m, respectively.
Let 0 : A — G be the canonical epimorphism and for 1 # g € G let €;,(g) be 1 or 0 according
as g is or is not conjugate to a power of 0(x;). Then the number F(g) of points of X fixed
by g is given by the formula

F(g) = [Na((g IZa )/mi. (3)
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3. On p-hyperelliptic involutions of Riemann surfaces

Here we deal with the number of p-hyperelliptic involutions which a Riemann surface can
admit. Along the chapter X is a p-hyperelliptic Riemann surface of genus g > 2 and we call
its p-hyperelliptic involutions briefly by p-involutions. First we give a new proof of the well
known result of H. Farkas and I. Kra.

Theorem 3.1. A p-involution of a surface X of genus g > 4p + 1 is unique and central in
the full automorphism group of X.

Proof. Suppose that a Riemann surface X = H/I" admits two distinct p-involutions p and
p'. Then they generate a dihedral group G, say of order 2n and there exist a Fuchsian group
A and an epimorphism 6 : A — G with the kernel I'. If z; is a canonical elliptic generator of
A corresponding to some period m; > 2 then 6(z;) € (pp’). But none conjugation of p nor of
p' belongs to (pp’) and so in terms of Macbeath’s theorem ¢;(p) = ¢;(p’) = 0.

Now if n is odd then |Ng({p))| = 2 and F(p) = 2¢g + 2 — 4p implies that A has 2g+2 —4p
periods equal to 2. If n is even then | Ng((p))| = 4 and so g+1—2p canonical elliptic generators
are mapped by # onto conjugates of p. Similarly another g+1—2p canonical elliptic generators
are mapped by 6 onto conjugates of p’. So in both cases o(A) = (v;2,.%.,2, mgi1, ..., M),
for s = 2g 4+ 2 — 4p and some integer r > s. Now applying the Hurwitz-Riemann formula for
(A,T), we obtain 29 — 2 =2n(2y =24+g+1—-2p+> ;. (1 —1/m;)) which implies

g—1=n(g—1-2p) (4)

Since n > 2, it follows that g < 4p + 1. Thus for ¢ > 4p + 1 a p-involution is unique.
Now given g € G, gpg~! has the same number of fixed points as p. So by the Hurwitz-
Riemann formula it is also a p-involution which implies that gpg=! = p for g > 4p + 1.
O

Theorem 3.2. Fvery two p-involutions of a Riemann surface X of genus 3p+2 < g < 4p+1
commute. Moreover for 3p+2 < g < 4p+1, X can admit two and no more such involutions.

Proof. Let X be a Riemann surface of genus 3p +2 < g < 4p + 1. If X admits two p-
involutions then they generate the group D,, = A/I" for some n satisfying the inequality (4),
which implies )
14

n<l1+ 1 (5)
Thus n = 2 and so every two p-involutions of X commute. Moreover their product cannot
be a p-involution. Otherwise, by Theorem 2.1, A would have the signature (v;2, 3(g+1-2p), 2)
and applying the Hurwitz-Riemann formula for (A,I') we would obtain 2y = 3p — ¢g and
consequently g < 3p, a contradiction. So if X admits three p-involutions pq, po, p3 then they
generate the group G = Zy @ Zy @ Zy which can be identified with A/I" for some Fuchsian
group A with a signature (5;2,.7.,2). Let # : A — G be the canonical epimorphism and
let s, denote the number of elliptic generators of A which are transformed by # onto py, for
k =1,2,3. Then by Theorem 2.1, s, = (¢ + 1 — 2p)/2 for k = 1,2,3 and so applying the
Hurwitz-Riemann formula for (A,I') we obtain 2g —2 = 8(26 —2+3(g + 1 — 2p)/4 + t/2),
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where t =7 —3(¢g+1—2p)/2. Thus 6 = (2+3p — g —t)/4 > 0 if and only if g < 3p+ 2.
Consequently a surface X of genus 3p 4+ 2 < g < 4p + 1 admits at most two p-involutions.
Now we shall prove that Riemann surfaces of such genera with two p-involutions actually
exist. For, let A be a Fuchsian group with the signature (0;2,.7.,2), where r = g+3 and let us
define an epimorphism 6 : A — Zy & Zy = (p) & (p) by the assignment 0(zy) = --- = 0(z,) =
0,0(x541) =+ =0(x25) = p,0(x2511) = -+ = 0(x,) = pp, where s = g+1—2p. Since s and
r — 2s have the same parities, it follows that the relation 6(x1)---6(x,) = 1 holds. Moreover
by Theorem 2.1, F'(p) = F(p') = 2g+ 2 — 4p and so by the Hurwitz-Riemann formula, p and
p are two commuting p-involutions. O

Proposition 3.3. Let py, ..., p; be pairwise commuting p-involutions of a surface X of genus
g and let they generate the group Gi, = Zo® .*. &7y, where | > k. Then
(i) g=1(22) and p=1(2F3),
(ii) the integers k and | are limited in the following cases:
k<2 and 1<3 if g=0(2)
k<3 and 1<4 if p=0(2)
k<3 and I <7 if g=3(4)
k<4 and 1 <15 if p=3(4).

Proof. (i) Suppose that pairwise commuting p-involutions of a Riemann surface X generate
a group Gy = Zo® .*. ®Z5. Then Gj can be identified with A/T" for a Fuchsian group A
with the signature (;2,.7.,2). Applying the Hurwitz-Riemann formula for (A, I") we obtain
g—1 =224y — 4 + r) which implies that g = 1(2*72). Furthermore, by Theorem 2.1,
a p-involution p € G} admits fixed points in (g + 1 — 2p)/2¥=2 orbits and so in particular
g+1—2p=0(2"2). Consequently p = 1(2F73).

(ii) The restrictions for k are direct consequence of the conditions from (i). We need only to
show that for even p, the group (G5 can admit at most 4 p-involutions. For, let us suppose that
the product of two p-involution pq, po € G5 is a p-involution. Then they generate the group
G isomorphic with A/T', where A is a Fuchsian group with the signature (4;2,39+1720) 2).
Thus § = (3p — ¢)/2 and so 3p — g = 0(2). However p is even and ¢ is odd which implies
that 3p — ¢ is odd, a contradiction. Consequently in this case G5 may admit only one more
p-involution, namely p;p2p3 and so [ < 4. 0J

By Proposition 3.3, the number of pairwise commuting p-involutions corresponding to given
p is limited for p = 0(2) or p = 3(4). The next proposition give a bound for such number
for p=1(4).

Proposition 3.4. Let p = 1+2"«, where  is odd and m > 2. Then the number of pairwise
commuting p-involutions of a Riemann surface X of genus g # 2p—1 does not exceed 2"a+5,
where n s the least integer in range 0 < n < m + 2 such that 2" > m —n — 1.

Proof. Given such p, let X be a Riemann surface whose pairwise commuting p-involutions
generate Gy, = Zo® .%. ©Z,. Then by Proposition 3.3, k < m~+3. So let us write k = m+3—n
for some integer n in range 0 < n < m+ 2 and let Gy = A/I" for a Fuchsian group A with
a signature (7;2,.7.,2). Since no single Gy-orbit contains fixed points of two different p-
involutions, it follows that r > ks, where s is the number of Gy-orbits containing fixed points
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of a single p-involution. In order to check the greatest value of k, we consider the minimum
value of s and the maximum value of r. Thus we take s = 1 and v = 0. By Theorem
21, s =(g+1—2p)/2¥2 and so s = 1 for g = 1 + 2™ 4 2™l But the Hurwitz-
Riemann formula for such g and v = 0 gives r = 2"« + 5 which clearly limits the number
of p-involutions in G}, . Since for s = 1, the epimorphism 0 : A — G}, cannot be defined for
r < k41, it follows that n is the least integer satisfying the inequality 2"a > m —n — 1. I

Proposition 3.5. Let X be a p-hyperelliptic Riemann surface of genus g = 3p+2. Then X
admits at most 2 p-involutions if p = 0(2) or p=3(4) and at most 3 if p=1(4) and p > 5.
Forp=1orp=>5, X can admit 5 or 6 and no more p-involutions respectively.

Proof. By Theorem 3.2, all p-involutions of a Riemann surface of genus g = 3p + 2 commute
one to each other and so they generate the group G = Zo® .*. ®Z, for some k. Let
G = A/T for some Fuchsian group A, say with a signature (v;2,.7.,2). Denote by s the
number of G-orbits containing the fixed points of a single p-involution from Gj. By Theorem
2.1, 8, = (g+1—2p)/2¥2 = (p+ 3)/2¥2 Thus k < 2 for p even and k < 3 and s;, is
odd for p = 3(4). However, by the Hurwitz-Riemann formula for £ = 3 and (A,T"), we have
2y 4+ r — 3s3 = 0, which implies v = 0 and r = 3s3 in virtue of obvious r» > 3s3. Therefore,
for p = 3(4), an epimorphism 0 : A — G5 actually can not exist. Consequently k& < 2 if
p=0(2) or p=3(4). Furthermore X admits at most 2 p-involutions in these cases since,
by the proof of the Theorem 3.2, a product of two p-involutions cannot be a p-involution for
g > 3p.

Now let p = 1(4). First we shall show that £ < 5 and that surfaces whose p-involutions
generate G4 or G5 exist only for p < 5. For, let us write p = 4o+ 1 for some integer o. Then
g=1+4(1+3a) and s = (o + 1)/287*. Let n and m be the greatest integers such that
g=1(2") and p = 1(2™). Then for even «, we have n = 2 which by (i) of the Proposition
3.3 implies k£ < 4 and for odd a, m = 2 and consequently k£ < 5.

Now let t = r — ksg. Applying the Hurwitz-Riemann formula for (A,T') and k = 4,
we obtain 1 = 4y + a +t. Thus v = 0 and either a = 1,7 = 4s4 or @ = 0,7 = 4s4 + 1.
Consequently p = 5, s4 = 2 and 0(A) = (0;2,2,2,2,2,2,2,2) or p=1, s4 = 1 and o(A) =
(0;2,2,2,2,2). So there exists exactly one possible epimorphism 6 : A — G, whose image is
generated by p-involutions and it is given by the assignment

O(x;) =pjfor1 <j <k, (j—1)sp <i< sy, (6)
in the first case and by the assignment
0(xi) = pj, O(@psy1) = pr---ppfor 1 < j <k, (j — 1)sp, < i < jsy, (7)

in the second one, where k = 4. Thus the surface whose p-involutions generate G4 exists only
for p =1 or p = 5 and the corresponding group G4 admits exactly five or four p-involutions
respectively.

Similarly for £ = 5 we obtain 4v+a+t = 2. Since for even o we have k < 4, it follows that
a=1,v=0and r =5s5 + 1. Thus p =5, s5 = 1 and A has the signature (0;2,2,2,2,2,2).
Now the assignment (7) defines the only possible epimorphism onto Gs. Thus the surface
whose p-involutions generate G5 exists only for p = 5 and the corresponding group G5 admits
exactly six 5-involutions.
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Summing up, for p > 5 and p = 1(4) we have k < 3. However, from the first part of
the proof sz is even and A has the signature (0;2, 353, 2). Thus the assignment (6) for k = 3,
defines the only possible epimorphism A — G35 whose image is generated by p-involutions
and so the group Gj3 contains exactly 3 p-involutions. U

Let us notice that for arbitrary positive integer k£ > 5, we can find integers p and g such that
there exists a Riemann surface of genus g admitting k& pairwise commuting p-involutions.
Indeed for g = 1+ (k—4)2"3 and p = 1+ (k—5)2** we can take a Fuchsian group A with the
signature (0;2,.%. 2) and define an epimorphism 6 : A — Zo@ *71 @7y = (p1) & - (pr_1)
by the assignment 0(x;) = p; fori =1,...,k — 1 and 0(xy) = p1---pr—1. Then I' = kerd
is a surface Fuchsian group of orbit genus g and p; are p-involutions of a Riemann surface
X =H/T.

At the end of the paper we give a bound for the number of all central p-involutions of a
surface X.

Theorem 3.6. Let X be a p-hyperelliptic Riemann surface of genus g > 2 and let G be
its automorphism group of order 2N. Assume that the canonical projection X — X/G is
ramified at r points with multiplicities my,...,m,. Then for g # 2p — 1, the number of
central p-involutions of X does not exceed

(N 1/mi)/(g+1—2p).

=1

Proof. Here X = H/T" for some Fuchsian surface group I' with the signature (g; —) and
G = A/T for some Fuchsian group A with the signature (d;mq,...,m,). Let z1,...z, be
canonical elliptic generators of A and let 6 : A — G be the canonical epimorphism. Assume
that X admits a central p-involution p. If g # 2p — 1 then p has fixed points and so it is
conjugate to 6(x;)™/? for some x; corresponding to an even period m;. However since p is
central, it follows that actually p = 6(z;)™/2. In particular for distinct p-involutions p and p/,
gi(p) # €i(p'). Moreover by Theorem 2.1, N >"7_ &;i(p)/m; =g+1—-2p= N> e(p)/m;.
Thus if n is the number of all p-involutions of X then n(g+1—2p) < N> ' 1/m; and so
the theorem is proved. O
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