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Abstract. All rings are commutative with identity and all modules are
unital. Let R be a ring, M an R-module and R (M), the idealization
of M . Homogeneous ideals of R (M) have the form I (+)N where I is an
ideal of R, N a submodule of M and IM ⊆ N . The purpose of this
paper is to investigate how properties of a homogeneous ideal I (+)N
of R (M) are related to those of I and N . We show that if M is a
multiplication R-module and I (+)N is a meet principal (join principal)
homogeneous ideal of R (M) then these properties can be transferred
to I and N . We give some conditions under which the converse is true.
We also show that I (+)N is large (small) if and only if N is large in M
(I is a small ideal of R).
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0. Introduction

Let R be a commutative ring with identity and M an R-module. M is a mul-
tiplication module if every submodule N of M has the form IM for some ideal
I of R. Equivalently, N = [N : M ] M , [11]. A submodule K of M is multipli-
cation if N ∩ K = [N : K] K for all submodules N of M , [19, Lemma 1.3]. Let
N be a submodule of R and I an ideal of R. The residual submodule of N by
I is [N :M I] = {m ∈ M : Im ⊆ N}, [16] and [17]. If M is multiplication then
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[N :M I] = [N : IM ] M . In particular, if M is faithful and multiplication then
[0 :M I] = (annI) M , [2]. Several properties of residual submodules of multiplica-
tion modules are given in [2].

Anderson [9] defined θ (M) =
∑

m∈M

[Rm : M ] and showed the usefulness of this

ideal in studying multiplication modules. He proved for example that if M is mul-
tiplication then M = θ(M)M and a finitely generated module M is multiplication
(equivalently, locally cyclic) if and only if θ (M) = R, [9, Proposition 1 and The-
orem 1]. The trace ideal of an R-module M is Tr(M) =

∑
f∈Hom(M,R)

f (M). If M

is faithful multiplication then θ (M) = Tr (M) is a pure ideal of R, (equivalently,
multiplication and idempotent, [3, Theorem 1.1]).

Let M be an R-module and P a maximal ideal of R. El-Bast and Smith [12,
p. 756] defined TP (M) = {m ∈ M : (1− p) m = 0 for some p ∈ P}. TP (M) is a
submodule of M . M is P -torsion if and only if TP (M) = M . They also defined
M to be P -cyclic if there exist p ∈ P and m ∈ M such that (1− p) M ⊆ Rm.
They proved that M is multiplication if and only if for each maximal ideal P of
R, either M is P -torsion or M is P -cyclic, [12, Theorem 2.1].

Let R be a commutative ring with identity and M an R-module. The R-
module R (M) = R(+)M (called the idealization of M) becomes a commutative
ring with identity if multiplication is defined by (r1, m1) (r2, m2) = (r1r2, r1m2+
r2m1). 0(+)M is an ideal of R (M) satisfying (0(+)M)2 = 0, and the structure of
0(+)M as an ideal of R(M) is essentially the same as the R-module structure of
M . Every ideal contained in 0(+)M has the form 0(+)N for some submodule N
of M and every ideal contains 0(+)M has the form I (+)M for some ideal I of R.
Since R ∼= R (M) /0(+)M, I → I (+)M gives a one-to-one correspondence between
the ideals of R and the ideals of R (M) containing 0(+)M . Thus prime (maximal)
ideals of R (M) have the form P (+)M where P is a prime (maximal) ideal of R.

Let R be a ring and M an R-module. Let I be an ideal of R and N a submodule
of M . Then I (+)N is an ideal of R (M) if and only if IM ⊆ N , [13, Theorem 25(1)]
and [6, Theorem 3.1]. The homogeneous ideals of R (M) have the form I (+)N
where I is an ideal of R,N a submodule of M and IM ⊆ N . If H is a homogeneous
ideal then H = I (+)N where I = {r ∈ R : (r, b) ∈ H for some b ∈ M} and N =
{m ∈ M : (s, m) ∈ H for some s ∈ R}. Ideals of R (M) need not have the form
I (+)N , that is, need not be homogeneous. For example, it is easily checked that
the principal ideal of Z(+)Z which is generated by (2,1) is not homogeneous. Some
facts about homogeneous ideals of R (M) are given in [6] and [13, Section 25].
In this paper we say that R (M) is a homogeneous ring if every ideal of R (M)
is homogeneous. It is shown, [6, Theorem 3.3], that if R is an integral domain
then R (M) is homogeneous if and only if M is a divisible R-module. Thus Z(+)Q,
where Q is the field of rational numbers, is a homogeneous ring.

Idealization is useful for reducing results concerning submodules to the ideal
case and generalizing results from rings to modules. D. D. Anderson, [7] and [8],
investigated the idealization of modules. He proved that a submodule N of an
R-module M is multiplication (weak cancellation) if and only if 0(+)N is a mul-
tiplication (weak cancellation) ideal of R (M). Thus the study of multiplication
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(weak cancellation) modules can often be reduced to the study of multiplication
(weak cancellation) ideals I with I2 = 0, [7, Theorem 3.1] and [8, Theorem 3.1].

In this paper we investigate homogeneous ideals of R (M). Let I (+)N be a
homogeneous ideal of R (M). In Section 1 we show that if I (+)N is meet principal
then so too is I and if we assume further that M is meet principal then N is
meet principal. We also prove that if I and N are meet principal such that
annI + [IM : N ] = R then so too is I (+)N , Theorem 3 and Proposition 7.

In section 2 we study the idealization of join principal submodules. Theorem 9
proves that if I (+)N is join principal then so too is I and if we assume further that
M is finitely generated multiplication then N is join principal. In Theorem 13
we show that if R(M) is homogeneous, I join principal, N weak cancellation and
annI +[IK : N ] = R for each submodule K of M then I (+)N is weak cancellation.

Section 3 is concerned with the idealization of large and small submodules.
Among several results we show that I (+)N is large if and only if N is large in M
and I (+)N is small if and only if I is a small ideal of R, Proposition 17.

All rings are assumed to be commutative with identity and all modules are
unital. For the basic concepts used, we refer the reader to [13]–[17].

1. Meet principal submodules

Let M be an R-module and N a submodule of M . Then N is meet principal
if K ∩ IN = ([K : N ] ∩ I) N for all ideals I of R and all submodules K of M .
Setting I = R we define N to be weak meet principal if K ∩ N = [K : N ] N
for all submodules K of M , [7]. Hence multiplication modules are in fact weak
meet principal modules. The following conditions are equivalent for a submodule
N of M : (1) N is meet principal, (2) N is multiplication, (3) if P ⊇ θ (N) is a
maximal ideal of R then NP = 0P , [9, Theorem 2]. In this section we investigate
the idealization of meet principal submodules. We start by the following lemma
which plays a main role in our paper.

Lemma 1. Let R be a ring and M an R-module. If I (+)N and J (+)K are homo-
geneous ideals of R (M) then[

I (+)N :R(M) J (+)K
]

= ([I : J ] ∩ [N : K]) (+) [N :M J ] .

Furthermore, it is a homogeneous ideal of R (M).

Proof. The proof of the first assertion is straightforward. To show that the ideal
is homogeneous, we have that

([I : J ] ∩ [N : K]) M ⊆ [I : J ] M ⊆ [IM : JM ] M ⊆ [N : JM ] M ⊆ [N :M J ] . �

As a consequence of the above lemma, we note that if I (+)N is a homogeneous
ideal of R (M) then

ann (I (+)N) = (annI ∩ annN) (+) [0 :M I] .
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Let M be faithful. Since IM ⊆ N , we infer that annN ⊆ annI, and hence
ann (I (+)N) = annN (+) [0 :M I]. Assuming further that M is multiplication, we
obtain that ann(I (+)N) = annN (+) (annI) M . Compare the next result with [8,
Theorem 3.1].

Proposition 2. Let R be a ring and N a submodule of an R-module M . Then
N is meet principal if and only if 0(+)N is a meet principal ideal of R (M).

Proof. Let 0(+)N be meet principal. Suppose K is a submodule of M and I an
ideal of R. Then

(0(+)K) ∩ (I (+)M) (0(+)N) = (0(+)K) ∩ (0(+)IN) = 0(+) (K ∩ IN) .

On the other hand, we get from Lemma 1 that(
(I (+)M) ∩

[
0(+)K :R(M) 0(+)N

])
(0(+)N) = ((I (+)M) ∩ ([K : N ] (+)M)) (0(+)N)

= ((I ∩ [K : N ]) (+)M) (0(+)N) = 0(+) (I ∩ [K : N ]) N.

Hence K ∩ IN = (I ∩ [K : N ]) N , and N is meet principal. Conversely, suppose
N is meet principal. Let H1 and H2 be ideals of R (M). We prove that

H1 ∩H2 (0(+)N) =
([

H1 :R(M) 0(+)N
]
∩H2

)
(0(+)N) .

Now

H1 ∩H2 (0(+)N) = (H1 ∩ 0(+)N) ∩ (H2 + 0(+)M) (0(+)N) .

Assume H1∩0(+)N = 0(+)K for some submodule K of N and H2 +0(+)M = I (+)M
for some ideal I of R. It follows that

H1 ∩H2 (0(+)N) = 0(+) (K ∩ IN) = 0(+) ([K : N ] ∩ I) N

= (([K : N ] ∩ I) (+)M) (0(+)N) = ([K : N ] (+)M ∩ I (+)M) (0(+)N)

=
([

0(+)K :R(M) 0(+)N
]
∩ I (+)M

)
(0(+)N)

=
([

(H1 ∩ 0(+)N) :R(M) 0(+)N
]
∩ (H2 + 0(+)M)

)
(0(+)N)

=
([

H1 :R(M) 0(+)N
]
∩ (H2 + 0(+)M)

)
(0(+)N) .

We verify that([
H1 :R(M) 0(+)N

]
∩ (H2 + 0(+)M)

)
(0(+)N) =

([
H1 :R(M) 0(+)N

]
∩H2

)
(0(+)N) .

Let x ∈
([

H1 :R(M) 0(+)N
]
∩ (H2 + 0(+)M)

)
(0(+)N). Then

x =
k∑

i=1

((ri, mi) + (0, m′
i)) (0, ni) =

k∑
i=1

(0, rini) =
k∑

i=1

(ri, mi) (0, ni) ,

where (ri, mi) ∈ H2, m
′
i ∈ M and ni ∈ N . Since (ri, mi + m′

i) ∈
[
H1 :R(M) 0(+)N

]
,

it follows that (ri, mi) (0, n′
i) = (0, rin

′
i) = (ri, mi + m′

i) (0, n′
i) ∈ H1 for all n′

i ∈ N .
Hence (ri, mi) ∈

[
H1 :R(M) 0(+)N

]
. This implies that x ∈

([
H1 :R(M) 0(+)N

]
∩H2

)
(0(+)N). The reverse inclusion is obvious, and this finishes the proof of the propo-
sition. �

The next result shows that the meet principal property of a homogeneous ideal of
R (M) can be transferred to its components.
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Theorem 3. Let R be a ring and M an R-module. If I (+)N is a meet principal
homogeneous ideal of R (M) then I is a meet principal ideal of R. Assuming
further that M is meet principal then N is a meet principal submodule of M .

Proof. Let A and B be ideals of R. Since I (+)N is meet principal,

(A(+)M) ∩ (B(+)M) (I (+)N) =
([

A(+)M :R(M) I (+)N
]
∩ (B(+)M)

)
(I (+)N) .

But

(A(+)M) ∩ (B(+)M) (I (+)N) = (A(+)M) ∩ (IB(+) (BN + IM))

= (A ∩ IB) (+) (BN + IM) ,
and([

A(+)M :R(M) I (+)N
]
∩ (B(+)M)

)
(I (+)N) = (([A : I] (+)M) ∩ (B(+)M)) (I (+)N)

= (([A : I] ∩B) (+)M) (I (+)N) = ([A : I] ∩B) I (+) ([A : I] ∩B) N + IM.

Thus A ∩ IB = ([A : I] ∩B) I, and I is meet principal.
Now, suppose M is meet principal. Let K be a submodule of M and A an

ideal of R. Then

(A(+)AM) (I (+)N) ∩ ([K : M ] (+)K)

= (A(+)AM) ∩
[
[K : M ] (+)K :R(M) I (+)N

]
(I (+)N) .

But

(A(+)AM) (I (+)N) ∩ ([K : M ] (+)K) = (AI (+)AN) ∩ ([K : M ] (+)K)

= (AI ∩ [K : M ]) (+) (AN ∩K) ,

and (
(A(+)AM) ∩

[
[K : M ] (+)K :R(M) I (+)N

])
(I (+)N)

= ((A(+)AM) ∩ (([[K : M ] : I] ∩ [K : N ]) (+) [K :M I])) (I (+)N)

= ((A(+)AM) ∩ (([K : IM ] ∩ [K : N ]) (+) [K :M I])) (I (+)N)

= ((A(+)AM) ∩ ([K : N ] (+) [K :M I])) (I (+)N)

= ((A ∩ [K : N ]) (+) (AM ∩ [K :M I])) (I (+)N)

= (A ∩ [K : N ]) I (+) (A ∩ [K : N ]) N + I (AM ∩ [K :M I]) .

Hence

AI ∩ [K : M ] = (A ∩ [K : N ]) I,
and

AN ∩K = (A ∩ [K : N ]) N + I (AM ∩ [K :M I]) .

Since I is meet principal, we infer that

(A ∩ [K : N ]) I = AI ∩ [K : M ] = (A ∩ [[K : M ] : I]) I = (A ∩ [K : IM ]) I.
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As I and M are meet principal, we obtain from, [9, Corollary to Theorem 2], that
IM is meet principal, and hence

I (AM ∩ [K :M I]) = I (AM ∩ [K : IM ] M)

⊆ IAM ∩ [K : IM ] IM ⊆ A (IM) ∩K

= (A ∩ [K : IM ]) IM = (A ∩ [K : N ]) IM

⊆ (A ∩ [K : N ]) N.

This finally gives that AN ∩K = (A ∩ [K : N ]) N , and N is meet principal. �

We make two observations on our theorem. First, since the homomorphic image
of a meet principal submodule has the same property, the first part of the theorem
follows since I is a homomorphic image of I (+)N . Second, the condition that M is
meet principal (multiplication) in the above theorem is required. Let R = Z and
M = Q, where Z is the ring of integers and Q is the field of rational numbers.
Then Z (Q) (2, 0) = 2Z(+)Q is a principal (hence meet principal) ideal of Z (Q),
but Q is not meet principal.

Compare the next result with [8, Theorem 3.2 (2)].

Proposition 4. Let R be a ring and M an R-module. Let I be an ideal of R and
P a maximal ideal of R.

(1) TP (I)(+)TP (I) M ⊆ TP (+)M (I (+)IM).

(2) TP (+)M (I (+)IM) ⊆ TP (I)(+)TP (IM).

(3) I is P -torsion if and only if I (+)IM is P (+)M-torsion.

(4) I is P -principal if and only if I (+)IM is P (+)M-principal.

Proof. (1) Let (a, n) ∈ TP (I)(+)TP (I) M . Then a ∈ TP (I) and n ∈ TP (I) M .

Hence there exists p ∈ P such that (1− p) a = 0. Now, let n =
r∑

i=1

aimi, where

ai ∈ TP (I) and mi ∈ M . It follows that there exist pi ∈ P such that (1− pi) ai =

0. Let q = 1−(1−p)
r∏

i=1

(1− pi). Then q ∈ P and (1− q) a = 0 = (1− q) ai. This

implies that (1− q) n = 0, and hence ((1, 0)− (q, 0)) (a, n) = (1− q, 0) (a, n) =
((1− q) a, (1− q) n) = (0, 0), and (a, n) ∈ TP (+)M (I (+)IM).

(2) Let (a, n) ∈ TP (+)M (I (+)IM). There exist p ∈ P and m ∈ M such that
((1, 0)− (p, m)) (a, n) = (0, 0). Hence (0, 0) = (1− p,−m) (a, n) = ((1− p) a,
(1− p) n − am). It follows that (1− p) a = 0, (and hence a ∈ TP (I)) and
(1− p) n = am. Let q = 2p − p2. Then q ∈ P , and (1− q) n = 0. Hence
n ∈ TP (IM), and (a, n) ∈ TP (I)(+)TP (IM).

(3) If I is P -torsion then I = TP (I) and by (1) we get that

I (+)IM = TP (I) (+)TP (I) M ⊆ TP (+)M (I (+)IM) ⊆ I (+)IM,

so that I (+)IM = TP (+)M (I (+)IM), and I (+)IM is P (+)M -torsion. Conversely,
suppose I (+)IM is P (+)M -torsion. It follows by (2) that

I (+)IM = TP (+)M (I (+)IM) ⊆ TP (I) (+)TP (IM) ⊆ I (+)IM,
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so that I (+)IM = TP (I)(+)TP (IM). Hence I = TP (I), and I is P -torsion.

(4) For an ideal I =
∑
α

Raα of a ring R, I (+)IM =
∑
α

Raα(+)aαM =
∑
α

R (M)

(aα, 0). Hence {aα} generates I as an ideal of R if and only if {(aα, 0)} generates
I (+)IM as an ideal of R (M). Suppose I is P -principal. Then there exist a ∈
I, p ∈ P such that (1− p) I ⊆ Ra, and hence

((1, 0)− (p, 0)) (I (+)IM) = (1− p, 0) (I (+)IM)

= (1− p) I (+) (1− p) IM ⊆ Ra(+)aM = R (M) (a, 0) .

This shows that I (+)IM is P (+)M -principal. Conversely, let I (+)IM be P (+)M -
principal . There exist a∈I, p∈P and m∈M such that ((1, 0)− (p, m)) (I (+)IM)
⊆ R (M) (a, 0). Then ((1− p) x, (1− p) y −mx) = ((1, 0)− (p, m)) (x, y) ∈
Ra(+)aM for all x ∈ I and all y ∈ IM . Hence (1− p) x ∈ Ra for all x ∈ I.
This implies that (1− p) I ⊆ Ra, and I is P -principal. �

The next result gives necessary and sufficient conditions for the homogeneous ideal
I (+)IM of R (M) to be meet principal.

Proposition 5. Let R be a ring, M an R-module and I an ideal of R. Then
I (+)IM is a meet principal (equivalently multiplication) ideal of R (M) if and only
if I is meet principal (equivalently multiplication).

Proof. The maximal ideals of R (M) have the form P (+)M where P is a maximal
ideal P of R, [13, Theorem 25(1)]. The result follows by the above fact, Proposi-
tion 4 and [12, Theorem 1.2]. Note that, if I (+)IM is meet principal then the fact
that I is meet principal also follows by Theorem 3. �

The next result gives a condition under which the converse of Theorem 3 is true.
First, we give a lemma.

Lemma 6. Let R be a ring and K, N meet principal submodules of an R-module
M . If [K : N ] + [N : K] = R then K + N is meet principal.

Proof. Let [K : N ] + [N : K] = R. Then

K = [K : N ]K + [N : K]K = [K : N ]K + (K ∩N)

= [K : N ]K + [K : N ]N = [K : N ] (K + N) = [K : (K + N)](K + N).

Similarly, N = [N : (K + N)](K +N). Let A be an ideal of R and L a submodule
of M . Since [K : N ] + [N : K] = R, it is easily verified that [AK : AN ] + [AN :
AK] = R. It follows by [20, Proposition 4], that

L ∩ A(K + N) = L ∩ (AK + AN)

= (L ∩ AK) + (L ∩ AN) = ([L : K] ∩ A)K + ([L : N ] ∩ A)N

= ([L : K] ∩ A)[K : (K + N)](K + N) + ([L : N ] ∩ A)[N : (K + N)](K + N)

⊆ ([L : K][K : (K + N)] ∩ A)(K + N) + ([L : N ][N : (K + N)] ∩ A)(K + N)

⊆ ([L : (K + N)] ∩ A)(K + N) + ([L : (K + N)] ∩ A)(K + N)

= ([L : (K + N)] ∩ A)(K + N),
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obviously,

([L : (K + N)] ∩ A)(K + N) ⊆ L ∩ A(K + N).
Hence

([L : (K + N)] ∩ A)(K + N) = L ∩ A(K + N),

and K + N is a meet principal submodule of M . �

Proposition 7. Let R be a ring and M an R-module. Let I (+)N be a homogeneous
ideal of R(M). If I is a meet principal ideal of R and N a meet principal submodule
of M such that annI + [IM : N ] = R then I (+)N is meet principal.

Proof. By Propositions 2 and 5, 0(+)N and I (+)IM are meet principal ideals of
R(M). Next,

[0(+)N :R(M) I (+)IM ] + [I (+)IM :R(M) 0(+)N ] = (annI (+)M)

+([IM : N ](+)M) = (annI + [IM : N ])(+)M = R(M).

The result follows by Lemma 6. �

2. Join principal submodules

Let M be an R-module and N a submodule of M . Then N is join principal if
[(IN + K) : N ] = I + [K : N ] for all ideals I of R and all submodules N of M .
Setting K = 0, we define N to be weak join principal if [IN : N ] = I + annN for
all ideals I of R, [7].

A submodule N of an R-module M is called cancellation (resp. weak cancel-
lation) if [IN : N ] = N (resp. [IN : N ] = I + annN) for all ideals I of R, [18].
Hence weak join principal submodules are weak cancellation submodules. While
meet principal and weak meet principal submodules coincide, join principal sub-
modules are obviously weak cancellation but not conversely. For example, let R
be an almost Dedekind domain that is not Dedekind. Hence R has a maximal
ideal P that is not finitely generated. So P is a cancellation ideal and hence
a weak cancellation ideal of R but not join principal, [7]. D. D. Anderson, [7],
defined restricted cancellation modules: A submodule N of an R-module M is
a restricted cancellation submodule if 0 6= IN = JN for all ideals I and J of R
implies I = J . He proved that a submodule N of M is restricted cancellation
if and only if it is weak cancellation and annN is comparable to every ideal of
R, [7, Theorem 2.5]. In [1], we investigated join principal submodules and gave
several properties of such modules. We gave necessary and sufficient conditions
for the sum, intersection, product and tensor product of join principal submod-
ules (ideals) to be join principal. In this section we investigate the idealization of
join principal submodules. We start by a result proved by D. D. Anderson, [7,
Theorem 3.1]. We give it here for completeness.
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Proposition 8. Let R be a ring and N a submodule of an R-module M .

(1) N is weak cancellation if and only if 0(+)N is a weak cancellation ideal of
R(M).

(2) N is cancellation if and only if 0(+)N is a weak cancellation ideal of R(M)
and ann(0(+)N) = 0(+)M .

(3) 0(+)N is a restricted cancellation ideal of R(M) if and only if N is a restricted
cancellation submodule of M and for all ideals J of R, JN 6= 0 implies
JM = M .

(4) N is join principal if and only if 0(+)N is a join principal ideal of R(M).

The next result gives some conditions under which cancellation properties of a
homogeneous ideal of R (M) transfer to its components.

Theorem 9. Let R be a ring and M an R-module. Let I (+)N be a homogeneous
ideal of R(M).

(1) If M is cancellation and I (+)N is cancellation then I is a cancellation ideal
of R and N is a cancellation submodule of M .

(2) If M is finitely generated, faithful and multiplication and I (+)N is weak can-
cellation then I is a weak cancellation ideal of R and N is a weak cancellation
submodule of M .

(3) If M is finitely generated faithful multiplication and I (+)N is restricted can-
cellation then I is a restricted cancellation ideal of R and N is a restricted
cancellation submodule of M .

(4) If I (+)N is join principal then I is a join principal ideal of R. Assuming
further that M is finitely generated multiplication then N is a join principal
submodule of M .

Proof. (1) Let A be an ideal of R. Then

0(+)AM = [(0(+)AM)(I (+)N) :R(M) I (+)N ] = [0(+)AIM :R(M) I (+)N ]

= (annI ∩ [AIM : N ])(+)[AIM :M I].

It follows that [AIM : IM ]M ⊆ [AIM :M I] = AM . Since M is cancellation, we
infer that [AI : I] ⊆ A. The reverse inclusion is always true and I is cancellation.
Next,

A(+)AM = [(A(+)AM)(I (+)N) :R(M) I (+)N ] = [AI (+)AN :R(M) I (+)N ]

= ([AI : I] ∩ [AN : N ])(+)[AN :M I].

But I is cancellation. Thus [AI : I] ∩ [AN : N ] = A ∩ [AN : N ] = A. Hence
A(+)AM = A(+)[AN :M I], and hence

AM = [AN :M I] ⊇ [AN : IM ] M ⊇ [AN : N ] M.

As M is cancellation, we obtain that [AN : N ] ⊇ A ⊇ [AN : N ], so that
A = [AN : N ] and N is cancellation. Alternatively, M is a cancellation module
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and hence 0(+)M is a weak cancellation ideal of R (M). It follows that 0(+)IM =
(I (+)N) (0(+)M) is a weak cancellation ideal of R (M). By Proposition 8, IM
is a weak cancellation submodule of M . But M is cancellation. Thus I is a
weak cancellation ideal of R. Since I (+)N is faithful, we infer from Lemma 1 that
ann (I) M = ann (IM) M ⊆ [0 :M I] = 0. Hence annI ⊆ annM = 0, and hence I
is faithful. This implies that I is cancellation. Next, 0(+)IN = (I (+)N)2 (0(+)M) is a
weak cancellation ideal of R (M), and hence IN is a weak cancellation submodule
of M . Since IM ⊆ N and IM is faithful, N is faithful, and hence IN is faithful.
This implies that IN is cancellation and hence N is cancellation.

(2) Suppose M is finitely generated, faithful and multiplication and suppose A is
an ideal of R. Then

[(0(+)AM)(I (+)N) :R(M) I (+)N ] = 0(+)AM + ann(I (+)N).
But

[(0(+)AM)(I (+)N) :R(M) I (+)N ] = [0(+)AIM :R(M) I (+)N ]

= (annI ∩ [AIM : N ])(+)[AIM :M I],
and

0(+)AM + ann(I (+)N) = 0(+)AM + annN (+)(annI)M

= annN (+)(A + annI)M.

Thus [AIM :M I] = (A + annI)M . Since M is finitely generated, faithful and
multiplication (hence cancellation), it follows that[AI : I]M = [AIM : IM ]M =
[AIM :M I] = (A + annI)M ,and this finally gives that [AI : I] = A + annI, and
I is weak cancellation. Next, we have that

[(A(+)AM)(I (+)N) :R(M) I (+)N ] = A(+)AM + ann(I (+)N).

It follows that

[(A(+)AM)(I (+)N) :R(M) I (+)N ] = ([AI : I] ∩ [AN : N ])(+)[AN :M I],

and

A(+)AM + ann(I (+)N) = (A + annN)(+)(A + annI)M.

Hence [AI : I] ∩ [AN : N ] = A + annN and [AN :M I] = [AN : IM ]M =
(A+annI)M from which it follows that [AN : IM ] = A + annI. Since I is weak
cancellation, we get that

A + annN = [AI : I] ∩ [AN : N ] = (A + annI) ∩ [AN : N ]

= [AN : IM ] ∩ [AN : N ] = [AN : N ] ,

and N is weak cancellation.

(3) Let M be finitely generated faithful multiplication and I (+)N restricted can-
cellation. By [7, Theorem 2.5], I (+)N is weak cancellation and by (2) I and N are
weak cancellation. Suppose A is an ideal of R. Then either

0(+)AM ⊆ ann (I (+)N) = annN (+) (annI) M
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from which it follows that AM ⊆ (annI) M , and hence A ⊆ annI or

annN (+) (annI) M = ann (I (+)N) ⊆ 0(+)AM.

From the latter case we get that (annI) M ⊆ AM , and hence annI ⊆ A. Hence
annI is comparable to A, and by [7, Theorem 2.5], I is a restricted cancellation
ideal of R. To show N is restricted cancellation, we have either

A(+)AM ⊆ ann (I (+)N) = annN (+) (annI) M,

and hence A ⊆ annN or

annN (+) (annI) M = ann (I (+)N) ⊆ A(+)AM,

and hence annN ⊆ A. This shows that annN is comparable to A and the result
follows by [7, Theorem 2.5].

(4) Let A and B be ideals of R. Then[
((A(+)M) (I (+)N) + B(+)M) :R(M) I (+)N

]
= A(+)M +

[
B(+)M :R(M) I (+)N

]
.

But [
((A(+)M) (I (+)N) + B(+)M) :R(M) I (+)N

]
=

[
((AI + B) (+)M) :R(M) I (+)N

]
= [(AI + B) : I] (+)M,

and

A(+)M +
[
B(+)M :R(M) I (+)N

]
= A(+)M + [B : I] (+)M = (A + [B : I]) (+)M.

Thus

[(AI + B) : I] = A + [B : I] ,

and this shows that I is a join principal ideal of R. Suppose now M is a finitely
generated multiplication module. Let A be an ideal of R and K a submodule of
M . Then [

((A(+)AM) (I (+)N) + [K : M ] (+)K) :R(M) I (+)N
]

= A(+)AM +
[
[K : M ] (+)K :R(M) I (+)N

]
.

Now, [
((A(+)AM) (I (+)N) + [K : M ] (+)K) :R(M) I (+)N

]
=

[
(AI + [K : M ]) (+) (AN + K) :R(M) I (+)N

]
= ([(AI + [K : M ]) : I] ∩ [(AN + K) : N ]) (+) [(AN + K) :M I] .

On the other hand,

A(+)AM +
[
[K : M ] (+)K :R(M) I (+)N

]
= A(+)AM + ([[K : M ] : I] ∩ [K : N ]) (+) [K :M I]

= A(+)AM + ([K : IM ] ∩ [K : N ]) (+) [K :M I]

= A(+)AM + [K : N ] (+) [K :M I] = (A + [K : N ]) (+) (AM + [K :M I]) .



260 M. M. Ali: Homogeneous Idealization

Hence

[(AI + [K : M ]) : I] ∩ [(AN + K) : N ] = A + [K : N ] ,

and

[(AN + K) :M I] = AM + [K :M I] .

Since I is join principal, we have that

A + [K : N ] = [(AI + [K : M ]) : I] ∩ [(AN + K) : N ]

= (A + [K : IM ]) ∩ [(AN + K) : N ] .

Since M is finitely generated multiplication, we infer that

[(AN + K) : IM ] M = [(AN + K) :M I] = AM + [K :M I] = (A + [K : IM ]) M,

and hence

[(AN + K) : IM ] + annM = A + [K : IM ] + annM.

But annM ⊆ [(AN + K) : IM ] and annM ⊆ [K : IM ]. Thus [(AN + K) : IM ] =
A + [K : IM ]. It follows that

[(AN + K) : N ] ⊆ [(AN + K) : IM ] = A + [K : IM ] ,

and this finally gives that [(AN + K) : N ] = A+[K : N ], and N is a join principal
submodule of M . This completes the proof of the theorem. �

The next two results show how cancellation properties of I (+)IM are related to
those of I.

Proposition 10. Let R be a ring, M an R-module and I an ideal of R.

(1) If I (+)IM is a weak cancellation ideal of R (M) then I is a weak cancellation
ideal of R.

(2) If I (+)IM is a cancellation ideal of R (M) then I is a cancellation ideal of
R.

(3) If I (+)IM is a restricted cancellation ideal of R(M) then I is a restricted
cancellation ideal of R. Assuming further that IM 6= 0 then I is faithful
(and hence cancellation).

(4) If I (+)IM is a join principal ideal of R (M) then I is a join principal ideal
of R.

Proof. (1) Suppose A is an ideal of R. Then[
(A(+)M) (I (+)IM) :R(M) I (+)IM

]
= A(+)M + ann (I (+)IM) .

But[
(A(+)M) (I (+)IM) :R(M) I (+)IM

]
=

[
AI (+)IM :R(M) I (+)IM

]
= [AI : I] (+)M,
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and

A(+)M + ann (I (+)IM) = A(+)M + (annI (+) [0 :M I]) = (A + annI) (+)M.

Thus [AI : I] = A + annI, and I is weak cancellation.

(2) If I (+)IM is cancellation, it is faithful weak cancellation. By Lemma 1 and
part (1), I is faithful weak cancellation and hence it is cancellation.

(3) Suppose I (+)IM is restricted cancellation. By, [7, Theorem 2.5], I (+)IM is
weak cancellation and by (1), I is weak cancellation. Let A be an ideal of R. It
follows by, [7, Theorem 2.5], that either

annI (+) [0 :M I] = ann (I (+)IM) ⊆ A(+)M,

from which it follows that annI ⊆ A or

A(+)M ⊆ ann (I (+)IM) = annI (+) [0 :M I] .

From the latter case we infer that A ⊆ annI. Hence annI is comparable to A, and
by, [7, Theorem 2.5], I is restricted cancellation. Assume now that IM 6= 0. Then
0 6= (0(+)M) (I (+)IM) = (annI (+)M) (I (+)IM), and hence 0(+)M = annI (+)M . It
follows that annI = 0, and hence I is cancellation.

(4) Let I (+)IM be join principal. Let A and B be ideals of R. Then[
((A(+)M) (I (+)IM) + B(+)M) :R(M) I (+)IM

]
= A(+)M +

[
B(+)M :R(M) I (+)IM

]
.

Now, [
((A(+)M) (I (+)IM) + B(+)M) :R(M) I (+)IM

]
=

[
(AI + B) (+)M :R(M) I (+)IM

]
= [(AI + B) : I] (+)M,

and

A(+)M +
[
B(+)M :R(M) I (+)IM

]
= A(+)M + [B : I] (+)M = (A + [B : I]) (+)M.

Hence [(AI + B) : I] = A + [B : I], and I is join principal. �

Theorem 11. Let R be a ring, M a multiplication R-module and R (M) a ho-
mogeneous ring. Let I be an ideal of R.

(1) If M is faithful and I is weak cancellation then I (+)IM is a weak cancellation
ideal of R (M).

(2) If M is faithful and I is cancellation then I (+)IM is a cancellation ideal of
R (M).

(3) If M is finitely generated and I is join principal then I (+)IM is a join prin-
cipal ideal of R (M).
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Proof. (1) Let A(+)K be an ideal of R (M). Then[
(A(+)K) (I (+)IM) :R(M) I (+)IM

]
=

[
AI (+)IK :R(M) I (+)IM

]
= ([AI : I] ∩ [IK : IM ]) (+) [IK :M I] .

Since AM ⊆ K, [AI : I] ⊆ [AIM : IM ] ⊆ [IK : IM ], and hence [AI : I] ∩
[IK : IM ] = [AI : I] = A+annI. Next, we show that [IK :M I] = K +(annI) M .
Obviously, K + (annI) M ⊆ [IK :M I]. Let m ∈ [IK :M I]. Then Im ⊆ IK, and
hence I [Rm : M ] M ⊆ I [K : M ] M . Hence I [Rm : M ]Tr(M) ⊆ I [K : M ]Tr(M).
As I is weak cancellation, [Rm : M ]Tr(M) ⊆ [K : M ]Tr(M) + annI. Since M is
faithful multiplication, it follows by [10, Theorem 2.6], that

Rm = [Rm : M ] M = [Rm : M ] Tr (M) M ⊆ [K : M ] Tr (M) M + (annI) M

= K + (annI) M,

so that m ∈ K + (annI) M and hence [IK :M I] = K + (annI) M . This finally
gives that[

(A(+)K) (I (+)IM) :R(M) I (+)IM
]

= (A + annI) (+) (K + (annI) M)

= A(+)K + annI (+) (annI) M = A(+)K + ann (I (+)IM) ,

and hence I (+)IM is weak cancellation.

(2) Since M is faithful multiplication, I is faithful if and only if I (+)IM is faithful.
The result follows by (1) and the fact that every ideal is cancellation if and only
if it is faithful weak cancellation.

(3) Suppose A(+)K and B(+)L are ideals of R (M). Then[
((A(+)K) (I (+)IM) + B(+)L) :R(M) I (+)IM

]
= ([(AI + B) : I] ∩ [(IK + L) : IM ]) (+) [(IK + L) :M I] .

Since I is join principal, AM ⊆ K and BM ⊆ L, we infer that

A + [B : I] = [(AI + B) : I] ⊆ [(AIM + BM) : IM ] ⊆ [(IK + L) : IM ] .

Since M is finitely generated multiplication, M is weak cancellation, [20, Corollary
2 to Theorem 9]. It follows by [18, Proposition 1.4], that

[(IK + L):M I] = [(IK + L) : IM ] M = [(I [K : M ] + [L : M ]) M : IM ] M

= [(I [K : M ] + [L : M ] + annM) : I] M

= [(I [K : M ] + [L : M ]) : I] M.

As I is join principal, we get that

[(IK + L):M I] = ([K : M ] + [[L : M ] : I]) M = K + [L : IM ] M = K + [L :M I] .

Hence[
((A(+)K) (I + IM) + B(+)L):R(M) I (+)IM

]
= (A + [B : I]) (+) (K + [L :M I])

= A(+)K + [B : I] (+) [L :M I] = A(+)K + ([B : I] ∩ [L : IM ]) (+) [L :M I]

= A(+)K +
[
B(+)L :R(M) I (+)IM

]
,
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as required. This finishes the proof of the theorem. �

A submodule N of an R-module M is called locally join principal if NP is a
join principal submodule of the RP -module MP for each maximal ideal P of R.
Suppose N is a finitely generated locally join principal submodule of an R-module
M . Then N is join principal. For let A be an ideal of R, P a maximal ideal of R
and K a submodule of M . Then

[(AN + K) : N ]P = [(AP NP + KP ) : NP ] = AP + [KP : NP ] = (A + [K : N ])P .

Since P is arbitrary, [(AN + K) : N ] = A+[K : N ]. We use this fact to give some
conditions under which finitely generated ideals of a homogeneous ring R (M) are
join principal.

Proposition 12. Let R be a ring and M a finitely generated multiplication R-
module. Let R (M) be homogeneous and I (+)N a finitely generated ideal of R (M).
If I is a join principal ideal of R and N a join principal submodule of M such
that annI + [IM : N ] = R then I (+)N is join principal.

Proof. Since I (+)N is finitely generated, it is enough to prove the result locally.
Thus we may assume R (M) is a local ring. Since R = annI + [IM : N ], we infer
that

R (M) =
[
0(+)N :R(M) I (+)N

]
+

[
I (+)IM :R(M) I (+)N

]
.

Hence, either I (+)N = 0(+)N or I (+)N = I (+)IM . The result follows by Proposi-
tion 8 and Theorem 11. �

The next result gives some conditions under which the ideal I (+)N (not necessarily
finitely generated) is weak cancellation.

Theorem 13. Let R be a ring, M a finitely generated multiplication R-module
and R (M) a homogeneous ring. Let I (+)N be an ideal of R (M). If I is a join
principal ideal of R and N a weak cancellation submodule of M such that annI +
[IK : N ] = R for each submodule K of M then I (+)N is weak cancellation.

Proof. Let A(+)K be an ideal of R (M). We need to show that[
(A(+)K) (I (+)N) :R(M) I (+)N

]
= A(+)K + ann (I (+)N)

= A(+)K + (annI ∩ annN) (+) [0 :M I]

= (A + (annI ∩ annN)) (+) (K + [0 :M I]) .

Since I is join principal (and hence weak cancellation) and M is multiplication,
we infer that[

(A(+)K) (I (+)N) :R(M) I (+)N
]

=
[
AI (+) (AN + IK) :R(M) I (+)N

]
= ([AI : I] ∩ [(AN + IK) : N ]) (+) [(AN + IK) :M I]

= ((A + annI) ∩ [(AN + IK) : N ]) (+) [(AN + IK) : IM ] M.
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Next, since

R = annI + [IK : N ] ⊆ [AN : IK] + [IK : AN ] ⊆ R,

it follows by [4, Corollary 1.2], that

[(AN + IK) : N ] = [AN : N ] + [IK : N ] .

But N is weak cancellation. Thus

[(AN + IK) : N ] = A + [0 : N ] + [IK : N ] = A + [IK : N ] .

Now

R = annI + [IK : N ] ⊆ [annI : [IK : N ]] + [[IK : N ] : annI] ,

so that

R = [annI : [IK : N ]] + [[IK : N ] : annI] .

We obtain from [4, Corollary 1.2], that

(A + annI) ∩ (A + [IK : N ]) = A + (annI ∩ [IK : N ]) .

Again, since R = annI + [IK : N ], we get that

annI ∩ [IK : N ] = (annI) [IK : N ] ⊆ [0 : IK] [IK : N ] ⊆ [0 : N ] = annN.

But annI ∩ [IK : N ] ⊆ annI. Thus

annI ∩ [IK : N ] ⊆ annI ∩ annN ⊆ annI ∩ [IK : N ] ,

so that annI ∩ [IK : N ] = annI ∩ annN , and hence

(A + annI) ∩ [(AN + IK) : N ] = A + (annI ∩ annN) .

On the other hand,

[(AN + IK) : IM ] M = [AN : IM ] M + [IK : IM ] M.

Since

R = annI + [IK : N ] ⊆ annI + [IM : N ] ⊆ R,

we get that

[AN : IM ] = [AN : IM ] annI + [AN : IM ] [IM : N ]

⊆ annI + [AN : N ] ⊆ [0 : IM ] + A + [0 : N ] = A + [0 : IM ] .

It follows that

[AN : IM ] M = AM + [0 : IM ] M ⊆ K + [0 :M I] .
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Finally, since M is finitely generated multiplication (hence weak cancellation) and
I is join principal, we infer from [18, Proposition 1.4] that

[IK : IM ] M = [I [K : M ] M : IM ] M = [(I [K : M ] + annM) : I] M

= ([K : M ] + [annM : I]) M ⊆ [K : M ] M + [0 : IM ] M = K + [0 :M I] .

Hence [(AN + IK) :M I] ⊆ K + [0 :M I]. This shows that[
(A(+)K) (I (+)N) :R(M) I (+)N

]
⊆ (A(+)K) + ann (I (+)N) .

The reverse inclusion is always true, and hence I (+)N is weak cancellation. This
completes the proof of the theorem. �

3. Large and small submodules

A submodule N of an R-module M is said to be large in M if for all submodules
K of M , K ∩ N = 0 implies that K = 0. Dually, N is small in M if for all
submodules K of M, K + N = M implies that K = M . If I is a faithful ideal of
a ring R then I is large. In particular, every non-zero ideal of an integral domain
R is large. If N is a faithful submodule of a multiplication R-module M then N
is large in M , [1]. For all submodules K and N of M with K ⊆ N , if K is large
in M then so too is N and if N is small in M then so too is K. For properties
of large and small modules, see [15]. The next theorem gives some properties of
idealization of large and small modules.

Theorem 14. Let R be a ring and M an R-module. Let I be an ideal of R and
N a submodule of M .

(1) 0(+)M is a small ideal of R (M) and, in particular, 0(+)N is a small ideal
of R (M). If M is faithful then 0(+)M is a large ideal of R (M) and, in
particular, I (+)M is a large ideal of R (M).

(2) If 0(+)N is a large ideal of R (M) then N is large in M , and the converse is
true if M is faithful.

(3) If I is a small ideal of R then I (+)M is a small ideal of R (M).

(4) I is a small ideal of R if and only if I (+)IM is a small ideal of R (M).

(5) If I (+)M is a small ideal of R (M) then I is a small ideal of R.

(6) Let M be faithful multiplication. Then I is a large ideal of R if and only if
I (+)IM is a large ideal of R (M).

Proof. (1) Let H be an ideal of R (M) such that H + 0(+)M = R (M). Then
(0(+)M) H = 0(+)M . Hence 0(+)M ⊆ H and hence H +0(+)M = H. It follows that
H = R (M) and 0(+)M is a small ideal of R (M). As 0(+)N ⊆ 0(+)M, 0(+)N is a
small ideal of R (M). Suppose now M is faithful and suppose H an ideal of R (M)
such that H ∩ 0(+)M = 0. Then H (0(+)M) = 0, and hence H ⊆ ann (0(+)M) =
0(+)M . This implies that 0 = H ∩ 0(+)M = H, and hence 0(+)M is a large ideal of
R (M). Since 0(+)M ⊆ I (+)M, I (+)M is a large ideal of R (M).
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(2) Let 0(+)N be a large ideal of R (M). Let K be a submodule of M such that
K ∩ N = 0. Then 0(+)K ∩ 0(+)N = 0(+)(K ∩N) = 0. Hence 0(+)K = 0, and
hence K = 0. This implies that N is large in M . Conversely, suppose H is an
ideal of R (M) such that H ∩ 0(+)N = 0. Then (H ∩ 0(+)M) ∩ 0(+)N = 0. Assume
H ∩ 0(+)M = 0(+)K for some submodule K of M . Then 0 = 0(+)(K ∩N) =
0(+)K ∩ 0(+)N , and hence K ∩ N = 0. Since N is large in M, K = 0, and hence
0 = 0(+)K = H ∩ 0(+)M . As M is faithful, we obtain by (1) that 0(+)M is large
and hence H = 0. This shows that 0(+)N is a large ideal of R (M).

(3) Suppose I is a small ideal of R and H an ideal of R (M) such that H+I (+)M =
R (M). Then H +0(+)M +I (+)M = R (M). Let H +0(+)M = J (+)M for some ideal
J of R. Then (J + I)(+)M = R (M), and hence J + I = R. It follows that J = R,
and hence H + 0(+)M = R (M). As 0(+)M is a small ideal of R (M) , H = R (M)
and I (+)M is a small ideal of R (M).

(4) Let I be a small ideal of R. By (3), I (+)M is a small ideal of R(M) and hence
I (+)IM is a small ideal of R (M). Conversely, let I (+)IM be a small ideal of R (M).
Let J be an ideal of R such that J + I = R. Then J (+)M + I (+)IM = R (M).
Hence J (+)M = R (M) and hence J = R. This shows that I is a small ideal of R.

(5) If I (+)M is a small ideal of R (M) then so too is I (+)IM . The result follows by
(4).

(6) Suppose M is faithful and multiplication. Let I (+)IM be a large ideal of
R (M). Let J be an ideal of R such that J ∩ I = 0. It follows by [12, Corollary
1.7], that 0 = (J ∩ I) M = JM ∩ IM , and hence

0 = (J ∩ I) (+) (JM ∩ IM) = (J (+)JM) ∩ (I (+)IM) .

It follows that J (+)JM = 0, and hence J = 0. This implies that I is a large ideal
of R. Conversely, suppose I is large and suppose H an ideal of R (M) such that
H ∩ I (+)IM = 0. Hence H ∩ 0(+)M ∩ I (+)IM = 0. Suppose H ∩ 0(+)M = 0(+)K
for some submodule K of M . It follows that 0(+)(K ∩ IM) = 0(+)K ∩ I (+)IM =
0. Hence K ∩ IM = 0. Since M is faithful multiplication, we infer, from [12,
Corollary 1.7], that ([K : M ] ∩ I) M = 0, and hence [K : M ] ∩ I = 0. As I is
large, we obtain that [K : M ] = 0, and hence K = [K : M ] M = 0. This gives
that H ∩ 0(+)M = 0(+)K = 0. Finally, since 0(+)M is large, H = 0, and hence
I (+)IM is a large ideal of R (M). This finishes the proof of the theorem. �

The socle of an R-module M, socM , is the intersection of all large submodules of
M , while the Jacobson radical of M, J (M), is the sum of all small submodules of
M , [15]. The next corollary shows that the socle but not Jacobson radical behaves
well with respect to idealization.

Corollary 15. Let R be a ring and N a submodule of an R-module M .

(1) J (0 (+)M) = 0(+)M .

(2) If M is faithful then soc (0 (+)M) = 0(+)socM .

(3) If M is faithful and multiplication then soc (0 (+)M) = θ(0(+)M)soc (0 (+)M).
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Proof. (1) Follows by Theorem 14(1).

(2) By Theorem 14(1), the large submodules of 0(+)M are exactly those of the
form 0(+)N where N is large in M . Hence the result follows.

(3) By [5, Corollary 1.4] and [8, Theorem 3.2], socM = θ (M) socM . Hence,
soc (0(+)M) = 0(+)socM = 0(+)θ (M) socM = (θ (M) (+)M) (0(+)socM) = θ (0(+)M)
soc (0(+)M). �

Let R = Z and M = Z4. Then J (0(+)M) = 0(+)Z4 while 0(+)J (M) = 0(+)2Z4.
Hence J (0(+)M) 6= 0(+)J (M).

An R-module M is called finitely cogenerated if for every non-empty collection
of submodules Nλ (λ ∈ Λ) of M with

⋂
λ∈Λ

Nλ = 0, there exists a finite subset Λ′

of Λ such that
⋂

λ∈Λ′
Nλ = 0. M is called uniform if the intersection of any two

non-zero submodules of M is non-zero, and M has finite uniform dimension if it
does not contain an infinite direct sum of non-zero submodules, [15]. The next
result gives some properties of idealization of finitely cogenerated and uniform
modules.

Proposition 16. Let R be a ring and M an R-module. Let I be an ideal of R
and N a submodule of M .

(1) N is finitely cogenerated if and only if 0(+)N is a finitely cogenerated ideal
of R(M).

(2) N is uniform if and only if 0(+)N is a uniform ideal of R (M).

(3) N has finite uniform dimension if and only if 0(+)N has finite uniform di-
mension.

(4) If M is faithful multiplication and I (+)IM is finitely cogenerated then so too
is I.

(5) If M is faithful multiplication and I (+)IM is uniform then so too is I.

(6) If M is faithful multiplication and I (+)IM has finite uniform dimension then
so too has I.

Proof. (1) Suppose 0(+)N is finitely cogenerated. Let Nλ (λ ∈ Λ) be a non-empty
collection of submodules of N such that

⋂
λ∈Λ

Nλ = 0. Then 0 = 0(+)

⋂
λ∈Λ

Nλ =⋂
λ∈Λ

0(+)Nλ, and hence there exists a finite subset Λ′ of Λ such that
⋂

λ∈Λ

0(+)Nλ = 0.

Hence 0(+)

⋂
λ∈Λ′

Nλ = 0, and hence
⋂

λ∈Λ′
Nλ = 0. This implies that N is finitely

cogenerated. The converse is now clear since every submodule of 0(+)N has the
form 0(+)K for some submodule K of N .

(2) Follows by (1).

(3) Suppose 0(+)N has finite uniform dimension. If N contains a direct sum of
submodules Nλ (λ ∈ Λ) then

∑
λ∈Λ

0(+)Nλ is direct, and hence all but a finite number

of ideals 0(+)Nλ is zero. If 0(+)Nλ = 0, then Nλ = 0 and N has finite uniform
dimension. The converse is routine.
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(4) Let I (+)IM be finitely cogenerated. Let Iλ (λ ∈ Λ) be a non-empty collection of
ideals of R contained in I such that

⋂
λ∈Λ

Iλ = 0. Since M is faithful multiplication,

we infer from [12, Corollary 1.7], that
⋂

λ∈Λ

IλM =

( ⋂
λ∈Λ

Iλ

)
M = 0, and hence⋂

λ∈Λ

Iλ(+)IλM = 0. It follows that there exists a finite subset Λ′ of Λ such that⋂
λ∈Λ′

Iλ(+)IλM = 0. Hence
⋂

λ∈Λ′
Iλ = 0, and I is finitely cogenerated.

(5) Follows by (4).

(6) Suppose I (+)IM has finite uniform dimension. If I contains a direct sum of
subideals Iλ (λ ∈ Λ) then

∑
λ∈Λ

Iλ(+)IλM is direct and hence all but a finite number

of the ideals Iλ(+)IλM is zero. If Iλ(+)IλM = 0, then Iλ = 0 and I has finite
uniform dimension. �

For all submodules K and N of an R-module M with K ⊆ N , if N is finitely
cogenerated (resp. uniform, has finite uniform dimension) then so too is (has)
K. The following result shows how large, small, finitely cogenerated and uniform
properties of a homogeneous ideal I (+)N are related to those of I and N .

Proposition 17. Let R be a ring and M an R-module. Let I (+)N be a homoge-
neous ideal of R (M).

(1) If I (+)N is large then N is large in M . The converse is true if M is faithful.

(2) If M is faithful multiplication and I is a large ideal of R then I (+)N is large.

(3) I (+)N is small if and only if I is a small ideal of R.

(4) If M is finitely generated faithful and N is small in M then I (+)N is small.

(5) If I (+)N is finitely cogenerated (resp. uniform, has finite uniform dimension)
then so too is (has) N .

(6) Assuming further to the assumption of (5) that M is faithful multiplication
then I is finitely cogenerated (resp. uniform, has finite uniform dimension).

Proof. (1) Suppose I (+)N is large. Let K be a submodule of M such that
K ∩ N = 0. Then (0(+)K) ∩ (I (+)N) = 0. Hence 0(+)K = 0 and hence K = 0.
This shows that N is large in M . Assume M is faithful and N is large in M . By
Theorem 14 (2), 0(+)N is a large ideal of R (M) and hence I (+)N is large.

(2) Suppose M is faithful multiplication and I is a large ideal of R. By Theorem
14 (4), I (+)IM is a large ideal of R (M) and hence I (+)N is large. Alternatively,
since M is faithful and multiplication, IM is large in M . Since IM ⊆ N, N is
large in M . Hence 0(+)N is large and therefore I (+)N is large.

(3) Let I (+)N be small. Let J be an ideal of R such that J + I = R. Then
J (+)M + I (+)N = R (M). Hence J (+)M = R (M), and hence J = R. This implies
that I is a small ideal of R. Conversely, if I is a small ideal of R, it follows by
Theorem 14 (3) that I (+)M is a small ideal of R (M). Hence I (+)N is small.
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(4) Let M be finitely generated faithful and N small in M . Let H be an ideal of
R (M) such that H + I (+)N = R (M). Then

H (0(+)M) + 0(+)IM = (H + I (+)N) (0(+)M) = 0(+)M.

Let H (0(+)M) = 0(+)K for some submodule K of M . Then 0(+)(K + IM) = 0(+)M
and hence K + IM = M . Since IM ⊆ N, K + N = M , and hence K = M .
This implies that H (0(+)M) = 0(+)M . As M is finitely generated and faithful, it
follows that 0(+)M is finitely generated and ann(0(+)M) = 0(+)M , see [7, Theorem
3.1] and Lemma 1. By [14, Theorem 76], we obtain that R (M) = H + 0(+)M .
But 0(+)M is a small ideal of R (M). Thus H = R (M), and I (+)N is a small ideal
of R (M).

(5) and (6) follow by Proposition 16, Theorem 14 and the remarks made before
the proposition. �

We close by the following result which gives conditions under which the converse
of parts (5) and (6) of Proposition 17 is true.

Proposition 18. Let R be a ring, M a faithful multiplication R-module and
R (M) a homogeneous ring. Let I (+)N be an ideal of R (M).

(1) If N is a finitely cogenerated submodule of M then I (+)N is finitely cogener-
ated.

(2) If N is a uniform submodule of M then I (+)N is uniform.

(3) If N has finite uniform dimension then so too has I (+)N .

Proof. IM ⊆ N . If N is finitely cogenerated (resp. uniform, has finite uniform
dimension) then so too is (has) IM . Since M is faithful multiplication, it is easily
verified that I is finitely cogenerated (resp. uniform, has finite uniform dimension).

(1) Let Jλ(+)Kλ (λ ∈ Λ) be a non-empty collection of ideals of R (M) contained in
I (+)N such that

⋂
λ∈Λ

Jλ(+)Kλ = 0. Then
⋂

λ∈Λ

Jλ = 0 and
⋂

λ∈Λ

Kλ = 0. It follows that

there exist finite subsets Λ′ and Λ′′ of Λ such that
⋂

λ∈Λ′
Jλ = 0 and

⋂
λ∈Λ′′

Kλ = 0.

Without loss of generality we may assume that Λ′ ⊆ Λ′′. Then
⋂

λ∈Λ′
Jλ(+)Kλ = 0,

and hence I (+)N is finitely cogenerated.

(2) Follows by (1).

(3) If I (+)N contains a direct sum of subideals Jλ(+)Kλ (λ ∈ Λ) then
∑
λ∈Λ

Jλ and∑
λ∈Λ

Kλ are direct. Hence all but a finite number of each of Jλ and Kλ is zero.

If Jλ = 0 and Kλ = 0 then Jλ(+)Kλ = 0 and hence I (+)N has finite uniform
dimension. �
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