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Abstract. In this paper, we characterize a ring with a generalized
adjoint semigroup having a property P and such generalized adjoint
semigroups, where P stands for orthodox, right inverse, inverse, pseu-
doinverse, F-unitary, and completely simple, respectively. Surprisingly,
if R has a GA-semigroup with a property P, then the adjoint semigroup
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1. Introduction

Based on the paper [7], we continue our study of generalized adjoint semigroups
(GA-semigroup) of a ring. In the present paper we are concerned with the de-
scription of a ring R with a GA-semigroup having a property P and such GA-
semigroups of R, where P stands for orthodox, right inverse, inverse, pseudoin-
verse, F-unitary, and completely simple, respectively.

Let R be a ring not necessarily with identity. The composition defined by
aob = a+b-+ab for any a,b € R is usually called the circle or adjoint multiplication
of R. It is well-known that (R, o) is a monoid with identity 0, called the circle or
adjoint semigroup of R, denoted by R°. There are many interesting connections
between a ring and its adjoint semigroup, which were studied in several papers,
for example, [2, 4, 5, 6, 10, 11, 12, 15, 16]. Typical results are to describe the
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adjoint semigroup of a given ring and the ring with a given semigroup as its
adjoint semigroup.

The circle multiplication of a ring satisfies the following generalized distribu-
tive laws:

ao(b+c—d)=aob+aoc—aod, (1)
(b+c—d)oa=boa+coa—doa, (2)

which was observed in [1]. Thus as generalizations of the circle multiplication
of a ring, a binary operation ¢ (associative or nonassociative) on an Abelian
group A satisfying the generalized distributive laws have been studied by several
authors making use of different terminologies, for example, pseudo-rings, weak
rings, quasirings, prerings. In [7], we call a binary operation ¢ on R is called a
generalized adjoint multiplication on R, if it satisfies the following conditions:

(i) the associative law: z o (yoz) = (zoy) o 2;

(ii) the generalized distributive laws:

xo(y+z)=zoy+xoz—x00,

(y+z2)ox=yox+zox—00ou;

(iii) the compatibility: zy =x oy —2x00—00y+000.
The semigroup (R, ) is called a generalized adjoint semigroup of R, abbreviated
GA-semigroup and denoted by R°, which is a generalization of the multiplicative
semigroup and the adjoint semigroup of a ring R. Essentially, the multiplicative
and adjoint semigroup of R are exactly generalized adjoint semigroup of R with
zero and identity, respectively ([7, Theorem 2.14]).

In Section 2, we prove that a GA-semigroup with central idempotents is a
product of a multiplicative semigroup and an adjoint semigroup of ideals. The
GA-semigroups of a strongly regular ring are determined.

The remaining sections are devoted to the description of the rings with a
GA-semigroup having a property P and its such GA-semigroups in terms of the
ring of a Morita context, where P stands for orthodox, right inverse, inverse,
pseudoinverse, E-unitary, and completely simple, respectively. Surprisingly, we
observe the following implication:

R® has the property P = R° has the property P = R° has the property P,

where R*® denotes the multiplicative semigroup of R.

Throughout, the set of idempotents of a semigroup or ring S will be denoted
by £(S). For a ring R denote by R®* and R° the multiplicative and the adjoint
semigroup of R, respectively. It is easy to see that an element e of a ring R is an
idempotent of R° if and only if e + € = 0, that is, —e is an idempotent of R®,
and hence E(R) = E(R*) = —E(R°).

Although a ring R in this paper needs not contain identity, it is convenient to
use a formal identity 1, which can be regarded as the identity of a unitary ring
containing R, since R can be always embedded into a ring with identity 1; for
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example, we can write aob = (1+a)(1 +b) — 1 for any a,b € R and write 2° = 1
for any x € R by making use of a formal 1.

A radical ring means a Jacobson radical ring. For the algebraic theory and
terminology on semigroups we will refer to [3, 9, 13].

2. GA-semigroups with central idempotents

Recall that we call a GA-semigroups R° of R affinely isomorphic to the GA-
semigroup S¢ of the ring .S, notionally R® ~ S°, if there exists a bijection ¢ from
R onto S such that

px+y—2z)=d(x)+ oy) — ¢(2) and ¢(zoy) = ¢(z) o (y)

for any x,y,z € M. If R® ~ S° then R = S ([7, Theorem 2.12]). R® is called
(centrally) O-idempotent if the additive 0 of R is an (central) idempotent in R®
([7]). One should note that (centrally) 0-idempotent is not an affinely isomorphic
invariant. However, we have:

Lemma 2.1. ([7, Lemma 4.1]) Every GA-semigroup containing an (central) idem-
potent is affinely isomorphic to a (centrally) 0-idempotent one.

Lemma 2.2. ([7, Corollary 4.4]) A GA-semigroup R° is (centrally) 0-idempotent
if and only if there exists an ideal extension R of R and an idempotent ¢ € R
(commuting with elements of R) such that x oy = (x +¢)(y +¢€) — e for any
x,y € R.

Let R?, 1 =1,2,...,n, be GA-semigroups of rings R;. Then the direct product
[] R, called the direct product of RY, i =

[] Ry is a GA-semigroup of the ring
=1 =1

1,2,... ,n.

Example 2.3. Let R be a direct sum of ideals Ry and R;. For any x = a + b
and y = a + 0V, a,d € Ry, b,/ € Ry, define z oy = d'a+bob'. Then R° is a
GA-semigroup of R. Clearly, R®° >~ R x Rj.

Example 2.4. Let R be a zero ring, i.e., B2 = 0. Define z ¢y = y for any
xz,y € R. Then R® is a GA-semigroup of R, called the right zero GA-semigroup
of R. Symmetrically, one can define the left zero GA-semigroup of R.

Theorem 2.5. R° has a central idempotent if and only if R° ~ Ry x R} for some
ideals Ry and Ry of R such that R = Ry & R;.

Proof. The sufficiency is immediate. For the necessity, suppose that R contains
a central idempotent e. Without loss of generality, we can assume 0 is a central
idempotent in R® by Lemma 2.1. Then we can complete the proof by taking
Ry =¢R and Ry = (1 — ¢)R from Lemma 2.2. O

A duo ring is a ring in which one-sided ideals are ideals.
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Lemma 2.6. Let R° be a GA-semigroup of a duo ring R. If R® contains idem-
potents, then R® ~ R x R} X RS x RS, where R;, i = 1,2,3, are ideal of R such
that R = Ry ® R1 @ Ry @ Rs, R2 R%2 =0, RS is the left zero GA-semigroup of
Ry, and RS is the right zero GA-semigroup of Rs.

Proof. By Lemma 2.1 we can assume that R° is a 0-idempotent GA-semigroup.
Put Ry =¢cRe, Ry = (1—¢)R(1 —¢), Ry = eR(1 —¢), and R3 = (1 —€) Re, where
€ is as in Lemma 2.2. Note that Ry = ¢R N Re. Then we have that Rj is an
ideal of R since R is a duo ring. Similarly, R, Ry, and Rj3 are ideals of R, and
R=Ry® R, D Ry d Rs. The rest is routine. O

Corollary 2.7. Let R°® be a GA-semigroup of a commutative w-reqular ring. Then
R° ~ Ry x R} x RS x RS, where R;, i = 0,1,2,3, are ideals of R such that
R=Ry® R, ® Ry ® R3, RZ = R2 =0, RS is the left zero GA-semigroup of Ry,
and R is the right zero GA-semigroup of Rs.

Theorem 2.8. Any GA-semigroup R° of a strongly reqular ring contains central
tdempotents, and so R° ~ RS x Rj for some ideals Ry and Ry of R such that
R=Ry® R;.

Proof. 1t follows from [7, Theorem 3.5], Lemma 2.6 and the fact that a strongly
regular ring is a duo ring ([8, Theorem 3.2]). O

Corollary 2.9. The following statements for a ring R are equivalent.
(i) R is a Boolean ring;
(ii) R has a GA-semigroup is a semilattice;

(i) any GA-semigroup of R is a semilattice.

Proof. (iii)=-(ii) is trivial.

(ii)=(@): If a GA-semigroup R® is a semilattice, then by Theorem 2.5, R® ~
R§ x R, where Ry and R, are ideals of R such that R = Ry & R;. Since R° is a
semilattice, R and R are semilattices, implying that R is a Boolean ring.
(i)=-(iii): Let R°® be a GA-semigroup of R. Since R is a Boolean ring, by Theorem
2.8, R® ~ R§ x RS, where Ry and R, are ideals of R such that R = Ry® R;. Since
R is a Boolean ring, R° is a semilattice. U

3. Orthodox GA-semigroups

Given two rings S and 7', denote by S and T the Dorroh extension of S and T,
S U
vV T

sUr and 7V, which are considered as unitary S-T and T-S bimodules in a natural

5 g > Then R is an ideal of R. We call R the

ring of the Morita context or a Morita ring, and denote by M(S,T,U, V). Let

respectively. Let R = ( ) be the ring of the Morita context with bimodules

way, respectively. Let R = <
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Ey = ( (1) 8 ) € R. Then the generalized adjoint multiplication induced by Fy;

is given by

AoB =AB + AE,; + E4B
=(A+En)(B+En)— En

B sos +uv (14 s)u+ut
u(l+ ")+t wu' + tt’

s u s u

for any A = ( v i > , B = ot ) € R. The semigroup R° is called the
F11-GA-semigroup of R, denoted by M, (S, T,U, V). It is clear that the E;;-GA-

semigroup M3, (S, T, U, V) is O-idempotent ([7]).

Theorem 3.1. ([7, Theorem 4.3]) Let R® be a GA-semigroup of R. If R® con-
tains idempotents, then there exists a Morita ring M(S,T,U, V') such that R =
M(S, T,U, V) and R® ~ M$,(S,T,U,V).

A ring R is called adjoint regular if its adjoint semigroup R° is a regular semigroup
([5, 11]).

Lemma 3.2. Let R = M(S,T,U,V) and let R® be the F11-GA-semigroup of R.
If R® is reqular, then S is an adjoint reqular ring and T is a reqular ring.

Proof. LetRoz(g 8>andR1:<8 ;) Then we have R§ = Ry ~ S°

and R = Ry ~ T*.

Suppose R°isregular. For any a € Ry, there exists x € R such that a = aoxoa.
Noting that 0ca o0 = EjjaF1; = a and 000 = 0, we see that a = a¢0ox¢00a,
and 0oz o0 = EjzEy; € Ry, whence Rj is regular and so S° is regular.

Forany t € T, let A = ( 8 (2 ) Then there exists B = (Z Z) € R such
that
B (10 l+a u 1 0 [ a ut
A_AOBOA—(Ot)( v b)(0t>_E”_<tv tbt)’
yielding ¢ = tbt for some b € T'. Thus T is a regular ring. O

Lemma 3.3. Ifa—aoboa+aocoa be reqular in R® for some b,c € R, then a
1s regular in R°.

Proof. Let t =a—aoboa+aocoa. Then x = xoyox for some y € R. Let

z=y—boaoy+coaoy. Then

royoxr=ao(y—boaoy+coadoy)ox
=a0z0x

=ao(z—zoaob+zoaoc)oa.
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Thus

a=aoboa—aocoa+tao(z—zoaob+z0aoc)oa

=ao(b—c+z—z0aob+z0a0c)oa,
as desired. 4

Lemma 3.4. Let R= M(S,T,U,V) with VU = 0. Then the Ey;-GA-semigroup
R is reqular if and only if S is an adjoint reqular ring, T is a reqular ring and
ESYU =VE(S) =0, and if so, then

(i) R is an adjoint regular ring;

e—uv u(l

(i) 5(30):{( 7 f_f> ) | eGS(S),fEE(T),uGU,vGV};
(i) 5(3):{( 6*};@“” “ff > | eGS(S),fES(T),ueU,UGV}.

Proof. Suppose that R° is regular. Then by Lemma 3.2 we see that S is an adjoint
regular ring and 7" is a regular ring. Now for any e € £(5°) and u € U there

exists < 5 Y ) such that
z t

(05)=(o5)(20)(a7)
_(1+e u)(1+s y)(1+e u) B,

B ( ecosoetuz(l+e) (1+eos+uz)u )
N 0 0 ’

forcing that (e o s)u = 0, since (uz)u = u(zu) = 0. Observing e = —e(e o s), we
can see that eu = —e(e o s)u = 0, from which it follows that £(S°)U = 0. Since
E(S) = —&(S°), we have that £(S)U = 0. Symmetrically, VE(S) =

Conversely, suppose that S is an adjoint regular ring, 7" is a regular ring and
E(SYU =VE(S) =0. Let I be the ideal of S generated by £(S). Then [ is adjoint

regular by [5, Proposition 1] and IU = VI =0. Let A = ( f} ;L > € R, and s =
!
sos'os forsome s’ € S. Let B = % 8 ) andlet C = A—AoBoA+AcBoBoA.

To prove that A is regular in R°, it suffices to prove that C' is regular in R® by
Lemma 3.3. A straightforward computation gives

sos’os’os b
o=y

forsomebe U,ceV,andd e T. Let a =sos os' os. ThenCz(Z Z)

Since s o s’ and s’ o s are idempotents of S°, we have that a € I, and so aU =
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Va =0and a = aoad oa for some ¢ € I. Let d € T such that d = dd'd
Ly
and let © = @ + bd'c. Then zU = Vax =0. Let D = ( —fi’c c[l)’d ) Then a

straightforward calculation shows that

([ 1+a b 1+z —bd I1+a b
CODOC‘( ¢ d>(—d’c d )( ¢ d)_E“

[ (aox—bdc)oa b

- . g

But (aox —bd'c)oa = (aoa’)oa=a. It follows that C'o Do C = C, as desired.

To prove (i), let Sy = I + UV. Then S; is an ideal of S, whence S; is
an adjoint regular ring by [5, Proposition 1] and clearly SiU = VS; = 0. Let
R, = ( f/l g ) Then R; is an ideal of R and R/R; = S/S; is a radical ring
since S/I is a radical ring by [6, Lemma 7] or [5, Theorem 3]. To prove R is
adjoint regular, it is sufficient to prove R; is adjoint regular by [5, Theorem 3]. If
A= f} ;L € Ry, then s = so s’ o s for some s’ € S;. Since a regular ring is
adjoint regular by [5, Theorem 1] ([6, Theorem 4], [11, Proposition 2.3]), we have
that T is an adjoint regular ring, implying that ¢t =t o t' ot for some t' € T. Let

_ !/
x=5+ul+t)w. Then 2U = Va =0. Let B = ( —(1—x|—t’)v u(1t,+t) )
Then

AoBoA
[ 1+s w l+z —u(l+t) I1+s w 3
N v 1+t -1+t 1+t v 1+t

_ ( (sox—u(l+t)v)os u)

v t

But (sox —u(l+t)v)os = (sos’)os =s. It follows that Ac Bo A = A, proving
(i).

For e € £(S) and f € E(T), if uf = fu = 0, then it is easy to verify that

( —e-uvou ) € E(R°). Conversely, let £ = ( i 1; ) If £ € E(R°), then

v S

(3)

B B sost+uv (14 s)u+ut
E_EOE_<U<1+S)+75U 2 )

yielding s = s o s + uv. Thus
s+ 8% = —uw. (4)

By (4) (s + s?)* = u(vu)v = 0, that is, ((—s) — (—s)?)* = 0. By the R*-version of

[7, Lemma 4.5] there exists an idempotent ¢’ € £(R) such that s* = s*¢’ = €'s?.

Noting that (s+s*)u = —u(vu) = 0 by (4), we have that su = —s*u = —s?¢'u = 0,
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and dually we have that vs = 0. Since s*+ s* = —suv = 0 by (4), one can deduce
that s> € £(R). Let e = s®. Then s = —e — uv by (4). Putting f = ¢, we have
f € &(T) from (3). Since su = vs = 0, we obtain that ut = tv = 0 from (3). Thus
E= —e;uv ;ﬁ with e € £(S), f € E(T), and uf = fv = 0, proving (ii).
For e € £(5) and f € E(T), if u(l — f) = (1 — f)u = 0, then it is easy to

verify that et ? ) € E(R). Conversely, let £ = < f} 1; ) € E(R). Then
2
2 [ sStuv su+ut
E_E_(vs+tv 2 )’ (5)

yielding s = s? +uwv, that is s — s2 = uv. Similar to the proof of paragraph above,
we have s* € £(R) and su=vs = 0. Let e = s> and f =¢. Then s = e + uv and
e€&(S)and f € E(R). From (5) we get u = uf and v = fov, proving (iii). O

An orthodox semigroup means a regular semigroup whose idempotents constitute
a subsemigroup. A band is called regular if zyzz = zyzzx for any x,y, z € £(S5)
(19).

It is easy to see that R® is an orthodox semigroup if and only if R is a strongly
regular ring. In [6], we characterize the ring such that R° is orthodox, and we
particularly prove that such a ring is a generalized radical ring such that £(R°) is
a regular band ([6, Theorem 14]), where a generalized radical ring means a ring
whose adjoint semigroup is a union of groups ([2]).

Lemma 3.5. Let R = M(S,T,U,V). Then Ey;-GA-semigroup R° is orthodoz if
and only if S° is an orthodox semigroup, T is a strongly reqular ring, £(S)U =
VE(S) = UV = VU = 0. Moreover, if R® is orthodox, then R® are a union of
groups and E(R®) is a reqular band.

Proof. Suppose R° is an orthodox semigroup. Then by Lemma 3.4, S° and T* are
both orthodox semigroups, and so T is a strongly regular ring. For any x € U and

y € V it is easy to see that ( 2 8 ) and ( 8 g ) are both idempotents of R°.
0 0 0 z 0 =z
. o - . - . .
Since £(R°®) is a semigroup, ( y 0 )0( 00 ) = < - ) is an idempotent

of R°, whence
(O :L‘)_(O x)O(O :L‘)
y yx y yx y yx
1 =z 1 =z
(302 ) (0 )
y yx y yx
Ty T+ xyx

:(y+ywy y:v+(yx)2>’

and so zy = 0. Noting that yx is a nilpotent element of T, we see that yz = 0
since T is a strongly regular ring. Thus UV = VU = 0. Since R° is regular, we
have £(S)U = VE(S) = 0 by Lemma 3.4.
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Conversely, suppose S° is an orthodox semigroup, T is a strongly regular ring,
and E(S)U =VE(S) =UV = VU = 0. It suffices to prove that R° is a union of
groups and E(R°) is a regular band. By Lemma 3.4,

8(R°):{<(1_€f)v u<1f_f))|665(50),f65(T),u€U,U€V}. (6)

For any A = ( ) € R, there exist &' € S, e € £(5°),t € T and f € E(T)

s u
v ot
such that sos’ = s os=¢,eo0s=s0e=s,and eos = s oe = s since S° is
a union of groups by [6, Theorem 14|, and tt' = t't = f and ft = t since T is a
strongly regular ring. Let

_ e (1+s)u(l = f)
5= aopmare O RT)
s (14 s osHu(l—f)—(1+s)ut
¢= ( —t'v(1+ ¢ t ) '

Then B € £(R) by (6), and a computation yields that Ao B = Bo A = A and
Ao C = B, whence R° is completely regular and so it is a union of groups by [3,
Theorem 4.3].

Now we have to prove that £(R°) is a regular band. For E, E', E” € £(R°®),

/ / 1 "
e = ()= (0 )= () then s = o= up -
fo'=d"f" = f"" =0 by (6). Observe that

l+e u 1+¢e o
EOE,_< v f)( ’U/ f,)—Ell
B eoe u +uf
_<'U+f?,7/ ff/ ) (7)
Since £(S°) is a band, we have that e o e’ € £(S°). Since T is a strongly regular
ring, idempotents are contained in the center of T, and so ff’ € £(T'). Moreover,
(W +uf)ff =4 ff+uff =0 and similarly ff'(v+ fv’') = 0. It follows from

(6) and (7) that F o E' € E(R®). Thus £(R°®) is a band. Now we need to prove
E(R®) is regular. By (7), we have that

EoFE oE"
l4+eoe v +uf 14+¢e" u”
= v+ fU/ ff/ 0" f// — En
B eo 6/ o 6// u// + u/f// + uf/f//
- v + f,U/ _l_ ff/,U// ff/f// )



238 X. Du, J. Wang: Regular Generalized Adjoint Semigroups of a Ring

and by (8) we have

EoFE oFE"oF
B l4eoeoe u +uf"+uff l4e u 5
AN R i o of)

_< cococloe u+u”f+U’f”f>
n v+ fv’ + ff’y" ff/f// .

Replacing z” by x in (8), = € {u,v,e, f}, we get that

/ !
EoF oF = ( coeoe “+uf),

v+ fu ff
and replacing 2’ by 2" in (10), z € {u,v,e, f}, we get that

" "
EoE”oE:(eoe oc ““‘f)

U—i-fU” ff// (11)
Thus by (7) and (11) we have that

EoE oEoFE'oF
(1+eoe’ u’—l—uf’)(l—l—eoe”oe u—l—u”f)
= — En

v+ fl)l ff' U‘f‘fl}” ff//
:(eoeloeoeﬂoe u—l—u”f—ku'ff”) (12)
v+ fo' + ff” frr '

Since £(S°) is a regular band by [6, Theorem 14], we have that Eo E' o E" o E =
EoFE oFEoFE"oFE by (9) and (12). Hence £(R°) is a regular band, and so R® is
an orthodox semigroup. U

Theorem 3.6. The following statements are equivalent for a GA-semigroup R°
of R.
(i) R® is orthodox;
(ii) R® is a union of groups and E(R®) is a reqular band;
(i) R® ~ M$,(S,T,U, V), where S° is an orthodox semigroup, T is a strongly
reqular ring, and E(S)U =VE(S) =UV =VU = 0.
Proof. 1If follows from Lemma 3.5 and Theorem 3.1. U

Theorem 3.7. The following statements are equivalent for a ring R.
(i) R has an orthodox GA-semigroup;
(ii) R° is an orthodox semigroup;

(iii) R° is a union of groups and E(R°) is a regular band.
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Proof. (i)« (iii) follows from [6, Theorem 14] and (ii)=-(i) is trivial. It re-
mains to prove (i)=-(ii). Suppose that a GA-semigroup R° is orthodox. Then
by Theorem 3.1 and Theorem 3.6 we can assume that R = M(S,T,U,V) and
R = M$,(S,T,U, V), where S° is an orthodox semigroup, 7 is a strongly regular
ring, and £(S)U = VE(S) = UV = VU = 0. By Lemma 3.4, R is an adjoint
regular ring with

E(R°) = {( j ; ) le € £(S°), f € E(T°),u(l+ f) = (1L+ flu = 0}. (13)

f otf
Ao A=(1+A)1+A4)-1
:(l—l—e u >(1+6' u’ )_1
v 14+ f o 14 f
_( eoe u'+u(1+f’)>
o\ v (14 ) folf '

Since S° is orthodox, e o ¢’ € £(S°). Since T is a strongly regular ring, f o f' =
f'ofe&(T°). Observing that

(W H+ud+ M)A+ fof)=d A+ A+ f)+ud+ A+ f)=0

and similarly (14 f'o f)(v+ (1 + f)v') =0, we see that Ao A’ € E(R°) by (13).
Hence £(R°) is a band. It follows that R° is orthodox. O

/ /
If A= ( 5 Y ) and A’ = ( ¢ u, ) are both idempotents of R°, then

4. Inverse GA-semigroups

Recall that a semigroup is called a right inverse semigroup if its every principal
left ideal has a unique idempotent generator. According to [18, Theorem 1], a
semigroup S is a right inverse semigroup if and only if S is a regular semigroup
in which the set £(9) of all idempotents is a right regular band, that is zy = yzy
for any z,y € £(5). A semigroup is inverse if it is left and right inverse.

It is clear that R® is inverse if and only if R is a strongly regular ring. A ring
with the inverse adjoint semigroup was studied by [4, 6, 10, 11, 12, 16] and a ring
with the right inverse adjoint semigroup was described in [6].

Lemma 4.1. Let R = M(S,T,U,V). Then the Ey-GA-semigroup R° is right
wnverse if and only if S° is a right inverse semigroup, T is a strongly reqular ring,

and E(S)U =V =0, and if so, then R° is right inverse.

Proof. Suppose that R° is right inverse. Then S° is a right inverse semigroup
and T is a strongly regular ring by Lemma 3.2. Noting that R°® is orthodox, we

have that £(S)U = 0 by Lemma 3.5. For any v € V, let A = ( 2 8 ) Then
A € E(R®), and hence
A=Ac0=00A00=0,
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yielding v = 0. It follows that V' = 0.

Conversely, suppose that R = M(S,T,U,0) such that S° is a right inverse
semigroup, T' is a strongly regular ring and £(S)U = V = 0. Then the Ej;-GA-
semigroup R° is a regular semigroup with

E(R®) = {( 8 ; ) | e € £(5°), f € E(T),u e U and uf:O} (14)

/ /
by Lemma 3.4. For E, E' € £(R°), let E = ( 8 1; ) and B = ( ‘6 ; ) Then
uf = f'=0 by (14). Observing that

EOE,:(l—(i)—e ;)(1—56/ ;:)—EH:(BEQI u'}l—fl/tf/)’
E’OEOE’:(l—gel ?:)(14—(@)06/ U/}_quf,)_Ell
_(e’<>e<>e’ u’—i—uf’—i—u’ff’)
B 0 'y
_(eoe’ u’+uf’)
B 0 fr
=FEoF,

we see that £(R®) is a right regular band. It follows that R° is a right inverse
semigroup.

We now proceed to prove R° is right inverse. It suffices to prove that £(R°)
is right regular since R° is regular by Lemma 3.4. Note that

E(R°) = {( 8’ ; ) le € £(S°), f € E(T°),u(l+ f) = 0}

e/ !/

by Lemma 3.4. For F, F' € £(R°), let F = < 8 ? ) and F' — ( 5 ?;/

o eoe u +u(l+f)
F F_( A )

) . Then

Paper— (40 )a( 15l WD)

0 f 0 folf
_(e’oeoe’ u’+u’—|—u(1—|—f’)—|—u’(fof’)>
a 0 frofelf
=FolF,

since £(S5°) is right regular, £(T°) is a semilattice, and u/(1+ fo f') = 0. It follows
that £(R°) is right regular, as required. d
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Theorem 4.2. A ring R has a right inverse GA-semigroup if and only if R° is
right inverse. Moreover, a GA-semigroup R° of R is right inverse if and only if
R® ~ M$,(S,T,U,0), where S° is right inverse, T is a strongly reqular ring, and
E(S)U =0.

Proof. 1t follows from Lemma 4.1 and Theorem 3.1. U

Lemma 4.3. Fore € E(R®) and x € R, we have
eteox—eoxoec&(R°) ande+rzoe—eoxcoec E(R).
Proof. Let a=e+cecox—ecoxoe, then aoe =e and e o a = a, whence
aca=ao(eca)=(avce)oa=eoa=a.

The other can be proved dually. U

Lemma 4.4. If idempotents of R® commute, then idempotents are central in R°.

Proof. Suppose idempotents of R® commute. For any e € £(R®) and = € R, let
a=e+eoxr—eoxroe Then a € E(R®) by Lemma 4.3, and so ecva = a<e,
yielding ecx = eoxoe. Dually, zoe =eoxoe. Thus eox = x ¢ e for any
r € R. O

Lemma 4.5. Let R = M(S,T,U,V). Then the E11-GA-semigroup R® is inverse
if and only if S° is an inverse semigroup, T is a strongly reqular ring, and U =

V=0

Proof. The lemma follows from Lemma 4.1 and its left-hand version. U

Theorem 4.6. The following statements are equivalent for a GA-semigroup R°
of R.

(i) R® is inverse;

(il) R° is a regular semigroup in which idempotents are all central;

(ili) R® ~ R§ x Ry, where Ry and Ry are ideals of R such that R = Ry® Ry, Ry

15 a strongly reqular ring and RS is inverse.

Proof. (i) (ii) follows from Lemma 4.4 and [3, Theorem 1.17]. Since the idem-
potents are central in a ring with inverse adjoint semigroup by [4, Theorem 6] or
[6, Theorem 17], (iii)=>(ii) is clear. Now suppose R° is inverse. Then by Theorem
3.1 and Lemma 4.5, R® ~ M$,(S,T,0,0), where S° is inverse and T is a strongly
regular ring. It is clear that M, (S,T,0,0) ~ S° x T, proving (i)=>(iii). O

Theorem 4.7. A ring R has an inverse GA-semigroup if and only if R° is in-
verse.
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Proof. The sufficiency is trivial. For the necessity, if a GA-semigroup R° is inverse,
then by Theorem 4.6, we have that R = Ry ® R;, where Ry and R, are ideals of R
such that Ry is a strongly regular ring and Rj is inverse. Clearly R° = Ry & R;.
Since the adjoint semigroup of a strongly regular ring is inverse by [4, Theorem
6] or [6, Theorem 17], we have R° is inverse. O

Recall that a regular semigroup is called pseudoinverse if and only if eSe is inverse
for any e € £(9), if and only if idempotents of eSe commute for any e € £(95)
([9, IX.3]). We note that R* is pseudoinverse if and only if R is a strongly regular
ring. Since R° has identity, R° is pseudoinverse if and only if it is inverse. In [6],
we described the ring such that e o R o e is inverse for any idempotent e # 0.

Lemma 4.8. Let R = M(S,T,U,V). Then the E11-GA-semigroup R® is pseu-
dotnverse if and only if S° is an inverse semigroup, T is a strongly reqular ring,
and ESYU =VE(S)=UT =TV =VU =0, and if so, then R° is inverse.

Proof. Suppose R° is pseudoinverse. Then T is a regular ring by Lemma 3.2. For
any f € E(T) let A = < 8 ?C ) Then A € £(R°) and AoRoA = < fff fUTff )
Since Ao R¢ A is inverse, we have by Lemma 4.5 that S° is an inverse semigroup,
fTf is a strongly regular ring and U f = fV = 0. Thus T is a strongly regular ring
and so UT = TV = 0. Noting that VU C T, one sees that (VU)? C V(UT) = 0,
implying that VU = 0, since T is a strongly regular ring. Since R® is regular,
E(SYU =VE(S) =0 by Lemma 3.4.

Now we prove the sufficiency. By Lemma 3.4,

5(30):{( _‘3;“” ?)\eGS(S),fGE(T),ueU,UGV}.

For any u € U and v € V let

ng{( e—w ;ﬁ)leEE(S) andfeg(T)}.

v

Then E(R) = |J &u.. For any A, B € E(R®), straightforward computation
u,v)eEU XV

shows that A <(> B) =BoAifand onlyif A,B € &,, for some u € U and v € V.

It follows that the commutativity defines an equivalence relation on £(R®) whose

set of equivalence classes consists of &, ,, (u,v) € U x V. Now for any B € &,,,

idempotents of Bo Ro B commute with B, implying that idempotents of Bo Ro B

commute. Thus R° is pseudoinverse. We need to prove that R° is inverse. To do

this, we observe that R° is regular and £(R) = < £s) - 0 ) by Lemma 3.4.

0 &)
Thus E(R°) = 5(8’ ) 5(30) ) and £(R°) is a semilattice. It follows that R°

is inverse by [3, Theorem 1.17]. O
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Theorem 4.9. A GA-semigroup R° of a ring is a pseudoinverse semigroup if and
only if R® ~ MS,(S,T,U,V), where S° is inverse, T is a strongly reqular ring,
and ESYU =VES)=UT =TV =VU =0.

Proof. 1t is an immediate consequence of Theorem 3.1 and Lemma 4.8. O

Theorem 4.10. The following statements for a ring R are equivalent.
(i) R has a pseudoinverse GA-semigroup;
(ii) R has an inverse GA-semigroup;

(iii) R° is inverse.
Proof. (1)< (iii) follows from Lemma 4.8 and (ii)<(iii) is Theorem 4.7. O

Theorem 4.11. Every GA-semigroup of R is inverse (orthodozx, pseudoinverse)
if and only if R is a strongly regular ring.

Proof. If R® is inverse (orthodox, pseudoinverse), then R is a strongly regular ring.
Conversely, if R is a strongly regular ring, then by Theorem 2.8, R° ~ RS x Rj
for some ideals Ry and R; of R such that R = Ry ® R;. Note that Ry and R; are
strongly regular rings. Then we have that Rf and R] are inverse semigroups, and
so R° is an inverse semigroup. U

5. E-unitary GA-semigroups

Recall that a regular semigroup S is called E-unitary if for any a € S and e € £(95),
ae € £(S) implies a € £(5), and this is equivalent to that ea € £(S) implies
a € E(S) for any e € £(S5) and a € S ([9]). Clearly, R® is F-unitary if and
only if R is a Boolean ring, for a0 = 0 for any a € R. In [6], we presented a
characterization of the rings with F-unitary adjoint semigroups.

Lemma 5.1. Let R = M(S,T,U,V). Then the Ey;-GA-semigroup R°® is E-
unitary if and only if S° is E-unitary, T is a Boolean ring, and E(S)U = VE(S) =
Ur=Tv =UV =VU =0.

Proof. Suppose that R® is E-unitary. Then S° and T* are clearly F-unitary by

Lemma 3.4, and hence T is a Boolean ring. Let A = ( 2 1; ) Then Ao 0 =

00 . 0 u . .
(v O)Ec‘:(R),andso(U t)eé’(R),thatls,

0wy . (1 u 1 u B uw  u+ut
(v t)_A_AOA_<U t)(v t)_EH_(U—I—tv vu+t2)’

from which it follows that UV = UT =TV =0 and so VU = 0 since (VU)? =0
and 7T is a Boolean ring. Since R° is regular, £(S)U = VE(S) = 0 by Lemma 3.4.
The necessity is proved.
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Now we prove the sufficiency. By Lemma 3.4,

E(R%) = ( £ U ) (15)

Vv T
since T" is a Boolean ring. For any A = ( j ;L ) € Rand F = z gJ/c ) €
E(R®),if Ao E = ( soe (I jfs)y ) € E(R®), then soe € £(5°) by (15), and
so s € £(S°) since S° is E-unitary. Therefore, A € E(R®) by (15). O

Lemma 5.2. If R° is E-unitary, then R is a direct sum of a Boolean ring and a
radical ring.

Proof. By [6, Theorem 23], R is an extension of a Boolean ring by a radical ring.
Let B be a Boolean ideal of R such that R/B is a radical ring. Observing that
idempotents of R are central, we see that B is contained in the center of R. For
any a € R there exists b € R such that aob € B. Let e =aob. For any f € B,
we have that

f(l—e)ao f(1—e)b=f(l—e)(aob)=0.

Since f(1 —e)a € B, we have that f(1 —e)a = 0. Thus (1 — e)a € Anng(B),
whence a = ea+(1—e)a € B+Anng(B). Since B is semiprime, BNAnng(B) = 0.
Hence R = B @ Anng(B) and Anng(B) is a radical ring since R/B is a radical
ring. U

Theorem 5.3. A GA-semigroup R° of a ring R is E-unitary if and only if R® ~
(S, T, U, V), where S is a direct sum of a Boolean ring with a radical ring, T

is a Boolean ring, and E(S)U =VE(S)=UT =TV =UV =VU =0.
Proof. Tt follows from Theorem 3.1, Lemma 5.1, and Lemma 5.2. U

Theorem 5.4. The following conditions are equivalent for a ring R.
(i) R has an E-unitary GA-semigroup;
(ii) R is a direct sum of a Boolean ring with a radical ring;
(iii) R° is E-unitary.
Proof. (ii)=-(iii) and (iii)=(i) are clear. Suppose that a GA-semigroup R° of R
is F-unitary. Then by Theorem 5.3 and [7, Theorem 2.12], R = M(S,T,U,V),

where S is a direct sum of a Boolean ring S; with a radical ring Sy, T is a Boolean

ring, and E(S)U =VE(S)=UT =TV =UV =VU =0. Thus
~f S1®S U\ (5 0 Sy U
R‘( % T>_(O T)@<v 0)’
and clearly < %1 ; ) is a Boolean ideal and < ?/2 g > is the radical of M (S, T,
U, V), proving (i)= (ii). O
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Corollary 5.5. A ring has a GA-semigroup which is a band if and only if it is a
direct sum of a Boolean ring with a zero ring.

Proof. Suppose R° is a band. Then R° is E-unitary, and so by Theorem 5.3,
R® ~ M$,(S,T,U, V), where S is a direct sum of a Boolean ring with a radical
ring, T is a Boolean ring, and £(S)U = VE(S) =UT =TV =UV =VU = 0.
Since R° is a band, S is a Boolean ring, and so SU = V'S = 0. Therefore, by [7,

Theorem 2.12], R~ M(S,T,U, V) = ( ﬁ 31 >€9< 3 [é > Clearly ( g 3’ >

2
) ) 0 U \. ) 0 U
is a Boolean ideal and < vV o0 ) is an ideal such that ( vV o0 ) =0.

Suppose R is a Boolean ideal S and an ideal T such that 7?2 = 0. Then the

direct product of S® and the right zero GA-semigroup of T' gives a GA-semigroup
of R which is a band. O

6. Completely simple GA-semigroups

If R® is completely 0-simple, then R is a division ring, while if R° is completely
O-simple or simple, then R is a division ring or a radical ring ([17, 10]).

If a € Ris aunit in R°, we denote by a~ the inverse of a, i.e., the quasi-inverse
of a ([14]).

Lemma 6.1. Let R = M(S,T,U,V). Then the Ey;-GA-semigroup R° is com-
pletely simple if and only if S is a radical ring and T = 0, and if so, then R is a
radical Ting.

Proof. Suppose that R® is completely simple. Then R°® is regular, and so S°
is a regular semigroup and 7' is a regular ring by Lemma 3.2. Noting that 0 is
a primitive idempotent of R°, we have that 0 ¢ R ¢ 0 is a group by [3, Lemma
2.47]. Since S° ~ 00 R<0, S is a radical ring. If f is an idempotent of 7', then
Enf=fF; =0,andso 0¢ f = fo0 = 0, which implies that f = 0 since 0 is
primitive. Thus T" = 0.

Conversely, for any ( CCL 8 ) , ( Z :g ) € R, we have

(cadeyn)o(e)e ("o )= (1),

whence R° is a simple semigroup. By [9, Proposition I1.4.7], it is sufficient to prove
e u

that 0 is a primitive idempotent in R°®. Let A = 0

R° such that 00 A= A0 = A. Then

(vo)=(os)-(00)

e O
00

e = 0 since S is a radical ring. Hence A = 0. It follows that 0 is a primitive

> be an idempotent of

yielding u = v = 0. Thus A = ( and so e is an idempotent of S°, forcing
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idempotent in R°. We now prove that R is a radical ring. Observing that R° is
regular and £(R) = 0 by Lemma 3.4, we see that R° is a group, that is, R is a
radical ring. U

Theorem 6.2. A GA-semigroup R® of R is a completely simple semigroup if and
only if R® ~ M¢$,(S,0,U, V), where S is a radical ring.

Proof. Tt follows from Theorem 3.1 and Lemma 6.1. O

Corollary 6.3. A ring has a completely (0-)simple GA-semigroup if and only if
R is a (division) radical ring.

Proof. Let R°® be a GA-semigroup of R. If R® is completely O-simple, then by [7,
Theorem 2.14], R* ~ R° is completely 0O-simple, and so R is a division ring. If
R? is completely simple, then R® ~ M¢$,(S,0,U, V), where S is a radical ring by
Theorem 6.2, and so R = M(S,0,U,V) is a radical ring by Lemma 6.1 and [7,
Theorem 2.12]. The sufficiency is clear. U

We conclude that

R® has the property P = R° has the property P
= R° has the property P,

where P stands for orthodox, right inverse, inverse, pseudoinverse, E-unitary, and
completely simple, respectively.
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