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Abstract. Motivated by previous work on deformation theory of
higher order theta-characteristics, we introduce a weighted Gaussian
map γa,b(X, L), where a, b are positive integers, X is a smooth pro-
jective variety, L is a line bundle on X and γ1,1(X, L) is the ordinary
Gaussian map for (X,L). We establish a sharp lower bound on its rank
and we investigate the extremal cases for curves.
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1. Introduction

We work over an algebraically closed field K of characteristic zero.
Let X be a smooth projective variety and let L be a line bundle on X. Fix

integers a > 0, b > 0, and set M := L⊗a, N := L⊗b. We introduce a weighted
Gaussian map as follows:

γa,b(X, L) : H0(X, M)⊗H0(X, N) −→ H0(Ω1
X ⊗M ⊗N)

σ ⊗ τ 7−→ bτdσ − aσdτ (1)

It is easy to check that such a definition is well-posed (see Lemma 1). If a = b = 1
we recover the usual Gaussian map (see for instance the survey paper [8]). From
now on, we are going to assume 0 < a < b and X = C a smooth and connected
projective curve. The case a = 1, b = 2m − 1 is also geometrically meaningful
according to the following result (see [4], Theorem 3):
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Theorem 1. Set Thr
g,m = {C : C is a smooth curve of genus g with a line bundle

L̃ such that h0(C, L̃) = r + 1 and 2mL̃ = K}. Define

µ̃ : H0(C, L̃)⊗H0(C, K − L̃) −→ H0(C, 2K)

σ ⊗ τ 7−→ (2m− 1)σdτ − τdσ.

Then TC

(
Thr

g,m

)
= (Cokerµ̃)∗.

Here instead we address the general case, by drawing our inspiration from the
classical works [5] by Giuseppe Gherardelli and [7] by Beniamino Segre (see also
[2], Proposition (1.2) and Theorem (1.3), for a useful modern translation, and [1],
Proposition 1 and Theorem 1, for a completely different generalization). First of
all, we obtain a lower bound on the rank of γa,b(C, L) as follows:

Proposition 1. Fix integers 0 < a < b, a smooth and connected projective curve
C, a line bundle L on C and define M := L⊗a, N := L⊗b, s := h0(C, M) − 1,
t := h0(C, N)− 1. Then

rankγa,b(C, L) ≥ s + t− 1. (2)

Moreover, if bs− at 6= 0, then strict inequality holds in (2).

It turns out that our estimate is sharp (see Example 1) and that extremal cases
are sporadic (see Remark 1). More precisely, the following holds:

Proposition 2. In the notation of Proposition 1, assume that b
a
∈ Z. Then

γa,b(C, L) has minimal rank s + t − 1 if and only if the image of C under the
morphism defined by M (resp., by N) after removing any base point is a rational
normal curve.

This research is part of the T.A.S.C.A. project of I.N.d.A.M., supported by P.A.T.
(Trento) and M.I.U.R. (Italy).

2. The results

Lemma 1. The weighted Gaussian map (1) is well-defined.

Proof. Just notice that

d

(
σb

τa

)
=

τadσb − σbdτa

τ 2a
=

τabσb−1dσ − σbaτa−1dτ

τ 2a
=

=
σb−1

τa+1
(bτdσ − aσdτ).

Hence we have

γa,b(X, L)(σ ⊗ τ) =
τa+1

σb−1
d

(
σb

τa

)
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where σb

τa is a rational function on X.

Proof of Proposition 1. Let p ∈ C be a general point, so that the vanishing
sequence of H0(C, M) (resp., of H0(C, N)) at p is the standard one (0, 1, . . . , s)
(resp., (0, 1, . . . , t)). Choose bases (v0, . . . , vs) of H0(C, M) and (w0, . . . , wt) of
H0(C, N) which realize the above vanishing sequence. Therefore if z is a local
parameter at p we have local descriptions vi = zi + higher, wj = zj + higher and

γa,b(C, L)(vi ⊗ wj) = bzjdzi − azidzj = bzjizi−1dz − azijzj−1dz =

= (bi− aj)zi+j−1dz

up to higher order terms. As a consequence, the rank of γa,b(C, L) is at least the
cardinality of the set

Sa,b := {i + j : 0 ≤ i ≤ s, 0 ≤ j ≤ t, bi− aj 6= 0}.

We claim that
{1, 2, . . . , s + t− 1} ⊆ Sa,b,

hence (2) follows. Indeed, for 1 ≤ n ≤ t we have n = 0 + n and b0 − an 6= 0; if
instead t+1 ≤ n ≤ s+ t−1, we have n = r+ t = s+(t−s+r) with 1 ≤ r ≤ s−1.
Assume by contradiction that both br − at = 0 and bs − a(t − s + r) = 0. By
subtracting we obtain b(s − r) + a(s − r) = 0, hence b + a = 0, contradiction.
Finally, if bs− at 6= 0, then also s + t ∈ Sa,b and γa,b(C, L) > s + t− 1.

We stress that the assumption bs − at 6= 0 cannot be removed from the second
part of Proposition 1:

Example 1. In the notation of Proposition 1, let C = P1. If deg(L) = d, then
L = OP1(d) and the image of γa,b(P1, d) is a non-zero SL(2)-invariant linear sub-
space of H0(P1,OP1(ad + bd − 2)). It follows that γa,b(P1, d) is surjective with
rankγa,b(P1, d) = h0(P1,OP1(ad + bd− 2)) = ad + bd− 1 = s + t− 1.

We also point out that almost all extremal cases arise as in Example 1:

Remark 1. In the notation of Proposition 1, if bs−at = 0 and both M and N are
non-special, then we have g(C) = 0 and C = P1. Indeed, from the Riemann-Roch
Theorem we obtain s = ad − g and t = bd − g, where d = deg(L). Hence from
bs− at = 0 we deduce ag = bg and g = 0, as claimed.

Proof of Proposition 2. The “if” part is a direct consequence of Example 1.
Conversely, let b = ma with m ∈ Z. From Proposition 1 it follows that at = bs.
On the other hand, by the Hopf Theorem and its refinements (see for instance [3]
and [6]) we have:

t = h0(C, L⊗b)− 1 = h0(C, L⊗ma)− 1 ≥ h0(C, L⊗(m−1)a) +

+h0(C, La)− 2 ≥ mh0(C, La)−m = m(h0(C, La)− 1) =
b

a
s
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and equality holds if and only if there is a morphism f : C → P1 such that
f ∗(O1

P(k)) = L⊗a(−B) and f ∗H0(P1,O1
P(k)) = H0(C, L⊗a(−B)), where B denotes

the base locus of L⊗a and k := a deg(L)−deg(B)
deg(f)

, and the same holds for L⊗b.
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