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Abstract. All rings are commutative with identity and all modules are
unital. Let R be a ring, M an R-module and R (M), the idealization
of M. Homogeneous ideals of R (M) have the form I+ N where [ is an
ideal of R, N a submodule of M and IM C N. The purpose of this
paper is to investigate how properties of a homogeneous ideal [N
of R(M) are related to those of I and N. We show that if M is a
multiplication R-module and I(+)N is a meet principal (join principal)
homogeneous ideal of R (M) then these properties can be transferred
to I and N. We give some conditions under which the converse is true.
We also show that I+)N is large (small) if and only if NV is large in M
(I is a small ideal of R).
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0. Introduction

Let R be a commutative ring with identity and M an R-module. M is a mul-
tiplication module if every submodule N of M has the form IM for some ideal
I of R. Equivalently, N = [N : M] M, [11]. A submodule K of M is multipli-
cation if N N K = [N : K] K for all submodules N of M, [19, Lemma 1.3]. Let
N be a submodule of R and [ an ideal of R. The residual submodule of N by
I'is [N:y Il ={me&M:ImC N}, [16] and [17]. If M is multiplication then
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[N iy I] = [N : IM] M. In particular, if M is faithful and multiplication then
[0:ps I] = (annl) M, [2]. Several properties of residual submodules of multiplica-
tion modules are given in [2].

Anderson [9] defined § (M) = > [Rm : M| and showed the usefulness of this

meM
ideal in studying multiplication modules. He proved for example that if M is mul-

tiplication then M = (M )M and a finitely generated module M is multiplication

(equivalently, locally cyclic) if and only if 6 (M) = R, [9, Proposition 1 and The-

orem 1]. The trace ideal of an R-module M is Tr(M) = oo f(M). IEM
feHom(M,R)

is faithful multiplication then 6 (M) = Tr (M) is a pure ideal of R, (equivalently,

multiplication and idempotent, [3, Theorem 1.1}).

Let M be an R-module and P a maximal ideal of R. El-Bast and Smith [12,
p. 756] defined Tp (M) = {m € M : (1 —p)m =0 for some p € P}. Tp(M) is a
submodule of M. M is P-torsion if and only if Tp (M) = M. They also defined
M to be P-cyclic if there exist p € P and m € M such that (1 —p) M C Rm.
They proved that M is multiplication if and only if for each maximal ideal P of
R, either M is P-torsion or M is P-cyclic, [12, Theorem 2.1].

Let R be a commutative ring with identity and M an R-module. The R-
module R (M) = R+ M (called the idealization of M) becomes a commutative
ring with identity if multiplication is defined by (ri,my) (12, m2) = (r179, r1ma+
ramy). O M is an ideal of R (M) satisfying (0cnM)> = 0, and the structure of
OcHM as an ideal of R(M) is essentially the same as the R-module structure of
M. Every ideal contained in O+)M has the form 0N for some submodule N
of M and every ideal contains O)M has the form I+ M for some ideal I of R.
Since R = R (M) /0cyM,I — I+ M gives a one-to-one correspondence between
the ideals of R and the ideals of R (M) containing O+ M. Thus prime (maximal)
ideals of R (M) have the form Pw)M where P is a prime (maximal) ideal of R.

Let R be aring and M an R-module. Let I be an ideal of R and N a submodule
of M. Then I+)N is an ideal of R (M) if and only if IM C N, [13, Theorem 25(1)]
and [6, Theorem 3.1]. The homogeneous ideals of R (M) have the form I+)N
where [ is an ideal of R, N a submodule of M and IM C N. If H is a homogeneous
ideal then H = I+)N where I = {r € R: (r,b) € H for some b € M} and N =
{m e M : (s,m) € H for some s € R}. Ideals of R(M) need not have the form
I+)N, that is, need not be homogeneous. For example, it is easily checked that
the principal ideal of Z+Z which is generated by (2,1) is not homogeneous. Some
facts about homogeneous ideals of R (M) are given in [6] and [13, Section 25].
In this paper we say that R (M) is a homogeneous ring if every ideal of R (M)
is homogeneous. It is shown, [6, Theorem 3.3], that if R is an integral domain
then R (M) is homogeneous if and only if M is a divisible R-module. Thus Z+@,
where () is the field of rational numbers, is a homogeneous ring.

Idealization is useful for reducing results concerning submodules to the ideal
case and generalizing results from rings to modules. D. D. Anderson, [7] and [§],
investigated the idealization of modules. He proved that a submodule N of an
R-module M is multiplication (weak cancellation) if and only if 0N is a mul-
tiplication (weak cancellation) ideal of R (M). Thus the study of multiplication
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(weak cancellation) modules can often be reduced to the study of multiplication
(weak cancellation) ideals I with I? = 0, [7, Theorem 3.1] and [8, Theorem 3.1].

In this paper we investigate homogeneous ideals of R (M). Let (N be a
homogeneous ideal of R (M). In Section 1 we show that if /(+)/V is meet principal
then so too is I and if we assume further that M is meet principal then N is
meet principal. We also prove that if I and N are meet principal such that
annl + [IM : N] = R then so too is I(+)N, Theorem 3 and Proposition 7.

In section 2 we study the idealization of join principal submodules. Theorem 9
proves that if IV is join principal then so too is I and if we assume further that
M is finitely generated multiplication then N is join principal. In Theorem 13
we show that if R(M) is homogeneous, [ join principal, N weak cancellation and
ann/ + [IK : N] = R for each submodule K of M then I(+)N is weak cancellation.

Section 3 is concerned with the idealization of large and small submodules.
Among several results we show that IV is large if and only if N is large in M
and I+)N is small if and only if I is a small ideal of R, Proposition 17.

All rings are assumed to be commutative with identity and all modules are
unital. For the basic concepts used, we refer the reader to [13]-[17].

1. Meet principal submodules

Let M be an R-module and N a submodule of M. Then N is meet principal
if KNIN = ([K:N]NI)N for all ideals I of R and all submodules K of M.
Setting I = R we define N to be weak meet principal if K NN = [K : N|N
for all submodules K of M, [7]. Hence multiplication modules are in fact weak
meet principal modules. The following conditions are equivalent for a submodule
N of M: (1) N is meet principal, (2) N is multiplication, (3) if P D #(N) is a
maximal ideal of R then Np = 0p, [9, Theorem 2|. In this section we investigate
the idealization of meet principal submodules. We start by the following lemma
which plays a main role in our paper.

Lemma 1. Let R be a ring and M an R-module. If &N and J+K are homo-
geneous ideals of R (M) then

[N pany JoK] = (I : JJN[N : K]) 0 [N iy J].
Furthermore, it is a homogeneous ideal of R (M).

Proof. The proof of the first assertion is straightforward. To show that the ideal
is homogeneous, we have that

(U:JJN[N:K)MC[I:J]MC[M:JMMCI[N:JMMCIN:yJ. O

As a consequence of the above lemma, we note that if I(+)N is a homogeneous
ideal of R (M) then

ann (I(+N) = (annl NannN) ) [0 :pr 1]
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Let M be faithful. Since IM C N, we infer that annN C annl/, and hence
ann (/- N) = annN) [0 :p I]. Assuming further that M is multiplication, we
obtain that ann(/+N) = annN) (ann/) M. Compare the next result with [8,
Theorem 3.1].

Proposition 2. Let R be a ring and N a submodule of an R-module M. Then
N is meet principal if and only if 0N is a meet principal ideal of R (M).

Proof. Let 0N be meet principal. Suppose K is a submodule of M and I an
ideal of R. Then

(O(+)K) N ([(+)M) (0(+)N) = (O(+)K) N (O(+)IN) =0 (K N [N) .
On the other hand, we get from Lemma 1 that
(IM)N [0 K pany 0N]) (00N) = (IenM) N ([K : N] M) (0 N)
=((IN[K:N])&M)(O0-N) =04 (I N[K:N])N.

Hence KNIN = (IN[K : N])N, and N is meet principal. Conversely, suppose
N is meet principal. Let H; and Hs be ideals of R (M). We prove that

H1 N H2 (0(+)N) = ([Hl :R(M) 0(+)N] N Hg) (O(Jr)N) .
Now
Hy N Hy (00N) = (H; N0 N) N (Hy + 0o M) (0 N) -

Assume H; N0+ N = 0K for some submodule K of N and Hy+ 0 M = I M
for some ideal I of R. It follows that

Hy, N Hy (0N) =0 (K NIN) =0 ([K : N]N 1) N

(([K: NINnI)«&M)(0nN) = ([K: N «o>M NI M) (0 N)
= ([0 K :rar 0 N] N I M) (0(+>N)

([(Hi N0&N) :ran 0N | N (Hy + 0 M)) (0 N)

([H1 :ron) 0N N (Hz 4+ 0 M)) (0 N).

We verify that
([Hl :R(M) O(+)Ni| N (HQ + 0(+)M)) (0(+)N) = ([Hl 3R(M) 0(+)N] N Hg) (0(+)N) .
Let o € ([Hy :ry 0 N| N (Hz 4 0 M)) (0 N). Then

k

k k
le ((ri;mq) + (0,my)) (0,m;) = ; (0,ming) = ; (ri;mq) (0, m4)
where (r;,m;) € Hy,m, € M and n; € N. Since (r;, m; +m}) € [Hl “R(M) O(+>N},
it follows that (r;,m;) (0,n}) = (0,7;n}) = (r;,m; +m}) (0,n}) € Hy for alln] € N.
Hence (r;,m;) € [Hl “R(M) O(+)N]. This implies that x € ([Hl CR(M) O<+)N} N HQ)
(0+)N). The reverse inclusion is obvious, and this finishes the proof of the propo-
sition. U

The next result shows that the meet principal property of a homogeneous ideal of
R (M) can be transferred to its components.
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Theorem 3. Let R be a ring and M an R-module. If I+)N is a meet principal
homogeneous ideal of R (M) then I is a meet principal ideal of R. Assuming
further that M is meet principal then N is a meet principal submodule of M.

Proof. Let A and B be ideals of R. Since [N is meet principal,

(A(+)M) N (B(+)M) (I(+)N) = ([A(+)M “R(M) [(+)N} N (B(+)M)) ([(+)N) .

But
(A(+)M) N (B(+)M) ([(+)N) = (A(+>M) N (IB(+) (BN + [M))
=(ANIB)+ (BN +IM),
and
([A(HM LR(M) I(+)N] N (B<+)M)) (I+N) = (([A: I M) N (BsHM)) (I+N)

=({([A:I]NB)sM)IN)=([A:I]NnB) I+ ([A:I]NnB)N + IM.

Thus ANIB = ([A:I]NB)I, and I is meet principal.

Now, suppose M is meet principal. Let K be a submodule of M and A an
ideal of R. Then

(A AM) (I»N)N ([K : M| HK)
= (AmAM) N [[K : M) oK g [(+)N] (I+N).

But
(A(+)AM) ([(+)N) N ([K : M] (+)K) = (A[(+)AN) N ([K : M] (+)K)
=(AIN[K: M)+ (ANNK),
and
(A AM) N [[K : M] K gy IoN]) (IoN)
= (A AM) N (([[K = M] - 11N [K : NJ) [K v 1)) (IenN)
= (AwAM) N (([K IMIN [ N)) o [K v 1)) (Lo N)
= ((A<+>AM) N(K: Nl [K ])) (f<+>N)
=((AN[K:N))+ (AMﬂ[ m 1)) Lo N)
=(AN[K N])I<+ (AN[K .N])N+I(AMm[K v 1))
Hence
AIN[K : M]=(AN[K : N]) I,
and

ANNK =(AN[K:N))N+I(AMNI[K :p I]).
Since I is meet principal, we infer that

(AN[K:N)I=AIN[K:M]=(AN[[K:M]: I))I=(AN[K : IM))I.
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As I and M are meet principal, we obtain from, [9, Corollary to Theorem 2], that
I M is meet principal, and hence

T(AMAN[K 3 1)) = T (AM N [K : IM] M)
CIAMN[K : IM]IM C A(IM)NK
= (AN[K : IM))IM = (AN[K : N))IM
C (AN[K : N])N.

This finally gives that ANNK = (AN[K : N]) N, and N is meet principal. [

We make two observations on our theorem. First, since the homomorphic image
of a meet principal submodule has the same property, the first part of the theorem
follows since I is a homomorphic image of I(+)N. Second, the condition that M is
meet principal (multiplication) in the above theorem is required. Let R = Z and
M = @, where Z is the ring of integers and @ is the field of rational numbers.
Then Z (Q) (2,0) = 2Z+Q is a principal (hence meet principal) ideal of Z (Q),
but () is not meet principal.
Compare the next result with [8, Theorem 3.2 (2)].

Proposition 4. Let R be a ring and M an R-module. Let I be an ideal of R and
P a maximal ideal of R.
1) Tp ()T (I) M C Tpyn (I I M).

(1) T

(2) Tpoym (InIM) C Tp (I Tp (IM).

(3) I is P-torsion if and only if I+ IM is PyM -torsion.

(4) I is P-principal if and only if I+ IM is P M -principal.

Proof. (1) Let (a,n) € Tp(I)+Tp (I) M. Then a € Tp(I) and n € Tp (1) M.
Hence there exists p € P such that (1 —p)a = 0. Now, let n = > a;m;, where
i=1
a; € Tp (I) and m; € M. It follows that there exist p; € P such that (1 — p;)a; =
0. Let g =1—(1—p) H (1 —p;). Theng e Pand (1 —¢q)a=0=(1—¢q)a;. This
=1

implies that (1 — q)n = 0, and hence ((1,0) — (¢,0)) (a,n) = (1 —¢,0) (a,n) =
(1= q)a (1 — g)n) = (0,0), and (a,n) € Tpar (I M),

2) Let (a,n) € Tpiym (LI M). There exist p € P and m € M such that
(1,0) = (p,m)) (a,n) = (0,0). Hence (0,0) = (1—p,—m)(a,n) = ((1—-p)a,
1—p)n —am). It follows that (1 —p)a = 0, (and hence a € Tp(I)) and
1—p)n = am. Let ¢ = 2p — p>. Then q € P, and (1 —¢q)n = 0. Hence
Tp (IM), and (a,n) € Tp ({)Tp (IM).

If I is P-torsion then I = Tp (I) and by (1) we get that

S
~ Mm

I IM =Tp(I) »Tp(I) M C Tpeyns (I IM) C IIM,

so that I« IM = Tp iy (InIM), and I IM is PM-torsion. Conversely,
suppose [ M is PyM-torsion. It follows by (2) that

IeoIM =Tp oy (I IM) CTp (1) Tp(IM) C InIM,
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so that I IM =Tp (I)»Tp (IM). Hence I =Tp (I), and I is P-torsion.
(4) For an ideal I = > Ra, of a ring R, InIM = Y Rasa.M = Y R (M)
(aq,0). Hence {a,} generates I as an ideal of R if and only if {(a4,0)} generates

I IM as an ideal of R(M). Suppose I is P-principal. Then there exist a €
I, p € P such that (1 —p) I C Ra, and hence

((1,0) = (p,0)) (I IM) = (1 = p,0) (Ien I M)
=(1-p) I+ (1 —-p)IM C RavaM = R (M) (a,0).

This shows that [+ IM is P)M-principal. Conversely, let I+ IM be PuyM-
principal . There exist a€ I, p€ P and me€ M such that ((1,0) — (p,m)) (IIM)
€ R(M)(a,0). Then ((1-p)z,(1-p)y—mz) = ((1,0) = (p,m)) (z,y) €
RawaM for all € I and all y € IM. Hence (1 —p)z € Ra for all z € I.
This implies that (1 — p) I C Ra, and [ is P-principal. O

The next result gives necessary and sufficient conditions for the homogeneous ideal
Iy IM of R(M) to be meet principal.

Proposition 5. Let R be a ring, M an R-module and I an ideal of R. Then
IvIM is a meet principal (equivalently multiplication) ideal of R (M) if and only
if I is meet principal (equivalently multiplication).

Proof. The maximal ideals of R (M) have the form P)M where P is a maximal
ideal P of R, [13, Theorem 25(1)]. The result follows by the above fact, Proposi-
tion 4 and [12, Theorem 1.2]. Note that, if I(+)IM is meet principal then the fact
that I is meet principal also follows by Theorem 3. U

The next result gives a condition under which the converse of Theorem 3 is true.
First, we give a lemma.

Lemma 6. Let R be a ring and K, N meet principal submodules of an R-module
M. If[K: N]+ [N : K] =R then K + N is meet principal.

Proof. Let [K : N|+ [N : K] = R. Then

K
N

] [K: NJK+ (KNN)
] [K:N](K+ N)=[K:(K+N)|(K+N).
Similarly, N = [N : (K + N)](K+ N). Let A be an ideal of R and L a submodule
of M. Since [K : N]+ [N : K] = R, it is easily verified that [AK : AN] + [AN :
AK] = R. Tt follows by [20, Proposition 4], that

LNA(K+ N)=LnNn(AK + AN)

=(LNAK)+ (LNAN)=([L: K|NnA)K + ([L: NJNnA)N
L:KINA)K : (K+N)|(K+N)+(L:NJNA)N:(K+N)|(K+N)
[L:K]K:(K+N)NA)(K+N)+([L:N][N:(K+N)]NA)(K+N)
[L: (K 4+ N)INA)(K +N)+([L: (K+N)]NA) K+ N)
[L: (K + N)|NA)(K + N),

N 1N

(
(
(
(
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obviously,
([L:(K+N)NA(K+N)CLNA(K+ N).
Hence
([L:(K+N)|NA)(K+N)=LNA(K+N),
and K + N is a meet principal submodule of M. U

Proposition 7. Let R be a ring and M an R-module. Let I+ )N be a homogeneous
ideal of R(M). If I is a meet principal ideal of R and N a meet principal submodule
of M such that annl + [IM : N] = R then I+)N is meet principal.

Proof. By Propositions 2 and 5, 0N and [+ I M are meet principal ideals of
R(M). Next,

[0(+)N :R(M) I(+)[M] + [[(+)IM :R(M) 0(+)N] = (ann[(+)M)
+([IM : NjeyM) = (annl + [IM : N])»M = R(M).

The result follows by Lemma 6. U

2. Join principal submodules

Let M be an R-module and N a submodule of M. Then N is join principal if
[(IN + K): N] =1+ [K : N] for all ideals I of R and all submodules N of M.
Setting K = 0, we define N to be weak join principal if [IN : N| = I +annN for
all ideals I of R, [7].

A submodule N of an R-module M is called cancellation (resp. weak cancel-
lation) if [IN : N] = N (resp. [IN : N| = I + annN) for all ideals I of R, [18].
Hence weak join principal submodules are weak cancellation submodules. While
meet principal and weak meet principal submodules coincide, join principal sub-
modules are obviously weak cancellation but not conversely. For example, let R
be an almost Dedekind domain that is not Dedekind. Hence R has a maximal
ideal P that is not finitely generated. So P is a cancellation ideal and hence
a weak cancellation ideal of R but not join principal, [7]. D. D. Anderson, [7],
defined restricted cancellation modules: A submodule N of an R-module M is
a restricted cancellation submodule if 0 # IN = JN for all ideals I and J of R
implies I = J. He proved that a submodule N of M is restricted cancellation
if and only if it is weak cancellation and ann/NV is comparable to every ideal of
R, [7, Theorem 2.5]. In [1], we investigated join principal submodules and gave
several properties of such modules. We gave necessary and sufficient conditions
for the sum, intersection, product and tensor product of join principal submod-
ules (ideals) to be join principal. In this section we investigate the idealization of
join principal submodules. We start by a result proved by D. D. Anderson, [7,
Theorem 3.1]. We give it here for completeness.
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Proposition 8. Let R be a ring and N a submodule of an R-module M .
(1) N is weak cancellation if and only if O0c)N is a weak cancellation ideal of
R(M).
(2) N is cancellation if and only if 0N is a weak cancellation ideal of R(M)
and ann(0)N) = 0 M.

(3) 0N is a restricted cancellation ideal of R(M) if and only if N is a restricted
cancellation submodule of M and for all ideals J of R, JN # 0 implies
JM = M.

(4) N is join principal if and only if 0N is a join principal ideal of R(M).

The next result gives some conditions under which cancellation properties of a
homogeneous ideal of R (M) transfer to its components.

Theorem 9. Let R be a ring and M an R-module. Let I+)N be a homogeneous
ideal of R(M).
(1) If M is cancellation and I+)N is cancellation then I is a cancellation ideal
of R and N is a cancellation submodule of M.

(2) If M is finitely generated, faithful and multiplication and I +N is weak can-

cellation then I is a weak cancellation ideal of R and N is a weak cancellation
submodule of M .

(3) If M is finitely generated faithful multiplication and I+ N is restricted can-
cellation then I is a restricted cancellation ideal of R and N is a restricted
cancellation submodule of M.

(4) If I+)N is join principal then I is a join principal ideal of R. Assuming
further that M is finitely generated multiplication then N s a join principal
submodule of M .

Proof. (1) Let A be an ideal of R. Then

0(+)AM = [(O(+)AM)(I(+)N) :R(M) [(+)N] = [O(+)A[M :R(M) I(+)N]
= (annl N [AIM : N])w[AIM 1.

It follows that [AIM : IM|M C [AIM :p I| = AM. Since M is cancellation, we
infer that [A] : I] C A. The reverse inclusion is always true and I is cancellation.
Next,

AnAM = [(AnHAM)(I+N) “R(M) I N] =[AI+AN TR(M) I+)N]
= ([AI : I]N[AN : N])»[AN :p I).

But [ is cancellation. Thus [A] : I[]N[AN : N] = AN[AN : N] = A. Hence
A AM = A ]AN = I], and hence

AM = [AN 13, I) D [AN : IM] M D [AN : N] M.

As M is cancellation, we obtain that [AN : N] O A D [AN : NJ, so that
A =[AN : N] and N is cancellation. Alternatively, M is a cancellation module
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and hence O+ M is a weak cancellation ideal of R (M). It follows that 0 IM =
(IN) (0e»M) is a weak cancellation ideal of R(M). By Proposition 8, IM
is a weak cancellation submodule of M. But M is cancellation. Thus I is a
weak cancellation ideal of R. Since I )N is faithful, we infer from Lemma 1 that
ann (I) M =ann (IM)M C [0 :p I] = 0. Hence ann/ C annM = 0, and hence [
is faithful. This implies that I is cancellation. Next, 0 IN = (IHN)? (0 M) is a
weak cancellation ideal of R (M), and hence I'N is a weak cancellation submodule
of M. Since IM C N and I M is faithful, N is faithful, and hence I N is faithful.

This implies that I N is cancellation and hence N is cancellation.

(2) Suppose M is finitely generated, faithful and multiplication and suppose A is
an ideal of R. Then

(0 AM)(I+)N) gy I)N] = 0y AM + ann (I N).
But
(0 AM)(I+N) gy LoN] = [0 AIM gy I N]
= (annl N [AIM : N|)[AIM :p 1,
and
0 AM + ann(I+)N) = 0 AM + annN () (annl ) M
= ann/N (A + annl) M.

Thus [AIM :p I] = (A + annl)M. Since M is finitely generated, faithful and
multiplication (hence cancellation), it follows that[Al : I|M = [AIM : IM|M =
[AIM :p; I = (A + annl)M and this finally gives that [Al : [] = A+ ann/, and
I is weak cancellation. Next, we have that

(A AM)(I+N) “R(M) I yN] = A AM + ann(I)N).

It follows that
(A AM)(I+)N) TR(M) I N = ([AI : I] N [AN : N]))[AN 1y 1],

and

A AM + ann(I+N) = (A + annN) ) (A + annl ) M.

Hence [AI : I]N[AN : N] = A+ annN and [AN : I] = [AN : IM|M =
(A+annl)M from which it follows that [AN : IM] = A+ annl. Since I is weak
cancellation, we get that

A+annN = [Al : I|N[AN : N] = (A+ann/)N[AN : N|
=[AN : IM]N[AN : N] = [AN : N],

and N is weak cancellation.

(3) Let M be finitely generated faithful multiplication and I+ N restricted can-
cellation. By [7, Theorem 2.5, I+)N is weak cancellation and by (2) I and N are
weak cancellation. Suppose A is an ideal of R. Then either

0HAM C ann (I(+HN) = annN ) (annl) M
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from which it follows that AM C (ann/) M, and hence A C ann/ or
annN ) (annl) M = ann (I(+HN) C 0 AM.

From the latter case we get that (ann/) M C AM, and hence ann/ C A. Hence
ann/ is comparable to A, and by [7, Theorem 2.5, I is a restricted cancellation
ideal of R. To show N is restricted cancellation, we have either

A+ AM C ann (I(+N) = annN ) (annl) M,
and hence A C ann/N or
annN ) (annl) M = ann (I(HN) € A AM,
and hence annN C A. This shows that ann/V is comparable to A and the result

follows by [7, Theorem 2.5].
(4) Let A and B be ideals of R. Then

[((A<+>M) (IN) 4+ BoM) gy I(+)N}
=AM + [B<+)M TR(M) I<+)N] )
But
[(AM) (IN) + BoyM) gy I N]
= [((AI+ B) M) CR(M) I<+)N] =[(Al +B): 1] M,
and
A M + [BH—)M ‘R(M) [(+)N} =AM + [B : [] +M = (A—l— [B : []) M.
Thus

(AI+B):I|=A+[B:1I],

and this shows that [ is a join principal ideal of R. Suppose now M is a finitely
generated multiplication module. Let A be an ideal of R and K a submodule of
M. Then

[((A(HAM) ([(+)N) + [K : M] (+)K) “R(M) [(+)N}
N = AHAM + [[K : M] + K ‘R(M) [(+)N] .
(A AM) (IeHN) + [K : Ml K) rory To N
= [(A[+ (K : M]) ) (AN + K) gy [<+)N]
=([(AI+[K: M]): I|N[(AN 4+ K) : N]) ) [(AN + K) :p 1].
On the other hand,

A AM + [[K : M) o K poan I<+)N]
= A AM + ([[K : M) : I|N[K : NJ) ) [K a1
= A0 AM + ([K : IM|N[K : N|) ) [K 1]
=AWAM + [K : N [K:y I =(A+[K : N]) o (AM + [K :p 1)) .
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Hence

(Al +[K :M]):I|N[(AN+ K): N =A+[K : NJ,
and

(AN + K) iy I = AM + [K o I].

Since [ is join principal, we have that

A+ [K:N]=[(AI+[K:M]):I|N[(AN + K) : N|

=(A4+[K:IM)N[(AN + K): N].

Since M is finitely generated multiplication, we infer that
(AN + K) : IM|M = [(AN + K) ;I = AM + [K 1y I) = (A4 [K : IM]) M,
and hence

(AN + K) : IM] +annM = A+ [K : IM] 4 annM.

But annM C [(AN + K) : IM] and annM C [K : IM]. Thus [(AN + K) : IM] =
A+ [K : IM]. Tt follows that

(AN + K) : N] C [(AN + K) : IM] = A+ [K : IM],

and this finally gives that [(AN + K) : N| = A+[K : NJ, and N is a join principal
submodule of M. This completes the proof of the theorem. Il

The next two results show how cancellation properties of I+)IM are related to
those of I.

Proposition 10. Let R be a ring, M an R-module and I an ideal of R.

(1) If IeIM is a weak cancellation ideal of R (M) then I is a weak cancellation
ideal of R.

(2) If IHIM s a cancellation ideal of R (M) then I is a cancellation ideal of
R.

(3) If IenIM is a restricted cancellation ideal of R(M) then I is a restricted
cancellation ideal of R. Assuming further that IM # 0 then I is faithful
(and hence cancellation).

(4) If I IM is a join principal ideal of R (M) then I is a join principal ideal
of R.

Proof. (1) Suppose A is an ideal of R. Then
[(A(+)M) (I(+)[M) ‘R(M) [(+)[M] = A M 4+ ann ([(+)[M) .
But

[(A(+>M) (I IM) “R(M) I<+>]M] = [A](+>]M LR(M) ](+)]M} =[Al : I| M,
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and
AwyM 4+ ann ([(+)[M) =AM + (ann[<+) [0 ‘M []) = (A + annI) + M.

Thus [AI : I] = A+ annl, and [ is weak cancellation.

(2) If I+ IM is cancellation, it is faithful weak cancellation. By Lemma 1 and
part (1), I is faithful weak cancellation and hence it is cancellation.

(3) Suppose I+ IM is restricted cancellation. By, [7, Theorem 2.5], I(HIM is
weak cancellation and by (1), I is weak cancellation. Let A be an ideal of R. It
follows by, [7, Theorem 2.5], that either

annl ) [0 :ps I] = ann (I IM) C A+ M,
from which it follows that ann/ C A or
AwyM Cann (I IM) =annl) [0 I].

From the latter case we infer that A C ann/. Hence ann/ is comparable to A, and
by, [7, Theorem 2.5], I is restricted cancellation. Assume now that /M # 0. Then
0 75 (0(+)M) (I(+)]M) = (annI(+>M) (I(+)IM), and hence O(+)M = annI(+>M. It
follows that ann/ = 0, and hence [ is cancellation.

(4) Let I+ IM be join principal. Let A and B be ideals of R. Then

(A M) (IeoIM) + BeoyM) gy IenI M) = AcoyM + [BioyM gy LI M] .
Now,

[((A(HM) (I IM)+ B+yM) “R(M) ](+)]M}

= [(AI + B) &M gy InIM) = [(AI + B) : I] M,
and

A M + [B(+)M LR(M) I(+)]M] =AM + [B: I|»M = (A+ [B:I]) »M.

Hence [(Al + B) : I| = A+ [B : 1], and [ is join principal. O

Theorem 11. Let R be a ring, M a multiplication R-module and R (M) a ho-
mogeneous ring. Let I be an ideal of R.

(1) If M s faithful and I is weak cancellation then I IM is a weak cancellation
ideal of R (M).

(2) If M is faithful and I is cancellation then I+ IM is a cancellation ideal of
R(M).

(3) If M is finitely generated and I is join principal then [+ IM is a join prin-
cipal ideal of R (M).
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Proof. (1) Let A K be an ideal of R (M). Then

[(A(+)K) (LI M) rn ]<+>]M] = [AI<+>]K “R(M) ](+>IM]
=([Al : I|N[IK : IM)) ) [IK :ps 1]
Since AM C K, [Al:1I] C [AIM :IM] C [IK :IM], and hence [Al:1I]N
[IK : IM] = [AI : I] = A+annl. Next, we show that [[K :p; I] = K+ (annl) M.
Obviously, K + (annl) M C [IK :p; I]. Let m € [IK :p I]. Then Im C IK, and
hence I [Rm : MM C I [K : M| M. Hence I [Rm : M]Tr(M) C I [K : M|Tv(M).
As I is weak cancellation, [Rm : M|Tv(M) C [K : M]Tr(M) + annl. Since M is
faithful multiplication, it follows by [10, Theorem 2.6], that
Rm=[Rm: M|M =[Rm: M]Tr(M)M C [K : M| Tr (M) M + (annl) M
= K + (annl) M,
so that m € K + (ann/) M and hence [[K :); I] = K + (ann/) M. This finally
gives that
(A K) (I IM) :gar IenIM] = (A+ annl) ) (K + (annl) M)
= A K +annl ) (annl) M = A K + ann (I I M),

and hence I+ IM is weak cancellation.

(2) Since M is faithful multiplication, [ is faithful if and only if /) /M is faithful.
The result follows by (1) and the fact that every ideal is cancellation if and only
if it is faithful weak cancellation.

(3) Suppose A)K and B)L are ideals of R (M). Then
(A K) (InIM) + B L) :pary LI M|
=((AI+B): I|N[IK+ L) : IM]) ) [(IK 4+ L) :p I].

Since [ is join principal, AM C K and BM C L, we infer that
A+[B:1]=[(Al+B):I|C[(AIM+BM):IM]|C[IK+L):IM].
Since M is finitely generated multiplication, M is weak cancellation, [20, Corollary

2 to Theorem 9]. It follows by [18, Proposition 1.4], that
(UIK+L),I=[IK+L):IM|M=[I[K:M|+[L:M))M:IMM

[(I[K :M]+[L:M]+annM) : I| M

[(I[K :M]+[L:M]):I| M.

As [ is join principal, we get that
(UK+L) =K :-M+I[L:M:I))M=K+[L:IM|M=K+[L:\I.
Hence

(Ao K) (I +IM) + BoL), g, JH)JM} —(A+[B: 1)) o (K + L 1))

=AnK+[B:Ilw[L:uI]=AnK+ ([B:I]N[L:IM]) & [L v I]
= A K + [BL gy InIM],
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as required. This finishes the proof of the theorem. U

A submodule N of an R-module M is called locally join principal if Np is a
join principal submodule of the Rp-module Mp for each maximal ideal P of R.
Suppose N is a finitely generated locally join principal submodule of an R-module
M. Then N is join principal. For let A be an ideal of R, P a maximal ideal of R
and K a submodule of M. Then

[(AN+K)N]P: [(APNP+KP)ZNP] :AP+[KP:NP] == (A+[KN])P

Since P is arbitrary, [(AN + K) : N| = A+[K : N]. We use this fact to give some
conditions under which finitely generated ideals of a homogeneous ring R (M) are
join principal.

Proposition 12. Let R be a ring and M a finitely generated multiplication R-
module. Let R (M) be homogeneous and I+N a finitely generated ideal of R (M).
If I is a join principal ideal of R and N a join principal submodule of M such
that annl + [IM : N| = R then I[+)N is join principal.

Proof.  Since I+)N is finitely generated, it is enough to prove the result locally.
Thus we may assume R (M) is a local ring. Since R = annl + [IM : N], we infer
that

R (M) = [0N :gary IoN] + [T IM g IoN] .

Hence, either I(nwN = 0N or I(nIN = I IM. The result follows by Proposi-
tion 8 and Theorem 11. O

The next result gives some conditions under which the ideal I(+)N (not necessarily
finitely generated) is weak cancellation.

Theorem 13. Let R be a ring, M a finitely generated multiplication R-module
and R (M) a homogeneous ring. Let 1N be an ideal of R(M). If I is a join
principal ideal of R and N a weak cancellation submodule of M such that annl +
[IK : N| = R for each submodule K of M then [+)N is weak cancellation.

Proof. Let AK be an ideal of R (M). We need to show that

(A0 K) (IoN) :rary IoN] = Ao K + ann (InN)
= A K + (ann NannN) +) [0 157 ]
= (A + (ann NannN)) ) (K + [0 :p I]).

Since [ is join principal (and hence weak cancellation) and M is multiplication,
we infer that

[(A(+)K) ([(+)N) ‘R(M) I(+)N} = [AI(+) (AN + [K) ‘R(M) I(+)N}

=([AI: I|N[(AN + IK) : N]) ) [(AN + IK) 5 1]
=((A+annl)N[(AN + IK) : N]) ) [(AN + IK) : IM] M.
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Next, since

R=annl +[IK : N]C[AN : IK]+[IK : AN] C R,
it follows by [4, Corollary 1.2], that

[(AN + IK): N]=[AN : N]+ [IK : N].
But N is weak cancellation. Thus
[((AN+IK):N]=A+[0: N+ [[K:N|=A+[IK :N]|.
Now
R=annl + [IK : N] C[ann[ : [IK : N]| + [[IK : N]: annl],
so that
R=l]ann/ : [IK : N||+ [[/K : N] : ann/].

We obtain from [4, Corollary 1.2], that

(A+annl)N(A+[IK:N])=A+ (annl N[IK : N]).
Again, since R = annl + [ K : N|, we get that

ann/ N [[K : N] = (annl) [IK : NJC[0: [K][IK : N] C[0: N] = annN.

But ann/ N[I/K : N] C ann/. Thus

ann/ N[IK : N] Cannl NannN C annl N[IK : NJ,
so that ann/ N [/K : N| = ann/ Nann/N, and hence

(A+annl) N[(AN + IK) : N] = A+ (ann/ NannN).
On the other hand,

(AN + IK): IM] M = [AN : IM] M + [IK : IM] M.
Since

R =annl + [IK : N] Cannl + [IM : N| C R,

we get that

[AN : IM] = [AN : IM]annl + [AN : IM]|[IM : N]
Canmn/ +[AN:N|C[0: IM]+A+[0: N|=A+1[0:IM].

It follows that

[AN : IM]M = AM +[0: IM]M C K +10 3 1].
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Finally, since M is finitely generated multiplication (hence weak cancellation) and
I is join principal, we infer from [18, Proposition 1.4] that

[[K : IM]M = [I[K : M]M : IM|M = [(I[K : M]+ annM) : I] M
= ([K:M]+[annM : [)) M C[K : M]M +[0: IM]M =K + [0 1].

Hence [(AN + IK) :py I} € K 4 [0 :ps I]. This shows that
(A0 K) (IoN) :goy IoN] € (A K) + ann (1o N) .

The reverse inclusion is always true, and hence [N is weak cancellation. This
completes the proof of the theorem. O

3. Large and small submodules

A submodule N of an R-module M is said to be large in M if for all submodules
K of M, KN N = 0 implies that K = 0. Dually, N is small in M if for all
submodules K of M, K + N = M implies that K = M. If I is a faithful ideal of
a ring R then [ is large. In particular, every non-zero ideal of an integral domain
R is large. If N is a faithful submodule of a multiplication R-module M then N
is large in M, [1]. For all submodules K and N of M with K C N, if K is large
in M then so too is N and if N is small in M then so too is K. For properties
of large and small modules, see [15]. The next theorem gives some properties of
idealization of large and small modules.

Theorem 14. Let R be a ring and M an R-module. Let I be an ideal of R and
N a submodule of M.

(1) O0e»M is a small ideal of R(M) and, in particular, Oc-)N is a small ideal
of R(M). If M is faithful then O0M is a large ideal of R (M) and, in
particular, [+ M is a large ideal of R(M).

(2) If 0N is a large ideal of R (M) then N is large in M, and the converse is

true if M s faithful.

If I is a small ideal of R then I+ M is a small ideal of R (M).

I is a small ideal of R if and only if I IM is a small ideal of R (M).

If IM is a small ideal of R (M) then I is a small ideal of R.

Let M be faithful multiplication. Then I is a large ideal of R if and only if
I IM is a large ideal of R (M).

N TN N TN
IS
S~— N N N

Proof. (1) Let H be an ideal of R (M) such that H + 0+ M = R(M). Then
(0cHM) H = 0chM. Hence 0cyM C H and hence H + 0 M = H. It follows that
H = R(M) and 0»M is a small ideal of R(M). As 0N C 0 M, 0N is a
small ideal of R (M). Suppose now M is faithful and suppose H an ideal of R (M)
such that H N 0M = 0. Then H (0 M) = 0, and hence H C ann (0HM) =
OyM. This implies that 0 = H N0yM = H, and hence 0+)M is a large ideal of
R(M). Since 0cnyM C IyM, I+)M is a large ideal of R (M).
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(2) Let 0N be a large ideal of R (M). Let K be a submodule of M such that
KNN =0. Then 0K NO»HN = 0(K NN) = 0. Hence 0K = 0, and
hence K = 0. This implies that N is large in M. Conversely, suppose H is an
ideal of R (M) such that H N 0N = 0. Then (H N0+ M) N 0N = 0. Assume
HNOwM = 0K for some submodule K of M. Then 0 = 0(KNN) =
0K NO+N, and hence K NN = 0. Since N is large in M, K = 0, and hence
0=0+K =HNOwM. As M is faithful, we obtain by (1) that 0+ M is large
and hence H = 0. This shows that 0N is a large ideal of R (M).

(3) Suppose I is a small ideal of R and H an ideal of R (M) such that H+ 1M =
R(M). Then H+0M+I1+ M = R(M). Let H+0+M = J)M for some ideal
J of R. Then (J + I)swM = R (M), and hence J+ I = R. It follows that J = R,
and hence H + 0 M = R(M). As 0 M is a small ideal of R(M), H= R (M)
and I M is a small ideal of R (M).

(4) Let I be a small ideal of R. By (3), I~ M is a small ideal of R(M) and hence
I+)I M is a small ideal of R (M). Conversely, let [+ M be a small ideal of R (M).
Let J be an ideal of R such that J+ I = R. Then J+M + I IM = R(M).
Hence J+yM = R (M) and hence J = R. This shows that I is a small ideal of R.

(5) If I(+)M is a small ideal of R (M) then so too is I(+)I M. The result follows by

(4)

(6) Suppose M is faithful and multiplication. Let I+ IM be a large ideal of
R(M). Let J be an ideal of R such that J NI = 0. It follows by [12, Corollary
1.7], that 0 = (JNI)M = JM N IM, and hence

0= (Jﬂ[)u-)(JMﬂIM) = (J(+)JM)ﬂ([(+)IM).

It follows that J+)JM = 0, and hence J = 0. This implies that I is a large ideal
of R. Conversely, suppose [ is large and suppose H an ideal of R (M) such that
HnNIwIM = 0. Hence HNOwM N IwIM = 0. Suppose HNOM = 0K
for some submodule K of M. Tt follows that O (K NIM) = 0K N IHIM =
0. Hence K N IM = 0. Since M is faithful multiplication, we infer, from [12,
Corollary 1.7], that ([K : M]NI)M = 0, and hence [K : M|NI = 0. As [ is
large, we obtain that [K : M] = 0, and hence K = [K : M| M = 0. This gives
that H N 0yM = 0K = 0. Finally, since 0 M is large, H = 0, and hence
I IM is alarge ideal of R (M). This finishes the proof of the theorem. O

The socle of an R-module M, socM, is the intersection of all large submodules of
M, while the Jacobson radical of M, J (M), is the sum of all small submodules of
M, [15]. The next corollary shows that the socle but not Jacobson radical behaves
well with respect to idealization.

Corollary 15. Let R be a ring and N a submodule of an R-module M.
(1) J(O M) =0+M.
(2) If M is faithful then soc (0 M) = OsocM.
(3) If M is faithful and multiplication then soc (0 M) = (0 M)soc (0 M).
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Proof. (1) Follows by Theorem 14(1).

(2) By Theorem 14(1), the large submodules of O¢)M are exactly those of the
form O+)N where N is large in M. Hence the result follows.

(3) By [5, Corollary 1.4] and [8, Theorem 3.2, socM = 6 (M)socM. Hence,
soc (0 M) = 0ysocM = 0 (M) socM = (0 (M) M) (0nsocM) = 0 (0 M)
soc (0eHM). O

Let R =7%Z and M = Z4. Then J (0nM) = 0+ Z4 while OnJ (M) = 0+)2Z4.
Hence J (0M) # 0y J (M).
An R-module M is called finitely cogenerated if for every non-empty collection

of submodules Ny (A € A) of M with [ N, = 0, there exists a finite subset A’
AEA
of A such that [ Ny = 0. M is called uniform if the intersection of any two
AN
non-zero submodules of M is non-zero, and M has finite uniform dimension if it

does not contain an infinite direct sum of non-zero submodules, [15]. The next
result gives some properties of idealization of finitely cogenerated and uniform
modules.

Proposition 16. Let R be a ring and M an R-module. Let I be an ideal of R
and N a submodule of M.

(1) N is finitely cogenerated if and only if 0N is a finitely cogenerated ideal
of R(M).

(2) N is uniform if and only if 0y N is a uniform ideal of R (M).

(3) N has finite uniform dimension if and only if 0N has finite uniform di-
mension.

(4) If M s faithful multiplication and I+ 1M is finitely cogenerated then so too
15 1.

(5) If M is faithful multiplication and I IM is uniform then so too is I.

(6) If M is faithful multiplication and I+ IM has finite uniform dimension then
so too has I.

Proof. (1) Suppose 0N is finitely cogenerated. Let Ny (A € A) be a non-empty

collection of submodules of N such that (| Ny = 0. Then 0 = O[] Ny =
AEA AEA

() 0+ Ny, and hence there exists a finite subset A’ of A such that [ 0Ny = 0.
AeA AeA
Hence O+ [ Ny = 0, and hence (] N, = 0. This implies that N is finitely

AEA Y
cogenerated. The converse is now clear since every submodule of 0+)/N has the

form 0+ K for some submodule K of N.
(2) Follows by (1).

(3) Suppose 0N has finite uniform dimension. If N contains a direct sum of

submodules Ny (A € A) then Y 0 N, is direct, and hence all but a finite number
AEA
of ideals 0Ny is zero. If OcnpN, = 0, then Ny = 0 and N has finite uniform

dimension. The converse is routine.
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(4) Let I(+)I M be finitely cogenerated. Let I (A € A) be a non-empty collection of
ideals of R contained in I such that () I, = 0. Since M is faithful multiplication,
AeA

we infer from [12, Corollary 1.7], that (| LM = <ﬂ ]A) M = 0, and hence
AEA AEA

() IxoIhyM = 0. It follows that there exists a finite subset A’ of A such that

AEA

() LuoIhyM =0. Hence () I, =0, and [ is finitely cogenerated.

AEN AEA!

(5) Follows by (4).

(6) Suppose I+ IM has finite uniform dimension. If I contains a direct sum of

subideals I (A € A) then > Iy I\ M is direct and hence all but a finite number
AEA
of the ideals I\I\M is zero. If IyIyM = 0, then I, = 0 and [ has finite

uniform dimension. O

For all submodules K and N of an R-module M with K C N, if N is finitely
cogenerated (resp. uniform, has finite uniform dimension) then so too is (has)
K. The following result shows how large, small, finitely cogenerated and uniform
properties of a homogeneous ideal I(+)/N are related to those of I and N.

Proposition 17. Let R be a ring and M an R-module. Let I+ N be a homoge-
neous ideal of R (M).

(1) If IHN is large then N is large in M. The converse is true if M is faithful.

(2) If M is faithful multiplication and I is a large ideal of R then I+ N is large.

(3) I+)N is small if and only if I is a small ideal of R.

(4) If M is finitely generated faithful and N is small in M then I+)N is small.

(5) If I+)N is finitely cogenerated (resp. uniform, has finite uniform dimension)
then so too is (has) N.

(6) Assuming further to the assumption of (5) that M is faithful multiplication
then I is finitely cogenerated (resp. uniform, has finite uniform dimension).

Proof. (1) Suppose I+)N is large. Let K be a submodule of M such that
KNN =0. Then (0nK)N (I(+»N) = 0. Hence O+ K = 0 and hence K = 0.
This shows that N is large in M. Assume M is faithful and N is large in M. By
Theorem 14 (2), 0N is a large ideal of R (M) and hence I+)N is large.

(2) Suppose M is faithful multiplication and [ is a large ideal of R. By Theorem
14 (4), IvIM is a large ideal of R (M) and hence I(+)N is large. Alternatively,
since M is faithful and multiplication, IM is large in M. Since IM C N, N is
large in M. Hence O+)N is large and therefore [N is large.

(3) Let I+»N be small. Let J be an ideal of R such that J + I = R. Then
JoyM + I+hN = R(M). Hence J\M = R (M), and hence J = R. This implies
that [ is a small ideal of R. Conversely, if I is a small ideal of R, it follows by
Theorem 14 (3) that I+ M is a small ideal of R (M). Hence I(+)N is small.
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(4) Let M be finitely generated faithful and N small in M. Let H be an ideal of
R (M) such that H + I N = R(M). Then

H((0M)+0IM = (H+ I[+)N) (0 M) = 0 M.

Let H (0cyM) = 0K for some submodule K of M. Then 0 (K + IM) = 0y M
and hence K + IM = M. Since IM C N, K+ N = M, and hence K = M.
This implies that H (0)M) = 0+ M. As M is finitely generated and faithful, it
follows that Oc+)M is finitely generated and ann(0)M) = 0+ M, see [7, Theorem
3.1] and Lemma 1. By [14, Theorem 76|, we obtain that R (M) = H + 0+ M.
But 0+ M is a small ideal of R (M). Thus H = R (M), and I(+)N is a small ideal
of R(M).

(5) and (6) follow by Proposition 16, Theorem 14 and the remarks made before
the proposition. U

We close by the following result which gives conditions under which the converse
of parts (5) and (6) of Proposition 17 is true.

Proposition 18. Let R be a ring, M a faithful multiplication R-module and
R (M) a homogeneous ring. Let I+ N be an ideal of R (M).

(1) If N is a finitely cogenerated submodule of M then I+ N is finitely cogener-
ated.
(2) If N is a uniform submodule of M then [N is uniform.

(3) If N has finite uniform dimension then so too has I+)N.

Proof. IM C N. If N is finitely cogenerated (resp. uniform, has finite uniform
dimension) then so too is (has) IM. Since M is faithful multiplication, it is easily
verified that [ is finitely cogenerated (resp. uniform, has finite uniform dimension).

(1) Let Jxt K (A € A) be a non-empty collection of ideals of R (M) contained in
I»)N such that (| Jys Ky =0. Then (| Jy=0and [ K\ = 0. It follows that

AEA AEA AEA
there exist finite subsets A" and A” of A such that () Jy =0and [ K, =0.
AEA AEA”
Without loss of generality we may assume that A’ C A”. Then () Jy+K, =0,

AeN
and hence [N is finitely cogenerated.

(2) Follows by (1).

(3) If I(+»N contains a direct sum of subideals Jy+) K, (A € A) then > J, and
AEA

> K, are direct. Hence all but a finite number of each of J, and K is zero.

AEA

If J, =0 and Ky, = 0 then Jy+ K, = 0 and hence I(»H/N has finite uniform

dimension. O
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