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Abstract. In this paper, we introduce generalized adjoint semigroups
(GA-semigroups) of a ring R. We construct generalized adjoint semi-
groups on a ring R by means of bitranslations of R. It is shown that
GA-semigroups of a π-regular ring are π-regular. As an application we
deduce that in any ring, idempotents can be lifted modulo π-regular
ideals. GA-semigroups containing idempotents are described in terms
of the ring of a Morita context.

1. Introduction

Let R be a ring not necessarily with identity. The composition defined by a ◦ b =
a+b+ab for any a, b ∈ R is usually called the circle or adjoint multiplication of R,
which plays a role in the theory of Jacobson radical. It is well-known that (R, ◦)
is a monoid with identity 0, called the circle or adjoint semigroup of R. There
are many interesting connections between a ring and its adjoint semigroup, which
were studied in several papers, for example, [8, 13, 14, 16, 22, 23, 24, 30, 31].
Typical results are to describe the adjoint semigroup of a given ring and the ring
with a given semigroup as its adjoint semigroup.

The circle multiplication of a ring satisfies the following generalized distribu-
tive laws:

a ◦ (b+ c− d) = a ◦ b+ a ◦ c− a ◦ d, (1)

(b+ c− d) ◦ a = b ◦ a+ c ◦ a− d ◦ a, (2)
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or equivalently,

a ◦ (b+ c) = a ◦ b+ a ◦ c− a ◦ 0,

(b+ c) ◦ a = b ◦ a+ c ◦ a− 0 ◦ a,

which was observed in [1]. Thus as generalizations of the circle multiplication of a
ring, a binary operation � (associative or nonassociative) on an Abelian group A
satisfying the generalized distributive laws have been studied by several authors
making use of different terminologies, for example, pseudo-ring in [33], weak rings
in [10], quasirings in [11], prerings in [3, 4, 29]. In particular, the so-called (m,n)-
distributive rings studied in [5, 26, 27, 36] also satisfy the generalized distributive
laws (1) and (2). To such a system (A,+, �) there corresponds a unique associated
ordinary ring. But, in general, even if A is a ring, there may exist no relation
between the ring A and the associated ring of (A,+, �). In this paper, we are
interested in a binary operation � on a ring R, satisfying the associative law, the
generalized distributive laws as (1) and (2), and the compatibility:

xy = x � y − x � 0− 0 � y + 0 � 0.

This is equivalent to say that (R,+, �) is a weak ring such that the ring R is exactly
the associated ring of (R,+, �). Such a binary operation � is called a generalized
adjoint multiplication on R and the semigroup (R, �) is called a generalized ad-
joint semigroup of R, abbreviated GA-semigroup, which is a generalization of the
multiplicative semigroup and the adjoint semigroup of a ring R. Essentially, the
multiplicative and adjoint semigroup of R are exactly generalized adjoint semi-
groups of R with zero and identity, respectively (cf. Theorem 2.14). The other
generalization of adjoint multiplication was studied in [21].

The aim of this paper is to describe generalized adjoint semigroups of a ring
R. In Section 2, we present a way to construct generalized adjoint multiplications
on a ring R by means of bitranslations of R, characterize a GA-semigroup with
identity or zero and describe GA-semigroups of a ring with 1.

In Section 3, we prove that GA-semigroups of a π-regular ring are π-regular.
In Section 4, we first prove that a GA-semigroup containing idempotents can

be represented as a GA-semigroup of the ring of a Morita context. Then we
present a sufficient condition and a necessary condition for a GA-semigroup to
contain idempotents, in virtue of which we prove that in any ring, idempotents
can be lifted modulo a π-regular ideal. This generalizes a classical result in ring
theory which states that idempotents modulo a nil ideal can be lifted ([28]) and
the ring-theoretic analogue of a result of Edwards ([19, Corollary 2]) which ex-
tends the well-known Lallement’ lemma to eventually regular semigroups (i.e.,
π-regular semigroups). Finally, we prove that GA-semigroups of rings with DCC
on principal right ideals contain idempotents.

In the forthcoming paper [17], we characterize the rings with a GA-semigroup
having a property P and its such GA-semigroups, where P stands for orthodox,
right inverse, inverse, pseudoinverse, E-unitary, and completely simple, respec-
tively.
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Although a ring R in this paper needs not contain identity, it is convenient to
use a formal identity 1, which can be regarded as the identity of a unitary ring
containing R, since R can be always embedded into a ring with identity 1; for
example, we can write a ◦ b = (1 + a)(1 + b)− 1 for any a, b ∈ R and write x0 = 1
for any x ∈ R by making use of a formal 1.

For x ∈ R and a positive integer n we denote by x[n] the n-th power of x with
respect to a generalized adjoint multiplication �, and x[0] stands for an empty
word.

A radical ring means a Jacobson radical ring.
For the algebraic theory and terminology on semigroups we will refer to [9,

20, 25].

2. A construction of GA-semigroups

Definition 2.1. Let R be a ring. A binary operation � on R is called a generalized
adjoint multiplication on R, if it satisfies the following conditions:

(i) the associative law: x � (y � z) = (x � y) � z;
(ii) the generalized distributive laws:

x � (y + z) = x � y + x � z − x � 0,

(y + z) � x = y � x+ z � x− 0 � x;

(iii) the compatibility: xy = x � y − x � 0− 0 � y + 0 � 0.

The semigroup (R, �) is called a generalized adjoint semigroup of R, abbreviated
GA-semigroup and denoted by R�.

We now remark that for a binary operation � on R, the generalized distributive
laws are equivalent to

w � (x+ y − z) = w ◦ x+ w � y − w � z,
(x+ y − z) � w = x ◦ w + y � w − z � w.

Example 2.2. The multiplicative semigroup R• of a ring R is a GA-semigroup
of R with zero 0. The adjoint semigroup R◦ of R is a GA-semigroup of R with
identity 0.

Lemma 2.3. For any xi, yj ∈ R, and pi, qj ∈ Z with
∑
pi =

∑
qj = 0, we have(∑

pixi

) (∑
qjyj

)
=

∑
piqj(xi � yj).
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Proof. Set p =
∑
pi, and q =

∑
qj. Then we have that(∑

pixi

) (∑
qjyj

)
=

∑
piqj(xiyj)

=
∑

piqj(xi � yj)−
∑

piqj(xi � 0)

−
∑

piqj(0 � yj) +
∑

piqj(0 � 0) (by the compatibility)

=
∑

piqj(xi � yj)− q
∑

pi(xi � 0)− p
∑

qj(0 � yj) + pq(0 � 0)

=
∑

piqj(xi � yj),

as desired. �

Corollary 2.4. If x � y = y � x, then (x− y)n =
n∑

i=0

(−1)n−i

(
n
i

)
x[i] � y[n−i].

Proof. As the usual binomial theorem, the corollary can be proved by use of an
induction on n and Lemma 2.3. �

Recall that a bitranslation is a pair (λ, ρ) ∈ End(RR) × End(RR) such that
xλ(y) = ρ(x)y for any x, y ∈ R. The set Ω(R) of all bitranslations of R is a
subring of End(RR) × End(RR) with identity (1R, 1R), called the translational
hull of R. For a ∈ R, let λa and ρa be the left and right multiplications by a,
respectively. Then (λa, ρa) is a bitranslation of R, denoted by πa, and π : a 7−→ πa

defines a ring homomorphism form R into Ω(R) such that the image π(R) is an
ideal of Ω(R) and the kernel is Ann(R) = {x ∈ R| xR = Rx = 0}. Hence we can
identify a ∈ R with πa and R with π(R) whenever Ann(R) = 0. A bitranslation
θ = (λ, ρ) will be considered as a double operator on R defined by θx = λ(x) and
xθ = ρ(x) for any x ∈ R. Then θ = θ′ if and only if θx = θ′x and xθ = xθ′ for
any x ∈ R. A bitranslation θ is called self-permutable if (θx)θ = θ(xθ) for any
x ∈ R ([32, 34, 35]).

For a self-permutable bitranslation θ, there is no ambiguity if we write θxyθ2z,
for example.

By an associated pair of R we mean a pair (θ, ϑ) ∈ Ω(R) × R satisfying the
following conditions:

(i) θϑ = ϑθ;

(ii) θ is self-permutable;

(iii) θ2 = θ + πϑ.

Theorem 2.5. Let (θ, ϑ) be an associated pair of a ring R and define

x � y = xy + xθ + θy + ϑ (3)

for any x, y ∈ R. Then � is a generalized adjoint multiplication on R (called
one induced by (θ, ϑ)). Conversely, every generalized adjoint multiplication � on
R can be obtained in this fashion by setting ϑ = 0 � 0, θx = 0 � x − 0 � 0 and
xθ = x�0−0�0. Moreover, the correspondence (θ, ϑ) → � is a 1-1 correspondence
between the associated pairs of R and generalized adjoint multiplications on R.
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Proof. Suppose that (θ, ϑ) is an associated pair of R and the operation � is given
by (3). Then the associative law is verified as follows:

(x � y) � z
= (xy + xθ + θy + ϑ) � z (by (3))

= xyz + xθz + θyz + ϑz + xyθ + xθ2 + θyθ + ϑθ + θz + ϑ

= xyz + xyθ + xθz + xϑ+ xθ + θyz + θyθ + θz + ϑz + θϑ+ ϑ

= xyz + xyθ + xθz + xϑ+ xθ + θyz + θyθ + θ2z + θϑ+ ϑ

= x � (yz + yθ + θz + ϑ) (by (3))

= x � (y � z).

For the generalized distributive laws, we have that

x � (y + z)

= xy + xz + xθ + θy + θz + ϑ (by (3))

= (xy + xθ + θy + ϑ) + (xz + xθ + θz + ϑ)− (xθ + ϑ)

= x � y + x � z − x � 0, (by (3))

and similarly (y + z) � x = y � x+ z � x− 0 � x. The compatibility follows from

x � y − x � 0− 0 � y + ϑ

= (xy + xθ + θy + ϑ)− (xθ + ϑ)− (θy + ϑ) + ϑ (by (3))

= xy.

Thus � is a generalized circle multiplication on R.
Conversely, suppose � is a generalized adjoint multiplication on R. Set ϑ =

0 � 0, λ(x) = 0 � x− 0 � 0, ρ(x) = x � 0− 0 � 0 and θ = (λ, ρ). For any a, x, y ∈ R,
we have that

λ(x+ y) = 0 � (x+ y)− 0 � 0 = 0 � x+ 0 � y − 2ϑ = λ(x) + λ(y),

λ(x)a = (0 � x− 0 � 0)(a− 0)

= 0 � x � a− 0 � x � 0− 0 � 0 � a+ 0 � 0 � 0 (by Lemma 2.3)

= 0 � (x � a− x � 0− 0 � a+ 0 � 0)− 0 � 0

= 0 � (xa)− 0 � 0

= λ(xa),

which imply that λ ∈ End(RR). Symmetrically, ρ ∈ End(RR). Note that

xλ(y) = (x− 0)(0 � y − 0 � 0)

= x � 0 � y − x � 0 � 0− 0 � 0 � y + 0 � 0 � 0 (by Lemma 2.3)

= (x � 0− 0 � 0)(y − 0) (by Lemma 2.3)

= ρ(x)y.
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Thus θ is a bitranslation of R such that θx = 0 � x− 0 � 0 and xθ = x � 0− 0 � 0.
Hence θϑ = 0 � ϑ− 0 � 0 = ϑ � 0− 0 � 0 = ϑθ. Since

(θx)θ = (0 � x− 0 � 0) � 0− 0 � 0 = 0 � x � 0− 0 � 0 � 0,

θ(xθ) = 0 � (x � 0− 0 � 0)− 0 � 0 = 0 � x � 0− 0 � 0 � 0,

we have that (θx)θ = θ(xθ), that is, θ is self-permutable. Observing that

(θ + πϑ)x = θx+ ϑx

= 0 � x− 0 � 0 + ϑ � x− ϑ � 0− 0 � x+ ϑ

= ϑ � x− 0 � 0− 0 � ϑ+0 � 0

= θ(0 � x)− θϑ

= θ(0 � x− ϑ)

= θ2x,

and similarly x(θ+ πϑ) = xθ2, we see that θ2 = θ+ πϑ. It follows that (θ, ϑ) is an
associated pair of R. Since

x � y = xy + x � 0 + 0 � y − ϑ = xy + xθ + θy + ϑ

we see that � is induced by (θ, ϑ).
If two associated pairs (θ, ϑ) and (θ′, ϑ′) of R induce the same generalized

adjoint multiplication on R, then for any x, y ∈ R we have

xy + xθ + θy + ϑ = xy + xθ′ + θ′y + ϑ′,

and so we have ϑ = ϑ′ by taking x = y = 0, xθ = xθ′ by taking y = 0, and
θy = θ′y by taking x = 0, whence (θ, ϑ) = (θ′, ϑ′). Thus the correspondence
(θ, ϑ) → � is a 1-1 correspondence. �

Theorem 2.5 is an analogue of results in [26, 27].

Corollary 2.6. If Ann(R) = 0, then any generalized adjoint multiplication on R
is induced by a bitranslation θ of R such that θ2 − θ ∈ R, and further there exists
a 1-1 correspondence between the set of bitranslations being idempotent modulo
π(R) and generalized adjoint multiplications on R.

Proof. If Ann(R) = 0, then Ω(R) is an ideal extension of R. Let � be the
generalized adjoint multiplication on R induced by an associated pair (θ, ϑ). Then
θ2 − θ ∈ R, and θ2 = θ+ πϑ implies ϑ = θ2 − θ since Ann(R) = 0. It is clear that
x � y = (x+ θ)(y + θ)− θ. From Theorem 2.5 the correspondence θ → � is a 1-1
correspondence. �

The following corollary will be used freely throughout the rest of this paper.

Corollary 2.7. For any xi, yj ∈ R, and pi, qj ∈ Z with
∑
pi =

∑
qj = 1, we

have (∑
pixi

)
�

(∑
qjyj

)
=

∑
piqj(xi � yj).
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Proof. For any xi, yj ∈ R, and pi, qj ∈ Z with
∑
pi =

∑
qj = 1, we have∑

piqj(xi � yj)

=
∑

piqj(xiyj) +
∑

piqj(xiθ) +
∑

piqj(θyj) +
∑

piqjϑ

=
(∑

pixi

) (∑
qjyj

)
+

(∑
pixi

)
θ + θ

(∑
qjyj

)
+ ϑ

=
(∑

pixi

)
�

(∑
qjyj

)
,

as desired. �

Corollary 2.8. If x, y ∈ R� such that x�y = y�x and p, q ∈ Z such that p+q = 1,
then

(px+ qy)[n] =
n∑

i=0

piqn−i

(
n
i

)
x[i] � y[n−i].

Proof. As the usual binomial theorem, the corollary can be proved by use of an
induction on n and Corollary 2.7. �

By an affine subsemigroup of R� we mean a subsemigroup M of R� such that
x+ y − z ∈ S for any x, y, z ∈M .

For example, for an ideal extension R̃ of R (i.e., R̃ is a ring containing R as an
ideal) and a ∈ R̃ such that a2−a ∈ R, then (R+a, •) is an affine subsemigroup of
R̃•. The semigroup (R+a, •) was studied in [18] to deal with lifting idempotents.

Definition 2.9. Let M and N be affine subsemigroups of GA-semigroups R� and
S� of rings R and S, respectively. If there exists a bijection φ from M onto N
such that

φ(x+ y − z) = φ(x) + φ(y)− φ(z) and φ(x � y) = φ(x) � φ(y)

for any x, y, z ∈ M , then M and N are called affinely isomorphic, notationally
M ' N .

Corollary 2.10. Let R̃ be an ideal extension of R. Then any a ∈ R̃ such that
a2 − a ∈ R induces a generalized adjoint multiplication on R given by

x � y = (x+ a)(y + a)− a

for x, y ∈ R, and R� is affinely isomorphic to the affine subsemigroup (R + a, •)
of R̃•.

Proof. It is clear that a induces a bitranslation θ of R by θx = ax and xθ = xa. If
a2−a ∈ R, then (θ, a2−a) is an associated pair of R and the induced generalized
adjoint multiplication on R given by x�y = xy+xa+ay+ϑ = (x+a)(y+a)−a.
Let φ be a map from R into R+a given by φ(x) = x+a for any x ∈ R. Then it is
easy to check that φ is an affine isomorphism from R� onto the affine subsemigroup
(R + a, •) of R̃•. �
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Lemma 2.11. Let M be an affine subsemigroup of R�. Then

M −M = M − a =
{∑

pisi

∣∣∣si ∈M, and pi ∈ Z with
∑

pi = 0
}

for any a ∈M , and M −M is a subring of R.

Proof. The proof is a routine computation. �

Theorem 2.12. Let M and N be affine subsemigroups of GA-semigroups R� and
S� of rings R and S, respectively. If M ' N, then the rings M −M and N −N
are isomorphic to each other. In particular, if R� ' S�, then R ∼= S.

Proof. Suppose φ is an affine isomorphism from M onto N . Take a fixed a ∈ M
and let φ∗ be the mapping from M into N defined by φ∗(x− a) = φ(x)− φ(a) for
any x ∈M . Then we see that φ∗ is a bijection. Since for any x, y ∈M ,

φ∗ ((x− a)− (y − a))

= φ∗((x− y + a)− a)

= φ(x− y + a)− φ(a)

= φ(x)− φ(y) + φ(a)− φ(a)

= φ∗(x− a)− φ∗(y − a),

φ∗ ((x− a)(y − a))

= φ∗(x � y − x � a− a � y + a � a)
= φ(x � y − x � a− a � y + a � a+ a)− φ(a)

= φ(x � y)− φ(x � a)− φ(a � y) + φ(a � a) + φ(a)− φ(a)

= φ(x) � φ(y)− φ(x) � φ(a)− φ(a) � φ(y) + φ(a) � φ(a)

= (φ(x)− φ(a))(φ(y)− φ(a))

= φ∗(x− a)φ∗(y − a),

we have that φ∗ is a ring isomorphism from the ring M − M onto N − N by
Lemma 2.11. �

Lemma 2.13. Let M be an affine subsemigroup of R�.

(i) If M has identity, then M ' (M −M, ◦);
(ii) If M has zero, then M ' (M −M, •).

Proof. Given e ∈ (M, �), we define φ : M → M −M by φ(x) = x− e. It is clear
that φ(x+ y − z) = φ(x) + φ(y)− φ(z). Note that for any x, y ∈M

(x− e)(y − e) = x � y − x � e− e � y + e � e. (4)

Thus, if e is identity of M , then

φ(x � y) = x � y − e

= (x− e)(y − e) + x+ y − 2e (by (4))

= (x− e) ◦ (y − e)

= φ(x) ◦ φ(y);
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while if e is zero of M , then by (4),

φ(x � y) = x � y − e = (x− e)(y − e) = φ(x)φ(y).

Hence φ is an affine isomorphism if e is identity or zero of M . �

Theorem 2.14. Let R� be a GA-semigroup of a ring R. Then

(i) R� has identity if and only if R� ' R◦;

(ii) R� has zero if and only if R� ' R•;

(iii) if R has identity, then R� ' R• ' R◦.

Proof. (i) and (ii) are immediate results of Lemma 2.13. If R has 1, then R = Ω(R)
and so by Corollary 2.10 there is a ∈ R such that x�y = (x+a)(y+a)−a for any
x, y ∈ R. Clearly, −a is zero of R�. Thus R� ' R• by (ii), and R◦ ' R• under
the affine isomorphism x→ 1 + x from R◦ onto R•, proving (iii). �

3. GA-semigroups of π-regular rings

Recall that a semigroup S is (left, right, completely) π-regular if and only if for
any x ∈ S there exists a positive integer n such that (xn ∈ Sxn+1, xn ∈ xn+1S,
xn ∈ Sxn+1 ∩ xn+1S) xn ∈ xnSxn.

For a positive integer n, a semigroup S is called (left, right, completely) πn-
regular if (xn ∈ Sxn+1, xn ∈ xn+1S, xn ∈ Sxn+1 ∩ xn+1S) xn ∈ xnSxn for any
x ∈ S. By a (left, right, completely) π0-regular semigroup we mean a (left, right,
completely) π-regular semigroup.

For a non-negative integer n, a ring is called (left, right, completely) πn-regular
if its multiplicative semigroup is (left, right, completely) πn-regular.

In [15] we proved that the adjoint semigroup of a π-regular ring is π-regular
and in [16], we proved further that the adjoint semigroup of a (left, right, com-
pletely) πn-regular ring is (left, right, completely) πn-regular. In this section, we
will prove that this is true for GA-semigroups.

Lemma 3.1. For any a, b, x, y, z ∈ R, we have

(a− a � x)z(b− y � b) ∈ a �R � b− a �R � b.

Proof. Noting that a �R � b is an affine subsemigroup of R�, we see that

(a− a � x)z(b− y � b)
= (a− a � x)(z − 0)(b− y � b)
= a � z � b− a � z � y � b− a � 0 � b+ a � 0 � y � b− a � x � z � b

+ a � x � z � y � b+ a � x � 0 � b− a � x � 0 � y � b (by Lemma 2.3)

∈ a �R � b− a �R � b, (by Lemma 2.11)

completing the proof. �



220 X. Du, J. Wang: Generalized Adjoint Semigroups of a Ring

Lemma 3.2. Let A = b � R � c − b � R � c. If x commutes with c in R�, then
a− a � x ∈ A implies a− a � x[n] ∈ A for any positive integer n.

Proof. To prove the lemma, we proceed with an induction on n. It is trivial for
n = 1. Assume n > 1 and a−a�x[n−1] ∈ A. Let a−a�x[n−1] = b� y � c− b� z � c.
Then multiplication (with respect to �) by x on the right shows that

a � x− a � x[n] = b � y � x � c− b � z � x � c,

whence by Lemma 2.11

a− a � x[n] = a− a � x+ a � x− a � x[n]

= a− a � x+ b � y � x � c− b � z � x � c
∈ A,

as desired. �

Lemma 3.3. Let a and x commute with each other in R�. Then for any positive
integers m and n we have that

(a− a[m] � x)n = a[n] − a[n+m−1] � y,

for some y commuting with a and x in R�.

Proof. By Corollary 2.4,

(a− a[m] � x)n

=
n∑

i=0

(−1)n−i

(
n
i

)
a[i] � (a[m] � x)[n−i]

=
n∑

i=0

(−1)n−i

(
n
i

)
a[i+m(n−i)] � x[n−i]

= a[n] −
n−1∑
i=0

(−1)n−i+1

(
n
i

)
a[n+m−1] � a[(m−1)(n−1−i)] � x[n−i]

= a[n] − a[n+m−1] �
n−1∑
i=0

(−1)n−i+1

(
n
i

) (
a[(m−1)(n−1−i)] � x[n−i]

)
,

since
n−1∑
i=0

(−1)n−i+1

(
n
i

)
= 1. Let

y =
n−1∑
i=0

(−1)n−i+1

(
n
i

) (
a[(m−1)(n−1−i)] � x[n−i]

)
.

Then (a− a � x)n = a[n] − a[n+m−1] � y and it is clear that y commutes with both
a and x. �
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Lemma 3.4. Let a, w, x, y, z ∈ R such that x, y and z commute with a in R�,
and let n be a positive integer, and k and m be non-negative integers not all zero.
If

(a− a � x � a)n = (a− a � y)kw(a− z � a)m,

then a[n] = a[k] � u � a[m] for some u ∈ R.

Proof. Let A = a[k] � R � a[m] − a[k] � R � a[m]. Then by Lemma 3.3 and Lemma
3.1, we have

a[n] − a[n+1] � r = (a[k] − a[k] � s)w(a[m] − t � a[m]) ∈ A

for some r, s, t ∈ R commuting with a. By Lemma 3.2, a[n] − a[n+k+m] � r ∈ A.
Let a[n] − a[n+k+m] � r = a[k] � b � a[m] − a[k] � c � a[m]. Then we have that

a[n] = a[n+k+m] � r + a[k] � b � a[m] − a[k] � c � a[m] = a[k] � (a[n] � r + b− c) � a[m],

as desired. �

Theorem 3.5. For a non-negative integer n, if a ring R is (left, right, completely)
πn-regular, then so is its any GA-semigroup.

Proof. Let R� be a GA-semigroup of R. If R be a right πn-regular ring for n ≥ 1,
then for any x ∈ R, there exist y ∈ R such that (x− x[3])n = (x− x[3])n+1y. From
Lemma 3.4, we deduce that x[n] = x[n+1] � z for some z ∈ R, whence (R, �) is a
right πn-regular semigroup. The remainder can be proved similarly. �

4. GA-semigroups with idempotents

Let R� be a GA-semigroup of R. Then R� is called (centrally) 0-idempotent if
the additive 0 of R is an (central) idempotent in R�. Let R� be a 0-idempotent
GA-semigroup induced by the associated pair (θ, ϑ). Then it is clear that ϑ = 0
and so θ is idempotent. One should note that (centrally) 0-idempotent is not an
affine isomorphism invariant.

Lemma 4.1. Every GA-semigroup containing (central) idempotents is affinely
isomorphic to a (centrally) 0-idempotent one.

Proof. Suppose R� is a GA-semigroup containing an (central) idempotent e. Let
Re = (R,�, ∗) with

x� y = x+ y − e,

x ∗ y = (x− e)(y − e) + e,

for any x, y ∈ R. Then Re is a ring in which e acts as additive zero and ∗ is clearly
an associative binary operation on Re. Denote by � the minus in Re. Noting that



222 X. Du, J. Wang: Generalized Adjoint Semigroups of a Ring

x+ y− z = x� y� z for any x, y, z ∈ R, we see that the operation � satisfies the
generalized distributive laws in Re, and further we have that

x ∗ y = (x− e)(y − e) + e

= x � y − x � e− e � y + e � e+ e

= x � y � x � e� e � y � e � e� e

= x � y � x � e� e � y � e � e.

Thus � is a GA-multiplication on the ring Re such that R�
e is (centrally) 0-

idempotent. It is easy to see that the identity mapping of R is an affine iso-
morphism from R� onto R�

e. �

Given two rings S and T , two bimodules SUT and TVS, an S-S-homomorphism
φ : U ⊗T V → S and a T -T -homomorphism ψ : V ⊗S U → T (write uv for
φ(u ⊗ v) and vu for ψ(v ⊗ u)) such that u(vu′) = (uv)u′ and v(uv′) = (vu)v′ for

any u, u′ ∈ U and v, v′ ∈ V . Let R =

(
S U
V T

)
be the set of formal matrices.

Then R is a ring with the usual matrix operations, called the ring of the Morita
context, or a Morita ring, and denoted by M(S, T, U, V ). Denote by S̃ and T̃
the Dorroh extension of S and T , respectively. Then S̃UT̃ and T̃VS̃ are unitary

bimodules in a natural way. Let R̃ =

(
S̃ U

V T̃

)
. Then R̃ is a unitary ring with

the usual matrix operations and R is an ideal of R̃. Let E11 =

(
1 0
0 0

)
∈ R̃.

Then the generalized adjoint multiplication induced by E11 is given by

A �B = AB + AE11 + E11B

= (A+ E11)(B + E11)− E11

=

(
s ◦ s′ + uv′ (1 + s)u+ ut′

u(1 + s′) + tv′ uu′ + tt′

)

for any A =

(
s u
v t

)
, B =

(
s′ u′

v′ t′

)
∈ R. The semigroup R� is called the

E11-GA-semigroup of R, denoted by M�
11(S, T, U, V ). It is clear that the E11-GA-

semigroup M�
11(S, T, U, V ) is 0-idempotent.

Lemma 4.2. Let R� be a 0-idempotent GA-semigroup induced by an idempotent
self-permutable bitranslation θ, and let R11 = θRθ, R10 = θR(1 − θ), R01 =
(1− θ)Rθ, and R00 = (1− θ)R(1− θ). Then

(i) R = R11 ⊕R10 ⊕R01 ⊕R00 as additive groups;

(ii) RijRkl ⊂ δjkRjl, where δjk is the Kronecker delta, i, j, k, l = 0, 1;

(iii) if we write x =
∑
xij, y =

∑
yij, where xij, yij ∈ Rij, i, j = 0, 1, then

x � y = (x11 ◦ y11 + x10y01) + (x10 + x11x10 + x10y00)

+ (x01 + x01y11 + x00y01) + (x01y10 + x00y00);
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(iv) Rij, i, j = 0, 1, are subrings of R such that R�
11 = R◦

11, R
�
00 = R•

00, R
�
10 is a

right zero semigroup, and R�
01 is a left zero semigroup.

Proof. Since θ is idempotent, the proof of (i) and (ii) is essentially similar to that
of Pierce decomposition of a ring. For x =

∑
xij, y =

∑
yij, where xij, yij ∈ Rij,

i, j = 0, 1, we have by (ii) that

x � y =
(∑

xij

) (∑
yij

)
+ θ

(∑
xij

)
+

(∑
yij

)
θ

=
(∑

xijykl

)
+ x11 + x10 + y11 + y01

= (x11 ◦ y11 + x10y01) + (y10 + x11y10 + x10y00)

+ (x01 + x01y11 + x00y01) + (x01y10 + x00y00),

proving (iii). If x, y ∈ R11, then

x � y = xy + xθ + θy = xy + x+ y = x ◦ y,

whence R�
11 = R◦

11, and similarly, R�
00 = R•

00. For any x, y ∈ R10, we have by (ii)
that

x � y = xy + xθ + θy = y,

which implies that R�
10 is a right zero semigroup, and similarly R�

01 is a left zero
semigroup, proving (iv). �

Theorem 4.3. Let R� be a GA-semigroup of R. If R� contains idempotents,
then there exists a Morita ring M(S, T, U, V ) such that R ∼= M(S, T, U, V ) and
R� 'M�

11(S, T, U, V ).

Proof. Let R� be a GA-semigroup induced by the associated pair (θ, ϑ). If R�

contains idempotents, then by Lemma 4.1, without loss of generality, we may as-
sume that R� is 0-idempotent. By Lemma 4.2, it is a routine matter to verify that
M(R11, R00, R10, R01) is a Morita ring in a natural way. By Lemma 4.2 straight-
forward computation shows that the mapping φ : R → M(R11, R00, R10, R01)
defined by

φ(x) =

(
θxθ θx(1− θ)

(1− θ)xθ (1− θ)x(1− θ)

)
is a ring isomorphism. Noting that

φ(x � y) = φ(xy + xθ + θy)

= φ(x)φ(y) + φ(xθ) + φ(θy)

= φ(x)φ(y) +

(
θxθ 0

(1− θ)xθ 0

)
+

(
θyθ (1− θ)yθ
0 0

)
= φ(x) � φ(y),

we see that φ is an affine isomorphism from R� onto the E11-GA-semigroup of
M(R11, R00, R10, R01). �
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Corollary 4.4. A GA-semigroup R� is (centrally) 0-idempotent if and only if
there exists an ideal extension R̃ with 1 of R and an idempotent ε ∈ R̃ (commuting
with elements of R) such that x � y = (x+ ε)(y + ε)− ε for any x, y ∈ R.

Proof. It follows from Theorem 4.3, the definition of the E11-GA-semigroup and
taking ε = E11. �

Lemma 4.5. If (a− a[2])2 = 0, then there exists an idempotent e =
∑
pia

[i] with∑
pi = 1 such that a[2] = e � a[2].

Proof. By Corollary 2.4, (a− a[2])2 = a[2] − 2a[3] + a[4], and so

a[2] = 2a[3] − a[4] = a[2] � (2a− a[2]) = a[2] � (2a− a[2])[2] = a[2] � (2a− a[2])[3].

Note that by Corollary 2.8,

(2a− a[2])[3] = 8a[3] − 12a[4] + 6a[5] − a[6] = a[2] � (8a− 12a[2] + 6a[3] − a[4]).

Let b = 8a−12a[2]+6a[3]−a[4]. Then b commutes with a and a[2] = a[2]�b�a[2]. Let
e = a[2]�b. Then it is clear that e is an idempotent of R� such that a[2] = e�a[2]. �

Let Γ(R) = {θ ∈ Ω(R) |θx = xθ for any x ∈ R}.

Lemma 4.6. A GA-semigroup of R induced by (θ, ϑ) has (central) idempotents
if and only if θ can be lifted to an idempotent of Ω(R) (contained in Γ(R)).

Proof. Assume semigroup R� has an idempotent e. Then

e = e � e = e2 + eθ + θe+ ϑ,

whence πe = π2
e + πeθ+ θπe + πϑ = π2

e + πeθ+ θπe + θ2 − θ = (πe + θ)2 − θ. Thus
πe + θ is idempotent. Moreover, if e is central in R�, then e � x = x � e for any
x ∈ R, that is, ex + eθ + θx + ϑ = xe + xθ + θe + ϑ, and particularly, eθ = θe
by taking x = 0. Thus (πe + θ)x = ex + θx = xe + xθ = x(πe + θ), yielding
πe + θ ∈ Γ(R).

Assume θ can be lifted to an idempotent of Ω(R). Then πa + θ is idempotent
for some a ∈ R, whence πa = π2

a + πaθ + θπa + θ2 − θ = π2
a + πaθ + θπa + πϑ.

Thus we have ax = a2x + (aθ)x + (θa)x + ϑx = a[2]x, forcing (a − a[2])R = 0.
In particularly, (a − a[2])2 = 0, whence R� contains an idempotent e =

∑
pia

[i]

with
∑
pi = 1 by Lemma 4.5. Further, if πa + θ is an idempotent contained in

Γ(R). Then for any x ∈ R, (πa + θ)x = x(πa + θ), that is, ax+ θx = xa+ xθ, and
particularly θa = aθ by taking x = a, whence

a � x = ax+ θx+ aθ + ϑ = xa+ xθ + θa+ ϑ = x � a.

Hence e � x = x � e, that is, e is a central idempotent of R�. �

Theorem 4.7. Consider the following conditions:

(i) every GA-semigroup of R contains (central) idempotents;
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(ii) in any ideal extension R̃ of R, idempotents of R̃/R can be lifted to idempo-
tents of R̃ (contained in the centralizer of R in R̃);

(iii) idempotents of Ω(R)/π(R) can be lifted to idempotents of Ω(R) (contained
in Γ(R)). Then (iii)⇒(i)⇒(ii). Moreover, if Ann(R) = 0, then (i), (ii) and
(iii) are equivalent.

Proof. (iii)⇒(i) follows from Lemma 4.6.

(i)⇒(ii): If a ∈ R̃ and a2 − a ∈ R, then the pair (θ, ϑ) defined by

θx = ax, xθ = xa, and ϑ = a2 − a

is an associated pair and so x�y = xy+xa+ay+a2−a defines a GA-multiplication
on R. If e is an idempotent of R�, then e = e2 + ea+ ae+ a2 − a = (e+ a)2 − a,
and so e + a is an idempotent of R̃. Further if e is a central idempotent of R�,
then e � x = x � e for any x ∈ R, that is

ex+ ea+ ax+ ϑ = xe+ xa+ ae+ ϑ,

and particularly, ea = ae by taking x = 0. Thus (e+ a)x = ex+ ax = xe+ xa =
x(e+ a), which implies that e+ a is contained in the centralizer of R in R̃.

The remainder is clear. �

The following corollary is independently interesting, which is a generalization of
a classical result in ring theory which states that idempotents modulo a nil ideal
can be lifted ([28]) and is a generalization of ring-theoretic analogue of a result of
Edwards ([19, Corollary 2]) which extends the well-known Lallement’s lemma to
eventually regular semigroups (i.e., π-regular semigroups).

Theorem 4.8. In any ring, idempotents modulo a π-regular ideal can be lifted.

Proof. By Theorem 3.5, any GA-semigroup of a π-regular ring contains idempo-
tent, and so by Theorem 4.7 idempotents modulo a π-regular ideal can be lifted. �

If R is a ring with ECI, then idempotents can be lifted from Ω(R)/R to Ω(R) ([7,
Corollary 3.6]), and so any GA-semigroup of R contains idempotents by Theorem
4.7. Particularly, every GA-semigroup of a biregular ring contains idempotents.
On the other hand, there is a ring such that idempotents modulo the radical cannot
be lifted. Hence a GA-semigroup of a radical ring need not contain idempotents.

A semigroup S is called completely primitive if the left ideal Se and the right
ideal eS are minimal for every idempotent e of S ([6]). A completely primitive
semigroup S has kernel which is completely simple and contains all of idempotents
of S ([9]).

Lemma 4.9. Let R� be a GA-semigroup of a radical ring R. If R� contains
idempotents, then R� is completely primitive.
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Proof. Let e be an idempotent of R�. Then it is sufficient to prove that e � R � e
is a group. Since e � R � e ' (e � R � e − e � R � e, ◦) by Lemma 2.11 and
Lemma 2.13, we have to prove that e � R � e − e � R � e is a radical ring. By
Corollary 4.4, there are an ideal extension R̃ of R and an idempotent ε ∈ R̃ such
that x � y = (x + ε)(y + ε) − ε for any x, y ∈ R. Thus e � R � e − e � R � e =
(e+ ε)(R+ ε)(e+ ε)− (e+ ε)(R+ ε)(e+ ε) = (e+ ε)R(e+ ε). Since e � e = e, we
have that e+ ε is an idempotent of R̃ and so it is easy to see that (e+ ε)R(e+ ε)
is a radical ring since R is a radical ring. �

Lemma 4.9 is a GA-semigroup version of [18, Theorem 1 (b)–(c)]. Actually, many
results in [18] can be reexplained in terms of GA-semigroup.

Theorem 4.10. Any GA-semigroup of a nil ring is a completely primitive π-
regular semigroup.

Proof. It follows from Theorem 3.5 and Lemma 4.9. �

Theorem 4.11. Let R be a ring with descending chain condition for principal
right ideals. Then any GA-semigroup of R is completely π-regular. Particularly,
any GA-semigroup of a right Artinian ring is completely π-regular.

Proof. If R is a ring with descending chain condition for principal right ideals,
then R is completely π-regular by Dischinger [12, Theorem 1] and Azumaya [2,
Lemma 1]. �
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[3] Batbedat, A.: Préanneaux idempotents. Atti Accad. Naz. Lincei 55 (1973),
325–330 (1974). Zbl 0333.08001−−−−−−−−−−−−

[4] Batbedat, A.: Algebras, prerings, semirings and rectangular bands. Semi-
group Forum 30 (1984), 231–233. Zbl 0554.16013−−−−−−−−−−−−

[5] Beaumont, R. A.: Generalized rings. Proc. Am. Math. Soc. 9 (1959), 876–
881. Zbl 0092.26902−−−−−−−−−−−−
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