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Abstract. In this paper, we introduce generalized adjoint semigroups
(GA-semigroups) of a ring R. We construct generalized adjoint semi-
groups on a ring R by means of bitranslations of R. It is shown that
GA-semigroups of a w-regular ring are m-regular. As an application we
deduce that in any ring, idempotents can be lifted modulo m-regular
ideals. GA-semigroups containing idempotents are described in terms
of the ring of a Morita context.

1. Introduction

Let R be a ring not necessarily with identity. The composition defined by aob =
a+b+ab for any a,b € R is usually called the circle or adjoint multiplication of R,
which plays a role in the theory of Jacobson radical. It is well-known that (R, o)
is a monoid with identity 0, called the circle or adjoint semigroup of R. There
are many interesting connections between a ring and its adjoint semigroup, which
were studied in several papers, for example, [8, 13, 14, 16, 22, 23, 24, 30, 31].
Typical results are to describe the adjoint semigroup of a given ring and the ring
with a given semigroup as its adjoint semigroup.

The circle multiplication of a ring satisfies the following generalized distribu-
tive laws:

ao(b+c—d)=aob+aoc—aod, (1)
(b+c—d)oa=boa+coa—doa, (2)
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or equivalently,

ao(b+c)=aob+aoc—ao0,
(b+c)oa=boa+coa—0o0a,

which was observed in [1]. Thus as generalizations of the circle multiplication of a
ring, a binary operation ¢ (associative or nonassociative) on an Abelian group A
satisfying the generalized distributive laws have been studied by several authors
making use of different terminologies, for example, pseudo-ring in [33], weak rings
in [10], quasirings in [11], prerings in [3, 4, 29]. In particular, the so-called (m,n)-
distributive rings studied in [5, 26, 27, 36| also satisfy the generalized distributive
laws (1) and (2). To such a system (A, +, ¢) there corresponds a unique associated
ordinary ring. But, in general, even if A is a ring, there may exist no relation
between the ring A and the associated ring of (A, +,¢). In this paper, we are
interested in a binary operation ¢ on a ring R, satisfying the associative law, the
generalized distributive laws as (1) and (2), and the compatibility:

zy=xzoy—xo0—-0cy+0<0.

This is equivalent to say that (R, +,¢) is a weak ring such that the ring R is exactly
the associated ring of (R, +,¢). Such a binary operation ¢ is called a generalized
adjoint multiplication on R and the semigroup (R, <) is called a generalized ad-
joint semigroup of R, abbreviated GA-semigroup, which is a generalization of the
multiplicative semigroup and the adjoint semigroup of a ring R. Essentially, the
multiplicative and adjoint semigroup of R are exactly generalized adjoint semi-
groups of R with zero and identity, respectively (cf. Theorem 2.14). The other
generalization of adjoint multiplication was studied in [21].

The aim of this paper is to describe generalized adjoint semigroups of a ring
R. In Section 2, we present a way to construct generalized adjoint multiplications
on a ring R by means of bitranslations of R, characterize a GA-semigroup with
identity or zero and describe GA-semigroups of a ring with 1.

In Section 3, we prove that GA-semigroups of a w-regular ring are w-regular.

In Section 4, we first prove that a GA-semigroup containing idempotents can
be represented as a GA-semigroup of the ring of a Morita context. Then we
present a sufficient condition and a necessary condition for a GA-semigroup to
contain idempotents, in virtue of which we prove that in any ring, idempotents
can be lifted modulo a w-regular ideal. This generalizes a classical result in ring
theory which states that idempotents modulo a nil ideal can be lifted ([28]) and
the ring-theoretic analogue of a result of Edwards ([19, Corollary 2]) which ex-
tends the well-known Lallement’ lemma to eventually regular semigroups (i.e.,
m-regular semigroups). Finally, we prove that GA-semigroups of rings with DCC
on principal right ideals contain idempotents.

In the forthcoming paper [17], we characterize the rings with a GA-semigroup
having a property P and its such GA-semigroups, where P stands for orthodox,
right inverse, inverse, pseudoinverse, F-unitary, and completely simple, respec-
tively.
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Although a ring R in this paper needs not contain identity, it is convenient to
use a formal identity 1, which can be regarded as the identity of a unitary ring
containing R, since R can be always embedded into a ring with identity 1; for
example, we can write aob = (1+a)(1+b) — 1 for any a,b € R and write 2° = 1
for any x € R by making use of a formal 1.

For z € R and a positive integer n we denote by z™ the n-th power of z with
respect to a generalized adjoint multiplication o, and % stands for an empty
word.

A radical ring means a Jacobson radical ring.

For the algebraic theory and terminology on semigroups we will refer to [9,
20, 25].

2. A construction of GA-semigroups

Definition 2.1. Let R be a ring. A binary operation ¢ on R is called a generalized
adjoint multiplication on R, if it satisfies the following conditions:

(i) the associative law: x o (y o z) = (x oY) © 2;

(i) the generalized distributive laws:

xo(y+z)=zoy+xroz—x00,

(y+z)ox=yox+zox—00u;

(iii) the compatibility: xy =x oy —xo0—00y+0<0.
The semigroup (R, o) is called a generalized adjoint semigroup of R, abbreviated
GA-semigroup and denoted by R°.

We now remark that for a binary operation ¢ on R, the generalized distributive
laws are equivalent to

wo(x4+y—z)=woxr+woy—woz,

(x+y—z)ow=zow+yow—zow.

Example 2.2. The multiplicative semigroup R* of a ring R is a GA-semigroup
of R with zero 0. The adjoint semigroup R° of R is a GA-semigroup of R with
identity 0.

Lemma 2.3. For any z;,y; € R, and p;,q; € Z with Y p; =Y q; =0, we have

(Z pz-ari> (Z ijj> = pigi(zi o y;).
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Proof. Set p="7>_p;, and ¢ =) ¢q;. Then we have that

() (o)
= 2_pigi(wy;)
= sz'qj'(l'i oyY;) — Zpi%’(% ©0)
- Z pig; (00 y;) + sz-qj (0¢0) (by the compatibility)
=Y pg(wioy) =g pilwio0)—pY_ q;(00y;) +pg(000)
=Y wig(xioyy),
as desired. U

Corollary 2.4. Ifroy=youx, then (x —y)" = > (—=1)"" ( T; ) zld oyl

Proof. As the usual binomial theorem, the corollary can be proved by use of an
induction on n and Lemma 2.3. U

Recall that a bitranslation is a pair (\,p) € End(Rg) x End(gR) such that
zA(y) = p(x)y for any z,y € R. The set Q(R) of all bitranslations of R is a
subring of End(Rg) x End(grR) with identity (1g,1g), called the translational
hull of R. For a € R, let A\, and p, be the left and right multiplications by a,
respectively. Then (A, p,) is a bitranslation of R, denoted by 7,, and 7 : a — 7,
defines a ring homomorphism form R into £2(R) such that the image 7(R) is an
ideal of Q(R) and the kernel is Ann(R) = {x € R| xR = Rx = 0}. Hence we can
identify a € R with 7, and R with 7(R) whenever Ann(R) = 0. A bitranslation
0 = (), p) will be considered as a double operator on R defined by 0z = A(z) and
x0 = p(zx) for any z € R. Then 6§ = ¢ if and only if 0z = 0’z and z0 = z6’ for
any x € R. A bitranslation 6 is called self-permutable if (62)0 = 0(x6) for any
x € R ([32, 34, 35)).

For a self-permutable bitranslation @, there is no ambiguity if we write Ozy6?z,
for example.

By an associated pair of R we mean a pair (0,7) € Q(R) x R satisfying the
following conditions:

(i) 69 = 90,
(ii) 0 is self-permutable;
(iii) 6% = 0 + 7.
Theorem 2.5. Let (0,7) be an associated pair of a ring R and define
roy=uay+z0+0y+9I (3)

for any x,y € R. Then ¢ is a generalized adjoint multiplication on R (called
one induced by (0,v)). Conversely, every generalized adjoint multiplication ¢ on
R can be obtained in this fashion by setting 9 = 000, fx = 0ox — 000 and
20 = x00—000. Moreover, the correspondence (0,9) — ¢ is a 1-1 correspondence
between the associated pairs of R and generalized adjoint multiplications on R.
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Proof. Suppose that (6,1) is an associated pair of R and the operation ¢ is given
by (3). Then the associative law is verified as follows:

(xoy)oz

=(zy+20+0y+v)oz (by (3))

= xyz + 20z + Oyz + Oz + xyh + 6% + Oyd + 90 + 0z + 0
=ayz + xyl + x0z + 20 + 20 + Oyz + Oyb + 0z + 9z + 09 + 0
= zyz + axyf + 20z + 20 + 20 + Oyz + Oy + 6%z + 09 + o
=zxo(yz+yd+0z+19) (by (3))

=zo(yo2).

For the generalized distributive laws, we have that
zo(y+2)
=zy+axz+a0+0y+0z+9 (by (3))

= (xy+ 20 + 0y +9) + (xz + 20 + 0z + ) — (20 + V)
=zoy+xzoz—x00, (by(3))

and similarly (y 4+ z)ox = yoz + zox — 0o x. The compatibility follows from

roy—xzo0—00oy+0
=(xy+z0+0y+19)— (0 +9)— (Oy+9)+9 (by (3))
= xy.
Thus ¢ is a generalized circle multiplication on R.
Conversely, suppose ¢ is a generalized adjoint multiplication on R. Set 9 =

000, A(z) =002 —000, p(z) =200—000and 6 = (A, p). For any a,z,y € R,
we have that

Mr+y)=00(z+y)—000=00x+00y— 20 = Ax)+ A(y),

AMz)a=(0ox—000)(a—0)

=00x0a—00x00—-0000a+00000 (by Lemma 2.3)
=0¢0(xoa—z00—-00a+000)—000

=00 (za)— 000

= A\ za),

which imply that A € End(Rg). Symmetrically, p € End(grR). Note that

zA(y) = (. —0)(0oy —000)
=z2000y—20000—-0000y+00000 (by Lemma 2.3)
=(xo0—-000)(y—0) (by Lemma 2.3)

= p(z)y.
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Thus 0 is a bitranslation of R such that fx =0¢z—-0¢0and 20 =z¢0—-0<0.
Hence 09 =009 —000=900—0¢0=196. Since

(0x)f =(00ox—000)0o0—-000=00200—-00000,
O(z0) =00 (x00—000)—000=00200—-00000,
we have that (0x)0 = 6(x0), that is, € is self-permutable. Observing that
(0 + my)x = Ox + Vx

=0¢0x—-—000+90x—0900—-00xz+170
=902 —000—-000U+0¢0

=60(0ox)— 00
=600z —1)
= 0%z,

and similarly x(0 + m9) = 262, we see that §* = 6 + 7y. It follows that (6,4) is an
associated pair of R. Since

roy=zy+xo0+00y—09=ay+ax0+0y+9

we see that ¢ is induced by (6,7).
If two associated pairs (0,9) and (¢,79) of R induce the same generalized
adjoint multiplication on R, then for any x,y € R we have

2y + 20 + 0y + 9 = ay + 20 + 0y + 9,

and so we have ¥ = 9 by taking x = y = 0, 26 = 26 by taking y = 0, and
0y = @'y by taking x = 0, whence (0,9) = (#',9"). Thus the correspondence
(0,9) — o is a 1-1 correspondence. O

Theorem 2.5 is an analogue of results in [26, 27].

Corollary 2.6. If Ann(R) =0, then any generalized adjoint multiplication on R
is induced by a bitranslation 0 of R such that 6> — 0 € R, and further there exists
a 1-1 correspondence between the set of bitranslations being idempotent modulo
m(R) and generalized adjoint multiplications on R.

Proof. 1If Ann(R) = 0, then Q(R) is an ideal extension of R. Let ¢ be the
generalized adjoint multiplication on R induced by an associated pair (6,v). Then
0? — 0 € R, and 6% = 0 + 1y implies ¥ = 6? — 0 since Ann(R) = 0. It is clear that
xoy=(r+0)(y+0)—0. From Theorem 2.5 the correspondence § — ¢ is a 1-1
correspondence. Il

The following corollary will be used freely throughout the rest of this paper.
Corollary 2.7. For any x;,y; € R, and p;,q; € Z with > p; = > q; = 1, we

have
(me) o (Z ijj> = pigsaioyy).
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Proof. For any z;,y; € R, and p;,q; € Z with ) p; = Y ¢; = 1, we have

Zpiqj (Jiz <& yj)
= > wiailwiyg) + Y piay(@if) + D pigi(By;) + Y pig
= (p) () + (mns) 00 (X aims) +
= (szﬂﬂz) o (Z qJZ/j) )
as desired. -

Corollary 2.8. Ifx,y € R® such that xoy = yox and p,q € Z such that p+q =1,
then

n - i n—i [ T i n—i
(pz +aqy)™ =) " p'q ( . )w”<>y[ !
1=0

Proof. As the usual binomial theorem, the corollary can be proved by use of an
induction on n and Corollary 2.7. U

By an affine subsemigroup of R® we mean a subsemigroup M of R°® such that
xr+y—ze€Sforany x,y,z € M.

For example, for an ideal extension R of R (i.e., Risa ring containing R as an
ideal) and a € R such that a>—a € R, then (R+a, o) is an affine subsemigroup of
R*. The semigroup (R + a, ¢) was studied in [18] to deal with lifting idempotents.

Definition 2.9. Let M and N be affine subsemigroups of GA-semigroups R° and
S¢ of rings R and S, respectively. If there exists a bijection ¢ from M onto N
such that

P(x+y—2z)=d(x)+9y) —d(2) and ¢(xoy) = ¢(x) o d(y)

for any x,y,z € M, then M and N are called affinely isomorphic, notationally
M ~ N.

Corollary 2.10. Let R be an ideal extension of R. Then any a € R such that

a’ — a € R induces a generalized adjoint multiplication on R given by

zoy=(rtally+a)—a

for x,y € R, and R° is affinely isomorphic to the affine subsemigroup (R + a,e)
of R®.

Proof. 1t is clear that a induces a bitranslation 6 of R by fx = ax and 20 = xa. If
a’*—a € R, then (0,a® —a) is an associated pair of R and the induced generalized
adjoint multiplication on R given by xoy = xy+za+ay+9 = (x+a)(y+a)—a.
Let ¢ be a map from R into R+ a given by ¢(z) = x+a for any x € R. Then it is
easy to check that ¢ is an affine isomorphism from R® onto the affine subsemigroup

(R + a,e) of R*. O
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Lemma 2.11. Let M be an affine subsemigroup of R°. Then

M—M:M—a:{Zpisi
for any a € M, and M — M 1is a subring of R.

s; € M, and p; € Z with Zpi:()}

Proof. The proof is a routine computation. O

Theorem 2.12. Let M and N be affine subsemigroups of GA-semigroups R® and
S¢ of rings R and S, respectively. If M ~ N, then the rings M — M and N — N

are isomorphic to each other. In particular, if R® ~ S°, then R = S.

Proof. Suppose ¢ is an affine isomorphism from M onto N. Take a fixed a € M
and let ¢* be the mapping from M into N defined by ¢*(z —a) = ¢(x) — ¢(a) for
any x € M. Then we see that ¢* is a bijection. Since for any z,y € M,

¢"((z —a) = (y —a))

¢ ((x —a)(y —a))

=¢*(xoy—roa—aoy+aca)

=¢(roy—roa—aoy+aca+a)— dla)

=p(xoy) —d(roa)—dlaoy) + Pplaca)+ ¢a) — ¢(a)

= ¢(x) 0 o(y) — () o p(a) — ¢(a) © G(y) + ¢(a) © ¢(a)

= (¢(x) = 6(a))(9(y) — d(a))

= ¢"(x —a)d™(y —a),
we have that ¢* is a ring isomorphism from the ring M — M onto N — N by
Lemma 2.11. U

Lemma 2.13. Let M be an affine subsemigroup of R°.
(i) If M has identity, then M ~ (M — M, o);
(ii) If M has zero, then M ~ (M — M, e).

Proof. Given e € (M, ), we define ¢ : M — M — M by ¢(x) = x — e. It is clear
that ¢(z +y — 2) = ¢(x) + ¢(y) — ¢(z). Note that for any =,y € M

(x—e)ly—e)=x0y—cz0e—eoytece. (4)
Thus, if e is identity of M, then
dzoy)=zoy—c
=(w—e)ly—e)+z+y—2¢ (by (4))

= (r—e)o(y )
= o(x) 0 (y);
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while if e is zero of M, then by (4),

proy)=zoy—e=(r—e)(y—e)=o)p(y).
Hence ¢ is an affine isomorphism if e is identity or zero of M. U

Theorem 2.14. Let R® be a GA-semigroup of a ring R. Then
(i) R® has identity if and only if R® ~ R°;
(ii) R® has zero if and only if R® ~ R*;
(iii) if R has identity, then R® ~ R® ~ R°.

Proof. (i) and (ii) are immediate results of Lemma 2.13. If R has 1, then R = Q(R)
and so by Corollary 2.10 there is a € R such that zoy = (z+a)(y+a) —a for any
x,y € R. Clearly, —a is zero of R°. Thus R® ~ R® by (ii), and R° ~ R*® under
the affine isomorphism x — 1+ z from R° onto R°®, proving (iii). O

3. GA-semigroups of w-regular rings

Recall that a semigroup S is (left, right, completely) m-regular if and only if for
any z € S there exists a positive integer n such that (2" € Sa"*! z" € 2"t1S,
" € Szt NS 2" € 2" Sz

For a positive integer n, a semigroup S is called (left, right, completely) m,-
regular if (z" € Sz, 2" € z"T1S, 2" € Sx"T N antLS) 2" € 2" Sa™ for any
x € S. By a (left, right, completely) mp-regular semigroup we mean a (left, right,
completely) m-regular semigroup.

For a non-negative integer n, a ring is called (left, right, completely) 7,,-regular
if its multiplicative semigroup is (left, right, completely) m,-regular.

In [15] we proved that the adjoint semigroup of a m-regular ring is m-regular
and in [16], we proved further that the adjoint semigroup of a (left, right, com-
pletely) m,-regular ring is (left, right, completely) m,-regular. In this section, we
will prove that this is true for GA-semigroups.

Lemma 3.1. For any a,b,z,y,z € R, we have
(a—aox)z(b—yob) €avoRob—aoRob.
Proof. Noting that a ¢ R< b is an affine subsemigroup of R°, we see that

(a—aox)z(b—yob)

=(a—aox)(z—0)(b—yob)

=aozob—aozoyob—ao0ob+acloyob—aoxzozob
+aozozoyobt+acoxol0ob—aoxro0oyob (by Lemma 2.3)

€caoRob—aoRob, (by Lemma 2.11)

completing the proof. O
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Lemma 3.2. Let A=boRoc—bo Roc. If x commutes with ¢ in R°, then
a—aox €A impliesa—aoz e A for any positive integer n.

Proof. To prove the lemma, we proceed with an induction on n. It is trivial for
n=1 Assumen >1landa—aox" e A Let a—acxl 1 =boyoc—bozoc.
Then multiplication (with respect to ¢) by z on the right shows that

aox—aozM =boyoroc—bozoxoc,
whence by Lemma 2.11

a—aorM =a—aoxr+aocx—aox™
=a—aox+boyoroc—bozoxoc

€ A,
as desired. N

Lemma 3.3. Let a and x commute with each other in R°. Then for any positive
integers m and n we have that

n+m—1]

(a —a™ ox)" =" — 4l o1,

for some y commuting with a and x in R°.

Proof. By Corollary 2.4,

(a —a™ o x)

n

=) (-1 ( 7; > all o (al™ o z)=1
_ (_1)71—2' ( n ) qlitm(n=i] o ,.[n—il
=0

n—1
_ a[n] _ Z(_l)n—i-‘rl ( 7; ) a[n-i—m—l] <>Cl[(m—l)(n—l—i)] <>:L,[n—i}

y = (_1)n7i+1 ( n ) (a[(mq)(ani)] <>:C[rH'}) .

Then (a — ao )" = a” — al"*™=1 6y and it is clear that y commutes with both
a and z. g
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Lemma 3.4. Let a,w,x,y,z € R such that x,y and z commute with a in R,
and let n be a positive integer, and k and m be non-negative integers not all zero.

If
(a—aozxoa)"=(a—aoy)wa—z0a)™,
then a™l = al® o w o al™ for some u € R.

Proof. Let A = a* o Roal™ —al¥ o Roal™. Then by Lemma 3.3 and Lemma
3.1, we have

a — "o = (¥ — o o $)w(al™ —t o a™) € A

for some 7, s,t € R commuting with a. By Lemma 3.2, al” — al"*%tm o € A.
Let al™ — alntrtml o = glFl o b o al™ — /¥l o ¢ o a/™. Then we have that

a" = gl o 4 g o boal™ — aHl o co ™ = ol o (o o7+ b — ¢) o al™,
as desired. g

Theorem 3.5. For a non-negative integer n, if a ring R is (left, right, completely)
Tp-reqular, then so is its any GA-semigroup.

Proof. Let R® be a GA-semigroup of R. If R be a right m,-regular ring for n > 1,
then for any x € R, there exist y € R such that (z — 2P¥)" = (2 — 2¥)"*1y. From
Lemma 3.4, we deduce that 2" = 2" o > for some z € R, whence (R, o) is a
right m,-regular semigroup. The remainder can be proved similarly. U

4. GA-semigroups with idempotents

Let R® be a GA-semigroup of R. Then R° is called (centrally) 0-idempotent if
the additive 0 of R is an (central) idempotent in R°. Let R°® be a 0-idempotent
GA-semigroup induced by the associated pair (6,9). Then it is clear that ¥ = 0
and so 6 is idempotent. One should note that (centrally) O-idempotent is not an
affine isomorphism invariant.

Lemma 4.1. Every GA-semigroup containing (central) idempotents is affinely
isomorphic to a (centrally) 0-idempotent one.

Proof. Suppose R° is a GA-semigroup containing an (central) idempotent e. Let
R. = (R,H, *) with

cBy=x+y—e,
rry=(r—e)(y—e)+e,

for any x,y € R. Then R, is a ring in which e acts as additive zero and * is clearly
an associative binary operation on R.. Denote by H the minus in R.. Noting that
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r+y—z=xHBHyHz for any x,y, 2 € R, we see that the operation ¢ satisfies the
generalized distributive laws in R, and further we have that

zxy=(r—e)ly—e)+e
=roy—xroe—edoytevete
=zoyHzroeHeoyHeoeHe

=zoyHzroeHeoyHeoce.

Thus ¢ is a GA-multiplication on the ring R, such that RS is (centrally) 0-
idempotent. It is easy to see that the identity mapping of R is an affine iso-
morphism from R° onto RY. U

Given two rings S and 7', two bimodules sUr and 7Vs, an S-S-homomorphism
¢ U®rV — S and a T-T-homomorphism ¢ : V ®s U — T (write uv for
¢(u ®v) and vu for (v ® u)) such that u(vu’) = (uv)u’ and v(wv') = (vu)v’ for
any u,u’ € U and v,v" € V. Let R = 5 g be the set of formal matrices.
Then R is a ring with the usual matrix operations, called the ring of the Morita
context, or a Morita ring, and denoted by M(S,T,U,V). Denote by S and T

the Dorroh extension of S and T, respectively. Then gUj; and V3 are unitary

bimodules in a natural way. Let R = ( 5 ;{ ) Then R is a unitary ring with
the usual matrix operations and R is an ideal of R. Let Eq = (1) 8 ) € R.

Then the generalized adjoint multiplication induced by FEj; is given by

Ao B :AB+AE11 +EllB
=(A+En)(B+En) - En
B sos+w (14 s)u+ut
S\ u(l+ )+t uu + tt’

s u s

for any A = ( v i > , B = ot ) € R. The semigroup R° is called the

E11-GA-semigroup of R, denoted by M¢$,(S,T,U, V). It is clear that the Ej;-GA-
semigroup M$,(S,T,U, V) is 0-idempotent.

Lemma 4.2. Let R° be a 0-idempotent GA-semigroup induced by an idempotent
self-permutable bitranslation 0, and let Ryy = 0RO, Ry = OR(1 — 60), Ryy =
(1-0)R0O, and Ryo = (1 —0)R(1 —0). Then
(i) R= R11 ® Rio ® Ro1 @ Roo as additive groups;
(i) RijRw C djxRji, where §;1, is the Kronecker delta, i,j,k,1 =0,1;
(ili) of we write x =Y x5, y = Y Yij, where x5, y;; € Rij, 1,5 = 0,1, then

r oy = (11 0 Y11 + T1oYo1) + (T10 + T11%10 + T10Y00)

+ (o1 + Tory11 + TooYo1) + (To1y10 + TooYoo);



X. Du, J. Wang: Generalized Adjoint Semigroups of a Ring 223
(iv) Ryj, 4,5 = 0,1, are subrings of R such that R}, = R{,, RS, = Ry, RS, is a
right zero semigroup, and R§, is a left zero semigroup.

Proof. Since 6 is idempotent, the proof of (i) and (ii) is essentially similar to that
of Pierce decomposition of a ring. For v = ) z;;, y = > y;;, where z;;,v;; € Ryj,
i,7 = 0,1, we have by (ii) that

( xij) (Z yij) +0 (Z xij> + (Z yz’j) 0
<Z xwykl> + 21+ Tio + Y1+ You

= (211 0 Y11 + T10Y01) + (Y10 + ZT11Y10 + T10Y00)
+ (zo1 + To1y11 + ZooYor) + (o110 + TooYoo),

proving (iii). If x,y € Ryy, then
roy=xy+al+0y=ay+r+y=zxoy,

whence R$, = RY,, and similarly, R}, = R,. For any z,y € Ry, we have by (ii)
that

roy=uzy+ x4+ 0y =y,

which implies that Rj, is a right zero semigroup, and similarly R, is a left zero
semigroup, proving (iv). O

Theorem 4.3. Let R° be a GA-semigroup of R. If R® contains idempotents,
then there exists a Morita ring M(S,T,U,V') such that R = M(S,T,U,V) and
R® ~ M$, (S, T,U, V).

Proof. Let R® be a GA-semigroup induced by the associated pair (6,49). If R®
contains idempotents, then by Lemma 4.1, without loss of generality, we may as-
sume that R® is O-idempotent. By Lemma 4.2, it is a routine matter to verify that
M (R11, Roo, R0, Ro1) is a Morita ring in a natural way. By Lemma 4.2 straight-
forward computation shows that the mapping ¢ : R — M(Ry1, Roo, R0, Ro1)
defined by

B 0x0 Ox(1 —0)
¢(z) = ( (1—0)x (1—6)x(1—-96) )

is a ring isomorphism. Noting that

oz oy) = o(xy + 20 + Oy)

a
(2)p(y) + o(x0) + o(0y)
(
(z

o+ (% ) (4 0
) oY),

we see that ¢ is an affine isomorphism from R°® onto the Ej;-GA-semigroup of
M(R11, Roo, Rio, Rot). 0

¢
¢
¢
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Corollary 4.4. A GA-semigroup R° is (centrally) O-idempotent if and only if
there exists an ideal extension R with 1 of R and an idempotent ¢ € R (commuting
with elements of R) such that x oy = (x +¢)(y +¢) — € for any x,y € R.

Proof. Tt follows from Theorem 4.3, the definition of the E;;-GA-semigroup and
taking g = Ell- ]

Lemma 4.5. If (a — a®)? = 0, then there exists an idempotent e = Y p;al’l with
S pi = 1 such that a?! = e o al?.

Proof. By Corollary 2.4, (a — al?)? = al? — 24P 4- /¥ and so

o = 2018 — gl = o 6 (26 — 0} = o o (20 — )2 = ¢ o (20 — o),
Note that by Corollary 2.8,

(2a — aP?B = 84l — 124" + 6411 — 0¥ = P o (8a — 1241 + 648 — o).

Let b = 8a—12a2 + 64 —a¥. Then b commutes with @ and a/? = a@oboal?. Let
e = al®ob. Then it is clear that e is an idempotent of R® such that a?! = eoa?. O

Let T'(R) = {0 € Q(R) |0z = 20 for any = € R}.

Lemma 4.6. A GA-semigroup of R induced by (0,9) has (central) idempotents
if and only if 0 can be lifted to an idempotent of Q(R) (contained in I'(R)).

Proof. Assume semigroup R° has an idempotent e. Then
e=eoce=ce’+el+0e+ 0,

whence 7, = 72 + w0 + 07, + 79 = T2 + Tl + O + 0% — 0 = (7w, + 0)* — 0. Thus
. + 0 is idempotent. Moreover, if e is central in R°, then e o x = x ¢ e for any
x € R, that is, ex + e + 0z + 9 = ze + 20 + fe + ¥, and particularly, e = fe
by taking x = 0. Thus (7. + 0)x = ex + 0z = ze + 20 = x(m. + 0), yielding
e+ 60 € I'(R).

Assume 6 can be lifted to an idempotent of Q(R). Then 7, + 6 is idempotent
for some a € R, whence T, = 2 + 7,0 + 07, + 02 — 0 = 72 + 7,0 + Om, + my.
Thus we have ax = a’x + (af)z + (fa)x + Jx = alPlx, forcing (a — a®)R = 0.
In particularly, (a — a?)? = 0, whence R° contains an idempotent e = > p;al’
with > p; = 1 by Lemma 4.5. Further, if 7, + 0 is an idempotent contained in
['(R). Then for any = € R, (7, + 0)x = z(7, +0), that is, ax + fx = xa + 20, and
particularly fa = af by taking x = a, whence

acxr=ar+0r+al+9=xa+z0+0a+v=xca.
Hence e oz = x ¢ e, that is, e is a central idempotent of R°. Il

Theorem 4.7. Consider the following conditions:

(i) every GA-semigroup of R contains (central) idempotents;
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(i) in any ideal extension R of R, idempotents of R/R can be lifted to idempo-
tents of R (contained in the centralizer of R in R);

(iii) idempotents of Q(R)/m(R) can be lifted to idempotents of Q(R) (contained
in I'(R)). Then (iii)=-(i)=-(ii). Moreover, if Ann(R) = 0, then (i), (ii) and
(iii) are equivalent.

Proof. (iii)=(i) follows from Lemma 4.6.
(i)=(ii): If a € R and a® — a € R, then the pair (6, 9) defined by

Or = ax, 20 = za, and ¥ = a* —a

is an associated pair and so xoy = xy+za-+ay+a®—a defines a GA-multiplication
on R. If e is an idempotent of R°, then e = € + ea + ae + a®> —a = (e + a)* — a,
and so e + a is an idempotent of R. Further if e is a central idempotent of R,
then eox = x ¢ e for any x € R, that is

er +ea+ ar + v = re + xa+ ae + I,

and particularly, ea = ae by taking x = 0. Thus (e + a)r = ex + ax = ze + ra =
x(e + a), which implies that e + a is contained in the centralizer of R in R.
The remainder is clear. U

The following corollary is independently interesting, which is a generalization of
a classical result in ring theory which states that idempotents modulo a nil ideal
can be lifted ([28]) and is a generalization of ring-theoretic analogue of a result of
Edwards ([19, Corollary 2]) which extends the well-known Lallement’s lemma to
eventually regular semigroups (i.e., m-regular semigroups).

Theorem 4.8. In any ring, idempotents modulo a m-reqular ideal can be lifted.

Proof. By Theorem 3.5, any GA-semigroup of a w-regular ring contains idempo-
tent, and so by Theorem 4.7 idempotents modulo a m-regular ideal can be lifted. [

If R is aring with ECT, then idempotents can be lifted from Q(R)/R to Q(R) ([7,
Corollary 3.6]), and so any GA-semigroup of R contains idempotents by Theorem
4.7. Particularly, every GA-semigroup of a biregular ring contains idempotents.
On the other hand, there is a ring such that idempotents modulo the radical cannot
be lifted. Hence a GA-semigroup of a radical ring need not contain idempotents.

A semigroup S is called completely primitive if the left ideal Se and the right
ideal S are minimal for every idempotent e of S ([6]). A completely primitive
semigroup S has kernel which is completely simple and contains all of idempotents

of S (]9]).

Lemma 4.9. Let R° be a GA-semigroup of a radical ring R. If R® contains
idempotents, then R° is completely primitive.
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Proof. Let e be an idempotent of R°. Then it is sufficient to prove that eo Roe
is a group. Since eo Roe ~ (eo Roe —eo Roe,0) by Lemma 2.11 and
Lemma 2.13, we have to prove that e o Roe — e o Ro e is a radical ring. By
Corollary 4.4, there are an ideal extension R of R and an idempotent ¢ € R such
that zoy = (x +¢)(y+¢) —e for any x,y € R. Thuseo Roe—eo Roe =
(e+e)(R+e)(et+e)—(e+e)(R+e)(et+e)=(e+e)R(e+e). Since ece = e, we
have that e + ¢ is an idempotent of R and so it is easy to see that (e +¢)R(e +¢)
is a radical ring since R is a radical ring. U

Lemma 4.9 is a GA-semigroup version of [18, Theorem 1 (b)—(c)]. Actually, many
results in [18] can be reexplained in terms of GA-semigroup.

Theorem 4.10. Any GA-semigroup of a nil ring is a completely primitive -
regular semigroup.

Proof. 1t follows from Theorem 3.5 and Lemma 4.9. O

Theorem 4.11. Let R be a ring with descending chain condition for principal
right ideals. Then any GA-semigroup of R is completely w-reqular. Particularly,
any GA-semigroup of a right Artinian ring is completely mw-regular.

Proof. If R is a ring with descending chain condition for principal right ideals,
then R is completely m-regular by Dischinger [12, Theorem 1] and Azumaya |2,
Lemma 1]. O
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