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Abstract. A compact Riemann surface X of genus g > 1 is said to be p-
hyperelliptic if X admits a conformal involution ρ, called a p-hyperelliptic invo-
lution, for which X/ρ is an orbifold of genus p. Here we give a new proof of the
well known fact that for g > 4p + 1, ρ is unique and central in the group of all
automorphisms of X. Moreover we prove that every two p-hyperelliptic involutions
commute for 3p + 2 ≤ g ≤ 4p + 1 and X admits at most two such involutions if
g > 3p+2. We also find some bounds for the number of commuting p-hyperelliptic
involutions and general bound for the number of central p-hyperelliptic involutions.
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1. Introduction

A Riemann surface X = H/Γ of genus g ≥ 2 is said to be p-hyperelliptic if X admits a
conformal involution ρ, called a p-hyperelliptic involution, such that X/ρ is an orbifold of
genus p. This notion has been introduced by H. Farkas and I. Kra in [1] where they also
proved that for g > 4p + 1, p-hyperelliptic involution is unique and central in the group of
all automorphisms of X. We prove these facts in a combinatorial way using the Hurwitz-
Riemann formula and certain theorem of Macbeath [2] about fixed points of an automorphism
of X; the Hurwitz-Riemann formula asserts that a p-hyperelliptic involution has 2g + 2− 4p
fixed points. The advantage of our approach is that it allows us to study of p-hyperelliptic
involutions in case g ≤ 4p + 1 also. First we show that for g in range 3p + 2 ≤ g ≤ 4p + 1,
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every two p-hyperelliptic involutions commute and afterwards we argue that X admits at
most two such involutions for 3p + 2 < g ≤ 4p + 1 and at most 6 for g = 3p + 2. Finally
we find some bounds for the number of commuting p-hyperelliptic involutions and general
bound for the number of central p-hyperelliptic involutions.

2. Preliminaries

We shall approach the problem using Riemann uniformization theorem by which each com-
pact Riemann surface X of genus g ≥ 2 can be represented as the orbit space of the hyperbolic
plane H under the action of some Fuchsian surface group Γ. Furthermore a group G of au-
tomorphisms of a surface X = H/Γ can be represented as G = Λ/Γ for another Fuchsian
group Λ. Each Fuchsian group Λ is given a signature σ(Λ) = (g; m1, . . . ,mr), where g,mi

are integers verifying g ≥ 0, mi ≥ 2. The signature determines the presentation of Λ:

generators: x1, . . . , xr, a1, b1, . . . , ag, bg,
relations : xm1

1 = · · · = xmr
r = x1 · · ·xr[a1, b1] · · · [ag, bg] = 1.

Such set of generators is called the canonical set of generators and often, by abuse of language,
the set of canonical generators. Geometrically xi are elliptic elements which correspond to
hyperbolic rotations and the remaining generators are hyperbolic translations. The integers
m1, m2, . . . ,mr are called the periods of Λ and g is the genus of the orbit space H/Λ. Fuchsian
groups with signatures (g;−) are called surface groups and they are characterized among
Fuchsian groups as these ones which are torsion free.

The group Λ has associated to it a fundamental region whose area µ(Λ), called the area
of the group, is:

µ(Λ) = 2π

(
2g − 2 +

r∑
i=1

(1− 1/mi)

)
. (1)

If Γ is a subgroup of finite index in Λ, then we have the Riemann-Hurwitz formula which
says that

[Λ : Γ] =
µ(Γ)

µ(Λ)
. (2)

The points of H with non-trivial stabilizers in Λ fall into r Λ-orbits o1, . . . , or such that every
point belonging to oi has a stabilizer which is a cyclic group of order mi. The points of X
with non-trivial stabilizers fall into r G-orbits O1, . . . , Or, where Oi = π(oi) and π : H → X
is a projection map. Furthermore a homomorphism θ : Λ → G induces an isomorphism
between stabilizers and so the stabilizer of y ∈ Oi is cyclic of order mi. The number of fixed
points of an automorphism of X can be calculated by the following theorem of Macbeath [2].

Theorem 2.1. Let X = H/Γ be a Riemann surface with the automorphism group G = Λ/Γ
and let x1, . . . , xr be elliptic canonical generators of Λ with periods m1, . . . ,mr respectively.
Let θ : Λ → G be the canonical epimorphism and for 1 6= g ∈ G let εi(g) be 1 or 0 according
as g is or is not conjugate to a power of θ(xi). Then the number F (g) of points of X fixed
by g is given by the formula

F (g) = |NG(〈g〉)|
r∑

i=1

εi(g)/mi. (3)



E. Tyszkowska: On p-hyperelliptic Involutions of Riemann Surfaces 583

3. On p-hyperelliptic involutions of Riemann surfaces

Here we deal with the number of p-hyperelliptic involutions which a Riemann surface can
admit. Along the chapter X is a p-hyperelliptic Riemann surface of genus g ≥ 2 and we call
its p-hyperelliptic involutions briefly by p-involutions. First we give a new proof of the well
known result of H. Farkas and I. Kra.

Theorem 3.1. A p-involution of a surface X of genus g > 4p + 1 is unique and central in
the full automorphism group of X.

Proof. Suppose that a Riemann surface X = H/Γ admits two distinct p-involutions ρ and
ρ′. Then they generate a dihedral group G, say of order 2n and there exist a Fuchsian group
Λ and an epimorphism θ : Λ → G with the kernel Γ. If xi is a canonical elliptic generator of
Λ corresponding to some period mi > 2 then θ(xi) ∈ 〈ρρ′〉. But none conjugation of ρ nor of
ρ′ belongs to 〈ρρ′〉 and so in terms of Macbeath’s theorem εi(ρ) = εi(ρ

′) = 0.
Now if n is odd then |NG(〈ρ〉)| = 2 and F (ρ) = 2g +2−4p implies that Λ has 2g +2−4p

periods equal to 2. If n is even then |NG(〈ρ〉)| = 4 and so g+1−2p canonical elliptic generators
are mapped by θ onto conjugates of ρ. Similarly another g+1−2p canonical elliptic generators
are mapped by θ onto conjugates of ρ′. So in both cases σ(Λ) = (γ; 2, s. . . , 2, ms+1, . . . ,mr),
for s = 2g + 2− 4p and some integer r ≥ s. Now applying the Hurwitz-Riemann formula for
(Λ, Γ), we obtain 2g − 2 = 2n(2γ − 2 + g + 1− 2p +

∑r
i=s+1(1− 1/mi)) which implies

g − 1 ≥ n(g − 1− 2p). (4)

Since n ≥ 2, it follows that g ≤ 4p + 1. Thus for g > 4p + 1 a p-involution is unique.
Now given g ∈ G, gρg−1 has the same number of fixed points as ρ. So by the Hurwitz-

Riemann formula it is also a p-involution which implies that gρg−1 = ρ for g > 4p + 1.
�

Theorem 3.2. Every two p-involutions of a Riemann surface X of genus 3p+2 ≤ g ≤ 4p+1
commute. Moreover for 3p+2 < g ≤ 4p+1, X can admit two and no more such involutions.

Proof. Let X be a Riemann surface of genus 3p + 2 ≤ g ≤ 4p + 1. If X admits two p-
involutions then they generate the group Dn = Λ/Γ for some n satisfying the inequality (4),
which implies

n ≤ 1 +
2p

g − 1− 2p
. (5)

Thus n = 2 and so every two p-involutions of X commute. Moreover their product cannot
be a p-involution. Otherwise, by Theorem 2.1, Λ would have the signature (γ; 2, 3(g+1−2p). . . , 2)
and applying the Hurwitz-Riemann formula for (Λ, Γ) we would obtain 2γ = 3p − g and
consequently g ≤ 3p, a contradiction. So if X admits three p-involutions ρ1, ρ2, ρ3 then they
generate the group G = Z2 ⊕ Z2 ⊕ Z2 which can be identified with ∆/Γ for some Fuchsian
group ∆ with a signature (δ; 2, r. . . , 2). Let θ : ∆ → G be the canonical epimorphism and
let sk denote the number of elliptic generators of ∆ which are transformed by θ onto ρk, for
k = 1, 2, 3. Then by Theorem 2.1, sk = (g + 1 − 2p)/2 for k = 1, 2, 3 and so applying the
Hurwitz-Riemann formula for (∆, Γ) we obtain 2g − 2 = 8(2δ − 2 + 3(g + 1− 2p)/4 + t/2),
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where t = r − 3(g + 1 − 2p)/2. Thus δ = (2 + 3p − g − t)/4 ≥ 0 if and only if g ≤ 3p + 2.
Consequently a surface X of genus 3p + 2 < g ≤ 4p + 1 admits at most two p-involutions.

Now we shall prove that Riemann surfaces of such genera with two p-involutions actually
exist. For, let ∆ be a Fuchsian group with the signature (0; 2, r. . . , 2), where r = g+3 and let us
define an epimorphism θ : ∆ → Z2⊕Z2 = 〈ρ〉⊕〈ρ′〉 by the assignment θ(x1) = · · · = θ(xs) =
ρ, θ(xs+1) = · · · = θ(x2s) = ρ′, θ(x2s+1) = · · · = θ(xr) = ρρ′, where s = g+1−2p. Since s and
r− 2s have the same parities, it follows that the relation θ(x1) · · · θ(xr) = 1 holds. Moreover
by Theorem 2.1, F (ρ) = F (ρ′) = 2g + 2− 4p and so by the Hurwitz-Riemann formula, ρ and
ρ′ are two commuting p-involutions. �

Proposition 3.3. Let ρ1, . . . , ρl be pairwise commuting p-involutions of a surface X of genus
g and let they generate the group Gk = Z2⊕ k. . . ⊕Z2, where l ≥ k. Then

(i) g ≡ 1 (2k−2) and p ≡ 1 (2k−3),

(ii) the integers k and l are limited in the following cases:
k ≤ 2 and l ≤ 3 if g ≡ 0 (2)
k ≤ 3 and l ≤ 4 if p ≡ 0 (2)
k ≤ 3 and l ≤ 7 if g ≡ 3 (4)
k ≤ 4 and l ≤ 15 if p ≡ 3 (4).

Proof. (i) Suppose that pairwise commuting p-involutions of a Riemann surface X generate
a group Gk = Z2⊕ k. . . ⊕Z2. Then Gk can be identified with ∆/Γ for a Fuchsian group ∆
with the signature (γ; 2, r. . . , 2). Applying the Hurwitz-Riemann formula for (∆, Γ) we obtain
g − 1 = 2k−2(4γ − 4 + r) which implies that g ≡ 1 (2k−2). Furthermore, by Theorem 2.1,
a p-involution ρ ∈ Gk admits fixed points in (g + 1 − 2p)/2k−2 orbits and so in particular
g + 1− 2p ≡ 0 (2k−2). Consequently p ≡ 1 (2k−3).

(ii) The restrictions for k are direct consequence of the conditions from (i). We need only to
show that for even p, the group G3 can admit at most 4 p-involutions. For, let us suppose that
the product of two p-involution ρ1, ρ2 ∈ G3 is a p-involution. Then they generate the group
G2 isomorphic with Λ/Γ, where Λ is a Fuchsian group with the signature (δ; 2, 3(g+1−2p). . . , 2).
Thus δ = (3p − g)/2 and so 3p − g ≡ 0 (2). However p is even and g is odd which implies
that 3p− g is odd, a contradiction. Consequently in this case G3 may admit only one more
p-involution, namely ρ1ρ2ρ3 and so l ≤ 4. �

By Proposition 3.3, the number of pairwise commuting p-involutions corresponding to given
p is limited for p ≡ 0 (2) or p ≡ 3 (4). The next proposition give a bound for such number
for p ≡ 1 (4).

Proposition 3.4. Let p = 1+2mα, where α is odd and m ≥ 2. Then the number of pairwise
commuting p-involutions of a Riemann surface X of genus g 6= 2p−1 does not exceed 2nα+5,
where n is the least integer in range 0 ≤ n ≤ m + 2 such that 2nα ≥ m− n− 1.

Proof. Given such p, let X be a Riemann surface whose pairwise commuting p-involutions
generate Gk = Z2⊕ k. . . ⊕Z2. Then by Proposition 3.3, k ≤ m+3. So let us write k = m+3−n
for some integer n in range 0 ≤ n ≤ m + 2 and let Gk = ∆/Γ for a Fuchsian group ∆ with
a signature (γ; 2, r. . . , 2). Since no single Gk-orbit contains fixed points of two different p-
involutions, it follows that r ≥ ks, where s is the number of Gk-orbits containing fixed points



E. Tyszkowska: On p-hyperelliptic Involutions of Riemann Surfaces 585

of a single p-involution. In order to check the greatest value of k, we consider the minimum
value of s and the maximum value of r. Thus we take s = 1 and γ = 0. By Theorem
2.1, s = (g + 1 − 2p)/2k−2 and so s = 1 for g = 1 + 2m+1−n + 2m+1α. But the Hurwitz-
Riemann formula for such g and γ = 0 gives r = 2nα + 5 which clearly limits the number
of p-involutions in Gk . Since for s = 1, the epimorphism θ : ∆ → Gk cannot be defined for
r < k + 1, it follows that n is the least integer satisfying the inequality 2nα ≥ m− n− 1. �

Proposition 3.5. Let X be a p-hyperelliptic Riemann surface of genus g = 3p + 2. Then X
admits at most 2 p-involutions if p ≡ 0 (2) or p ≡ 3 (4) and at most 3 if p ≡ 1 (4) and p > 5.
For p = 1 or p = 5, X can admit 5 or 6 and no more p-involutions respectively.

Proof. By Theorem 3.2, all p-involutions of a Riemann surface of genus g = 3p + 2 commute
one to each other and so they generate the group Gk = Z2⊕ k. . . ⊕Z2 for some k. Let
Gk = ∆/Γ for some Fuchsian group ∆, say with a signature (γ; 2, r. . . , 2). Denote by sk the
number of Gk-orbits containing the fixed points of a single p-involution from Gk. By Theorem
2.1, sk = (g + 1 − 2p)/2k−2 = (p + 3)/2k−2. Thus k ≤ 2 for p even and k ≤ 3 and sk is
odd for p ≡ 3 (4). However, by the Hurwitz-Riemann formula for k = 3 and (∆, Γ), we have
2γ + r − 3s3 = 0, which implies γ = 0 and r = 3s3 in virtue of obvious r ≥ 3s3. Therefore,
for p ≡ 3 (4), an epimorphism θ : ∆ → G3 actually can not exist. Consequently k ≤ 2 if
p ≡ 0 (2) or p ≡ 3 (4). Furthermore X admits at most 2 p-involutions in these cases since,
by the proof of the Theorem 3.2, a product of two p-involutions cannot be a p-involution for
g > 3p.

Now let p ≡ 1 (4). First we shall show that k ≤ 5 and that surfaces whose p-involutions
generate G4 or G5 exist only for p ≤ 5. For, let us write p = 4α+1 for some integer α. Then
g = 1 + 4(1 + 3α) and sk = (α + 1)/2k−4. Let n and m be the greatest integers such that
g ≡ 1 (2n) and p ≡ 1 (2m). Then for even α, we have n = 2 which by (i) of the Proposition
3.3 implies k ≤ 4 and for odd α, m = 2 and consequently k ≤ 5.

Now let t = r − ksk. Applying the Hurwitz-Riemann formula for (∆, Γ) and k = 4,
we obtain 1 = 4γ + α + t. Thus γ = 0 and either α = 1, r = 4s4 or α = 0, r = 4s4 + 1.
Consequently p = 5, s4 = 2 and σ(∆) = (0; 2, 2, 2, 2, 2, 2, 2, 2) or p = 1, s4 = 1 and σ(∆) =
(0; 2, 2, 2, 2, 2). So there exists exactly one possible epimorphism θ : ∆ → G4 whose image is
generated by p-involutions and it is given by the assignment

θ(xi) = ρj for 1 ≤ j ≤ k, (j − 1)sk < i ≤ jsk, (6)

in the first case and by the assignment

θ(xi) = ρj, θ(xksk+1) = ρ1 · · · ρk for 1 ≤ j ≤ k, (j − 1)sk < i ≤ jsk (7)

in the second one, where k = 4. Thus the surface whose p-involutions generate G4 exists only
for p = 1 or p = 5 and the corresponding group G4 admits exactly five or four p-involutions
respectively.

Similarly for k = 5 we obtain 4γ+α+t = 2. Since for even α we have k ≤ 4, it follows that
α = 1, γ = 0 and r = 5s5 + 1. Thus p = 5, s5 = 1 and ∆ has the signature (0; 2, 2, 2, 2, 2, 2).
Now the assignment (7) defines the only possible epimorphism onto G5. Thus the surface
whose p-involutions generate G5 exists only for p = 5 and the corresponding group G5 admits
exactly six 5-involutions.
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Summing up, for p > 5 and p ≡ 1 (4) we have k ≤ 3. However, from the first part of
the proof s3 is even and ∆ has the signature (0; 2, 3s3. . ., 2). Thus the assignment (6) for k = 3,
defines the only possible epimorphism ∆ → G3 whose image is generated by p-involutions
and so the group G3 contains exactly 3 p-involutions. �

Let us notice that for arbitrary positive integer k ≥ 5, we can find integers p and g such that
there exists a Riemann surface of genus g admitting k pairwise commuting p-involutions.
Indeed for g = 1+(k−4)2k−3 and p = 1+(k−5)2k−4 we can take a Fuchsian group ∆ with the
signature (0; 2, k. . . , 2) and define an epimorphism θ : ∆ → Z2⊕ k−1. . . ⊕Z2 = 〈ρ1〉⊕ · · ·⊕ 〈ρk−1〉
by the assignment θ(xi) = ρi for i = 1, . . . , k − 1 and θ(xk) = ρ1 · · · ρk−1. Then Γ = kerθ
is a surface Fuchsian group of orbit genus g and ρi are p-involutions of a Riemann surface
X = H/Γ.

At the end of the paper we give a bound for the number of all central p-involutions of a
surface X.

Theorem 3.6. Let X be a p-hyperelliptic Riemann surface of genus g ≥ 2 and let G be
its automorphism group of order 2N . Assume that the canonical projection X → X/G is
ramified at r points with multiplicities m1, . . . ,mr. Then for g 6= 2p − 1, the number of
central p-involutions of X does not exceed

(N
r∑

i=1

1/mi)/(g + 1− 2p).

Proof. Here X = H/Γ for some Fuchsian surface group Γ with the signature (g;−) and
G = ∆/Γ for some Fuchsian group ∆ with the signature (δ; m1, . . . ,mr). Let x1, . . . xr be
canonical elliptic generators of ∆ and let θ : ∆ → G be the canonical epimorphism. Assume
that X admits a central p-involution ρ. If g 6= 2p − 1 then ρ has fixed points and so it is
conjugate to θ(xi)

mi/2 for some xi corresponding to an even period mi. However since ρ is
central, it follows that actually ρ = θ(xi)

mi/2. In particular for distinct p-involutions ρ and ρ′,
εi(ρ) 6= εi(ρ

′). Moreover by Theorem 2.1, N
∑r

i=1 εi(ρ)/mi = g + 1− 2p = N
∑r

i=1 εi(ρ
′)/mi.

Thus if n is the number of all p-involutions of X then n(g + 1− 2p) ≤ N
∑r

i=1 1/mi and so
the theorem is proved. �
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