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Abstract. In this article we obtain optimal estimates for the eigenval-
ues of a natural operator Kp4 for locally strongly convex centro-affine
and graph hypersurfaces. Several immediate applications of our eigen-
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1. Introduction

Throughout this article we assume n > 2. An immersed hypersurface f : M —
R™*! in an affine (n + 1)-space R™*! is called an affine hypersurface with relative
normalization if there is a transversal vector field £ such that D¢ has its image in
f«(T,M), where D is the canonical flat connection on R™**.

A hypersurface f: M — R"™! is called centro-affine if its position vector field is
always transversal to f.(T'M) in R™". In this case, for any vector fields X,Y
tangent to M, one can decompose Dx f.(Y') into its tangential and transverse
components. This is written as

where h' is a symmetric tensor of type (0,2) and & = f.
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Throughout this article, we assume that h' is definite, so A/ defines a semi-
Riemannian metric on M. In order to consider only a positive definite metric
we now make the following changes: if h' is negative definite, we introduce a
transversal vector field ¢ = —f and a (0, 2)-tensor given by h = —h/.

It is well-known that the centro-affine metric h is definite if and only if the
hypersurface is locally strongly convex. For this the following terminology is used:

(i) The centro-affine hypersurface M is said to be of elliptic type if, for any
point f(p) € R™™ with p € M, the origin of R"™! and the hypersurface
are on the same side of the tangent hyperplane f,(7,M); in this case the
centro-affine normal vector field is given by £ = —f.

(ii) The centro-affine hypersurface M is said to be of hyperbolic type if, for any
point f(p) € R™, the origin of R"™ and the hypersurface are on the
different side of the tangent hyperplane f.(7,M); in this case the centro-
affine normal vector field is given by & = f.

An affine hypersurface f : M — R"*! is called a graph hypersurface if we choose
as affine transversal field a constant vector field. For a graph hypersurface we also
have the decomposition (1.1) as well. Again in case that h is non-degenerate, it
defines a semi-Riemannian metric, called the Calabi metric of the graph hyper-
surface.

Let V denote the Levi-Civita connection of h and let K be the difference tensor
V —V on M. Then, for each X € T,M, Kx :Y — K(X,Y) is an endomorphism
of T,M. By taking the trace of K, one obtains a so-called Tchebychev form

T(X) = %traee{Y — K(X,Y)}. (1.2)

The Tchebychev vector field T# can then be defined by
h(T#,X) = T(X). (1.3)

The Tchebychev form and Tchebychev vector field play an important role in
centro-affine differential geometry.
For each integer k € [2, n], we define an invariant 0), on the affine hypersurface
M in the same way as in [1] (see Section 3 for details).
The main results of this article are the following optimal estimates for the
eigenvalues of the operator Kpx:
(I)  For a locally strongly convex centro-affine hypersurface M in R"*! we have:
(I-a) If 0y, # ¢ at a point p € M, then every eigenvalue of the operator
Kp4 at p is greater than (”T_l)(s — ék(p))
(I-b) If 0, = ¢ at a point p, every eigenvalue of Kp# at p is > 0, where
e =1 or —1 according to M is of elliptic or hyperbolic type.
(IT) For a graph hypersurface M in R""! we have:
(II-a) If 0, # 0 at a point p € M, every eigenvalue of the operator K+ at
p is greater than (1=2)0,(p).

(II-b) If 0, = 0 at a point p € M, every eigenvalue of Kp# at p is > 0.
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The proofs of the main results base on the equation of Gauss using the same idea
introduced in earlier author’s articles [1, 2]. This is done in Section 4. Several
immediate applications of our eigenvalue estimates of the operator K;4 are given
in Section 5. In the last two sections, we provide some non-trivial examples to
illustrate that our eigenvalue estimates are optimal for both centro-affine and
graph hypersurfaces.

2. Preliminaries

We recall some basic facts about centro-affine and graph hypersurfaces. For the
details, see [3, 4, b, 6].

Let f : M — R"™"! be a centro-affine hypersurface with centro-affine normal
&, We assume that the centro-affine hypersurface is definite. As we already
mentioned earlier, the centro-affine normal on the hypersurface is chosen in such
way that the metric h is positive definite.

The centro-affine structure equations are given by

X)

where Dx& = — f.(X) or Dx& = f.(X) according to £ = — f or £ = f respectively.
The corresponding equations of Gauss and Codazzi are given respectively by

VxY) +h(X,Y)E,

—
[N
~— —

R(X,Y)Z =h(Y,Z)X — h(X, 2)Y, (2.3)

(Vxh)(Y,Z) = (Vyh)(X, Z). (2.4)

The cubic form is the totally symmetric (0, 3)-tensor field C'(X,Y,Z) = (Vxh)
Y, z). .

Let V, K and R denote the Levi-Civita connection, the sectional curvature

and the curvature tensor of h, respectively. The difference tensor K is then given
by

KxY = K(X,Y)=VxY —VyY, (2.5)

which is a symmetric (1,2)-tensor field. The difference tensor K and the cubic
form C' are related by

C(X,Y,Z) = —2n(KxY, Z). (2.6)

It is well-known that for centro-affine hypersurfaces we have

h(KxY,Z)=hY,KxZ), (2.7)
R(X,Y)Z = KyKxZ — KxKyZ +e(h(Y, Z)X — h(X, Z)Y), (2.8)
(VK)(X,Y,Z) = (VE)(Y, Z, X) = (VK)(Z,X,Y), (2.9)

where ¢ = 1 if M is of elliptic type and ¢ = —1 if M is of hyperbolic type. It
follows from (2.7) that the endomorphism K is self-adjoint with respect to h.
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When f : M — R""! is a graph hypersurface, we have (1.1), (2.1), (2.4), (2.5),
(2.6), (2.7) and (2.9) as well. However, (2.2), (2.3) and (2.8) shall be replaced by

Dx¢ =R(X,Y)Z =0, (2.10)

~

R(X,Y)Z = KyKxZ — KxKyZ. (2.11)

3. Invariant 6, and relative K-null space

Let M be a centro-affine or graph hypersurface with positive definite metric h.
Denote by K (m) the sectional curvature of a 2-plane section = C T, M relative to
h. The scalar curvature 7 at p is then defined by

7(p) = Z Ky, (3.1)

1<i<j<n

where Kij = [A((e,- Ne;)and eq,... e, is an h-orthonormal basis of T,M.
Assume that L* is a k-plane section of T,M and X a unit vector in L* with

respect to h. We choose an h-orthonormal basis {e, ... , e} of LF with ¢; = X.

Then the k-Ricci curvature Spe(X) and the scalar curvature 7(L*) are defined
respectively by

Spn(X) = Kig+ - + Ky, (3.2)
7(L*) = Z Kij. (3.3)
1<i<j<k

Obviously, Sp2 and 7(L?) are nothing but the sectional curvature K(L?). And
Spn and 7(L") are the Ricci and scalar curvatures relative to h.
For each integer k € [2,n], we define the invariant 6, on M by (cf. [1, 2])

0u) = (7 ) s S (X, pe T (3.4

k—l Lk,X

where L* runs over all linear k-subspaces in the tangent space T,M at p and X
runs over all h-unit vectors in L*.
The relative K-null space NJ* of M in R"*! is defined by

NE = {X eT,M: K(X,Y)=0forall Y € T,M}. (3.5)

When dimNpK is constant, N'& = U,e MNpK defines a subbundle of the tangent
bundle, called the relative K-null subbundle.

4. Optimal estimates for eigenvalues of the operator

For centro-affine hypersurface in R"*! we have the following result.

Theorem 4.1. Let f: M — R"! be a locally strongly convex centro-affine hy-
persurface in R™. Then, for any integer k € [2,n], we have:
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(1) If 0y, # € at a point p € M, then every eigenvalue of Kr# at p is greater
than ("=1) (e — 6x(p)).

(2) If ék(p) = ¢, every eigenvalue of Kpy at p is > 0.

(3) A nonzero vector X € T,M is an eigenvector of the operator Kr# with
eigenvalue (1) (e — 0r(p)) if and only if Ox(p) = e and X lies in the
relative K-null space /\/;)K at p,

where e =1 or —1 according to M s of elliptic or hyperbolic type.

Proof. Assume that f : M — R"™! is a locally strongly convex centro-affine
hypersurface in R"**. Let {e;,...,e,} be an arbitrary h-orthonormal basis of
T,M. From the definition of Tchebychev vector field, (2.8) and (3.1) we have

27 = n(n — 1)e + h(K, K) — n?h(T#, T%). (4.1)
It is well-known that every endomorphism A of T}, M satisfies
nh(A, A) > (trace A)?, (4.2)

with equality holding if and only if A is proportional to the identity map I. By
applying (4.1) and (4.2), we obtain

27 > n(n — 1)e — n(n — 1)h(T#, T#) (4.3)

with the equality holding at p if and only if we have
(a) Kp# is proportional to the identity map and
(b) Kz =0 for Z perpendicular to T# at p.

Let L;,..;, be the k-plane section spanned by the orthonormal vectors e;,,... ,e;
It follows from (3.2) and (3.3) that

e

. 1 N
T<Li1"'ik):§ > S (e, (4.4)

1€{i1,... ik }

pp) = B2 S ), (4.5)

(n —2)! 1<i < <ip<n
By combining (3.4), (4.4) and (4.5) we find

@ék. (4.6)

T <
Thus (4.3) and (4.6) ensure that
MT#, T#) > & — 6. (4.7)

Hence the Tchebychev vector field T# vanishes at a point p only when 0, (p) > e.
Therefore, if T#(p) = 0, statements (1) and (2) of Theorem 4.1 hold automatically.
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Next, let us assume that T#(p) # 0. Since Ky is self-adjoint with respect to

h, we may choose an h-orthonormal basis ey, ... ,e, of T,M which diagonalizes
the operator K «. Let e be the h-unit vector at p in the direction of T# and let
us choose h-orthonormal vectors €3,... e’ at p perpendicular to T#. Then we
have
aq 0 0
0 (05} 0
K. = S (4.8)
0O 0 ... a,

and trace (K.:) =0 forr=2,... ,n.
Let us put K7; = h(K(e;€;),e;). Then (2.8) implies that

Kj=c—aa;+Y (K5 =Y KJKj, 1<i#j<n.  (49)
r=2 r=2

Now, by applying the same argument as the proof of Theorem 1 of [1], we obtain
ar(ar + - +ay) > (n—1)(e = O(p)) + a2 > (n— 1) (e — Ox(p)), (4.10)

with both equality holding if and only if we have Sz (e;) = 0,(p) and a; = K ;=0
forr=2,...,n; 5 =2,...,n. The same inequality holds if the lower index 1 in
(4.10) were replaced by any j € {2,...,n}. Hence, we have

—1
Ky > 2

(= = Ok(p)1. (4.11)

If KppX = 21(e - ék(p))X holds for some nonzero vector X &€ T,M, then X
is an eigenvector of Kp# with eigenvalue (n — 1)(e — ék(p)) /n. Without loss of
generality, we may choose e; = X/1/h(X, X). In this case we get

ar(ar + -+ ay) = (n—1)(e — Ou(p)). (4.12)

On the other hand, from (4.10) and (4.12), we find a; = 0 and 6,(p) = . More-
over, we know from (4.10) that e; lies in the relative K-null space NpK . Conse-
quently, we obtain statements (1) and (2) of Theorem 4.1 and also one part of
statement (3). The remaining part of statement (3) is obvious. O

For graph hypersurfaces we have the following.

Theorem 4.2. Let f: M — R"™ be a graph hypersurface in R™ ! with positive
definite Calabi metric. Then, for any integer k € [2,n|, we have:
(1) If 0, # 0 at a point p € M, then every eigenvalue of Kps at p is greater
than (1=2) 01 (p).

(2) If 0, =0 at p, then every eigenvalue of Kpx at p is > 0.
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(3) A nonzero vector X € T,M is an eigenvector of the operator Krpu with
eigenvalue (1_7") 0, (p) if and only if we have O,(p) =0 and X € A/;UK.

Proof. For graph hypersurfaces in R**! we have

N

R(X,Y)Z = KyKxZ — KxKy Z. (4.13)

Thus, by applying the same argument given in Theorem 4.1, we obtain Theorem
4.2. O

5. Some applications

When k = 2, statement (1) of Theorem 4.1 implies immediately the following.

Corollary 5.1. Let f : M - R"! be a locally strongly convex centro-affine
hypersurface in R"™L. If sup K # ¢ at a point p € M, then every eigenvalue of
the operator K4 at p is greater than (”771) (e —sup K(p)).

Similarly, if we denote by sup S(p) the supremum of the Ricci curvature of (M, h)
at a point p € M, then statement (1) of Theorem 4.1 with £ = n implies imme-
diately the following.

Corollary 5.2. Let f : M — R" be a locally strongly convex centro-affine
hypersurface in R, If sup S # € at a point p € M, then every eigenvalue of

n—1

the operator Kr4 at p is greater than (T) (e — sup g(p))
From Theorem 4.1 we also obtain the following.

Corollary 5.3. Let f : M — Ri”rl be a locally strongly convexr centro-affine
hypersurface in R" ™. If we have ), < € on M for some integer k € [2,n|, then
every eigenvalue of Kry is positive.

Theorem 4.1 also gives rise to the following simple geometric characterization of
hyper-ellipsoids and two-sheeted hyperboloids.

Corollary 5.4. An elliptic centro-affine hypersurface M in R"*! is centroaffinely
equivalent to an open portion of a hyperellipsoid if and only if we have nKps =
(n—1)(1 —0) on M for some integer k € [2,n].

Proof. Let f : M — R™! be an elliptic centro-affine hypersurface in R"!,
If M is an open portion of a hyperellipsoid, then K vanishes identically which
implies that K74 = 0. Hence, according to (2.10), (M, h) is of constant curvature
one. Therefore we obtain 6y = - = 6, = 1. Consequently, we have nKp4+ =
(n —1)(1 — 6;)1 identically.

Conversely, let us assume that nKr+ = (n — 1)(1 — ;)1 holds identically for
some integer k € [2,n], then statement (3) of Theorem 4.1 implies that every
tangent vector of M lies in the relative K-null subbundle. In this case K vanishes
identically on M. Consequently, by applying a theorem of Berwald [6, Section
7.1.1], we conclude that M is centroaffinely equivalent to an open portion of a
hyper-ellipsoid centered at the origin. O]
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Corollary 5.5. A hyperbolic centro-affine hypersurface M in R™' is centroaffin-
ely equivalent to an open portion of a two-sheeted hyperboloid if and only if, for
some integer k € [2,n], we have nKp# = (1 —n)(1 + 60)I identically on M.

Proof. This can be done in the same way as Corollary 5.4. n

Similarly Theorem 4.2 implies the following.

Corollary 5.6. Let f: M — R be a graph hypersurface with positive definite
Calabi metric. If we have either sup K #0 or supé' # 0 at a point p € M, then
every eigenvalue of the operator K+ is greater than (1’7") sup K at p.
Corollary 5.7. Let f: M — R be a graph hypersurface with positive definite
Calabi metric. If there exists an integer k € [2,n| such that 0, < 0 holds on M,
then every eigenvalue of Kr# is positive.

From Corollaries 5.3 and 5.7 we obtain the following.

Corollary 5.8. Let M be a Riemannian n-manifold. If there exists an integer
k € [2,n] such that Ox(p) < 1 at some point p € M, then M cannot be realized as
an elliptic proper affine hypersphere in R"*L.

Corollary 5.9. Let M be a Riemannian n-manifold. If there exists an integer
k € [2,n] such that Ox(p) < —1 at some point p € M, then M cannot be realized
as a hyperbolic proper affine hypersphere in R*1.

Corollary 5.10. Let M be a Riemannian n-manifold. If there exists an integer
k € [2,n] such that Ox(p) < 0 at some point p € M, then M cannot be realized as
an improper affine hypersphere in R"*1.

6. Some examples of centro-affine hypersurfaces

In this section we provide some examples of locally strongly convex centro-affine
hypersurfaces. From these examples we know that the eigenvalue estimates given
in Theorem 4.1 are best possible.

Example 6.1. Let M be the elliptic locally strongly convex centro-affine hyper-
surface defined by:

n—1 n
e (e(bl_b)s, sin(azs), ... ,sin(ax,) H cos(ax;), H COS(CL.I‘j)) , (6.1)
j=2

Jj=2

with a = v/1 — b2, b € (0,1). Then the affine metric h on M is

n—1
h = ds® + dxj + cos®(axs)drs + - - - + H cos®(az;)dx?. (6.2)

Jj=2
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The Levi-Civita connection of h satisfies

. 0 . 0 A 0
Va jos e = Va/asa—xk = Va/aagga—x2 =0,

. 0 0 o
Va/axia—% = —atan(ax;) 8_.:1:]-’ 2 <i<j, (6.3)
< 9 jzi sin(2axy,) ﬁ 2(0m) 0 5 "
d/0x; axj =a —2 cos (ax; 8.iljk7 J=9,...,MN.
k=2 I=k+1

It follows from (6.1) and (6.2) that Ky; = 0 and K, = a® for 2 < j # k < n.
Hence we have

6, = (Z:i) (1 - b?). (6.4)

On the other hand, from (6.1) and a straight-forward computation, we find

0 1\ 0 0 0
Vojos5- = (b+ —> 5s Volosg — =bo

b) Os T ox;’
Vom0 — —atan(az;) 2, 2<i<j<
0/ e atan(aw; oo 25 i <j<n, (6.5)
0 — 0 I sin(2axy,) 0
_ 2 k)
Vajou, o, - b iIZQI oS (axl + a E ( l |k+| 1cos (az ) pn

for j =2,...,n. By applying (2.5), (6.3) and (6.5) we find

o 0 0 0 8
K(%@—(b )as“(a—a—@) s

(6.6)
0 8 o 0
K - b 7 _7 K a9 A - 0
(&75] 8x3> Zl_!cos s ((%"i 8xj)
for 2 <1i # j < n. Therefore we obtain from (1.3), (6.2) and (6.6) that
1\ 0 0 8 1
T# = (b Kre | =— ) =X=——, A =b+— 6.7
( * nb) os” 1" (&Ij) 8 ! * n (6.7)
for j = 2,... ,n. Consequently, we conclude that the elgenvalue A; of the operator
K4 associated with eigenvector 0/0x; satisfies
-1 - 20°
N— = (1=6,) == —0 ash—0.

n n

Example 6.2. Consider the hyperbolic locally strongly convex centro-affine hy-
persurface defined by:

n—1
e’ (e_(b_1+b)s,sinh(ax2), ... ,sinh(ax, H cosh(az;), Hcosh aa@)) (6.8)

Jj=2 Jj=2
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with a = v/1+b%, b € (0,00). The induced affine metric h of this hypersurface is
given by

n—1
h = ds* + dx3 + cosh®(axy)dwi 4 - - - + H cosh®(ax;)dx?, (6.9)

j=2

which implies that Klj =0, Kjk = —a? for 2 < j # k < n. Hence we have

n —

én:(2_2>a+w%. (6.10)

From (2.1), (2.5), (6.8) and a straight-forward computation we find

o 0 1\ 0 o 0 0
K(%’%)‘(‘)‘é)%’ K(%’a—%)—”a—w

o 0 =, 9 o 0
K (8_%’8_%> =b HCOSh (CLZ‘i)%, K (a—xz,@—x]) =0

=2

(6.11)

for 2 < i # j < n. Therefore we have

1\ 0 0 1\ o
=(b—-— ) = O _ (et 9 . _
T <b nb) s’ Kr# (8@) (b n) oz’ j=2,...,n. (6.12)

Consequently, the eigenvalue \; of the operator Kr# associated with eigenvector

0/0x; satisfies

1w
M= (146,) =" —0 asb—0.
n n

Examples 6.1 and 6.2 show that the eigenvalue estimate given in statement (1) of
Theorem 4.1 is optimal for locally strongly convex centro-affine hypersurfaces of
both elliptic and hyperbolic types.

Example 6.3. Consider the following elliptic centro-affine locally strongly convex
hypersurface:
n—2
) ( sin x1,sin T cosxy, ... ,sinx, 1 H CoS T;,
j=1

- - (6.13)
o3 (V2 —d)an H cos z;, o3 (VBT =Dz H cos xj)

j=1 j=1

with b > 2. The affine metric of this hypersurface is given by

n

n—1
h = dx? + cos* xyda + - - + H cos® z;dx?. (6.14)
j=1



B.-Y. Chen: Centro-affine and Graph Hypersurfaces 25

It follows from (6.14) that , = 1 for k=2,... ,n
On the other hand, from (6.13) and a direct computation, we have

o 0 o 0 0 0 0
K (aa_) -k (%a_) =0, K (axn’ axn> Vo, (O

for 1 <14,5 <n — 1, which ensures that

b 0 0
7% = | = | | sec® z; ——,K#(——>—0,j—L”wn—L (6.16)
<n H J) or,, r Oz,

Example 6.4. Let M be the hyperbolic locally strongly convex centro-affine hy-
persurface defined by

n—2
(sinh x1,sinh xo coshxq, ... ,sinhx,_; H COS Tj,
j=1
o (6.17)
2 2
ez (bHVEZH)an Hcoshx e3 (b-VPF)zn Hcoshxj
Jj=1 7j=1

with nonzero b. Since the induced affine metric is given by
n—1
h = da? + cosh® z1dx3 + - - - + H cosh® z;dx?2, (6.18)
j=1

A~

thus we have éz =4,
On the other hand, by (6 17) and a straight-forward computation, we find

g 0 g 0 g 0 0
K (a_a_) =K (a?a—) =0, K (m ax) =bg (619)

for 1 <i,5 <n—1. Hence we obtain

bn—l a a '
T# = —HSGChZJCja_Inv Kr# (8_%) =0, j=1,...,n—L (620)

j=1

Clearly, Examples 6.3 and 6.4 illustrate that the estimate given in statement (2)
of Theorem 4.1 is optimal for locally strongly convex centro-affine hypersurfaces
of both elliptic and hyperbolic types.

7. Examples of graph hypersurfaces

Example 7.1. Consider the graph hypersurface M in R"":

(.”%,+Z%—> (7.1)



26 B.-Y. Chen: Centro-affine and Graph Hypersurfaces

with constant affine normal £ given by (0,...,0,—1) and Calabi metric given by
h=ds*+s2(dud+ -+ du?).
A direct computation shows that f(lj = —s2and f(ij =—1for2<i+#j<n.
Thus we get
Lo :
b= =) 2L (7.2)
-1 if s2 < 1.

From (7.1) and a straight-forward computation, we find

0 0 30 o 0 1 0
K(&a&)iga K(a_aT):_a_

(7.3)
o 0 g 0 10
— ) = —_ — | = —=— <3 ) <
K(@u/f)w) 0 K(@uj’f)uj> $30s’ 2si#jsm,
which yields
+2) 0 0 0 (n+2)
ns s " (8uj) A ou;’ A ns? (7.4)
for 7 = 2,... ,n. Hence we obtain
1—n\ » 3
)\j—( " )91@—@—%) as § — 00. (7.5)

This example shows that the estimate given in statement (1) of Theorem 4.2 is
optimal.

Example 7.2. Consider the graph hypersurface M in R"*:

Ul 1 - 2
(uz,... U, € ,ul—EZ;u]) (7.6)
]:

with affine normal £ = (0,...,0,—1) and Calabi metric h = dui + --- + du;.
Obviously, we have 0y = --- = 6,, = 0. It follows from (7.6) that

g 0 0 o 0 g 0
K (a aul) “an X (aTaT) -k (a_a_) =0 @7

for 2,7 =2,... ,n. Thus we have

T#—l‘9 KT#(a):O (7.8)

C nouy Ou;

forj=2,... ,n.

The last example illustrates that the estimate given in statement (2) of Theorem
4.2 is optimal as well.

Acknowledgement. The author is very grateful to the referee for several valu-
able suggestions.
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