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Abstract. The present paper continues the study of the nature of the
variety X [M ] of directions of pointwise planar normal sections for the
manifold M of complete flags of a compact simple Lie group Gu.
The main results concern submanifolds embedded in RPm−1 (m =
dimM) which are subsets of X [M ]. One of them is an open set in
the natural topology of X [M ] whose dimension is related to that of M
and the rank of the Lie group Gu. Others are projective subspaces of
“minimal” dimension contained inX [M ] for the groupsGu = SU(n+1).
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1. Introduction

In [5] the variety X [M ] of directions of pointwise planar normal sections of a
natural embedding of an R-space M , was introduced. This is a real algebraic
variety in the real projective space RPm−1, where m = dimM and in some sense
it measures the difference between the given manifold and a symmetric R-space.
This variety in general has singularities but in the present paper, when M is the
manifold of complete flags of a compact simple Lie group Gu, we observe the
presence of an open set in the natural topology of X [M ] which is a differentiable
manifold whose dimension is related to that of M and the rank of the Lie group
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Gu. The presence of this manifold gives some indication of the “size” of X [M ]
inside the projective space RPm−1.

On the other hand, the existence of certain submanifolds such as projective
subspaces in an algebraic variety like X [M ] indicates that the variety is rather
special. Therefore the knowledge of the presence of these submanifolds seems to
be desirable. In a couple of papers [6] and [7] the presence of these submanifolds
in X [M ] was considered when the R-space M is the manifold of complete flags of
a compact simple Lie group Gu. In the first one, a family of maximal projective
subspaces in X [M ] was described. In the second one, the study of projective
subspaces of X [M ] was continued and the main result there relates a family of
these subspaces, which are of the maximal possible dimension with tangent spaces
to some of the inner symmetric spaces corresponding to the group Gu.

Also in [12], related to the study of extrinsic symmetric CR-structures on the
manifold of complete flags M , it was observed a strong connection between the
holomorphic tangent spaces of these structures and those subspaces of the tangent
space to M which give rise to projective subspaces in X [M ]. This particular fact
throws new light on the interest of the study of these subspaces in X [M ].

Following this line, in the present paper and for the manifold Mn=SU(n+1)/T n,
we obtain information about the minimal possible dimension of those maximal
Ad(T n)-invariant vector subspaces in the tangent space defining projective sub-
spaces in X [M ]. Since we have already determined the maximal possible dimen-
sion for these subspaces we have thus a description of the range of the admissible
dimensions for them.

This paper is organized as follows. Section 2 contains the notation and basic
facts necessary to get acquainted with the theme of the paper. Section 3 contains
information on the nature of the polynomials associated to the variety X [M ].
The main result here is Theorem 3.2 which shows the existence of submanifolds
in X [M ] when M is the manifold of complete flags of a compact simple Lie group
Gu. It is proven that the variety X [M ] contains an open set (for the induced
topology from RPm−1) which is a differentiable submanifold of dimension m− n
embedded in RPm−1, where n is the rank of the Lie group Gu. This set is the
projection of the non-singular points in Rm of the function whose coordinate are
the polynomials defining the variety X [M ].

In Section 4, for the family Mn = SU(n+1)/T n we study the varieties X [Mn].
In the first place we give recursive formulae for the polynomials defining them
which allows us to show that, for certain natural embeddings, the set of directions
of pointwise planar normal sections of Mn is contained in that of Mn+1. In the
second one we obtain Theorem 4.4 which is the main result of this section. It shows
that a subspace of the tangent space of Mn, which is maximal among the Ad(T n)-
invariant subspaces defining projective subspaces in X [Mn], must have dimension
greater than or equal to 2n. Furthermore this results gives a characterization
of those of dimension 2n relating them with tangent spaces to inner symmetric
spaces for the group SU(n+1). We conclude that, if we pose no restriction, when
the dimension of the Ad(T n)-invariant subspace defining projective subspaces in
X [Mn] is not one of the extreme cases, there is no connection between them and



W. N. Dal Lago et al.: Submanifolds in the Variety of . . . 291

any tangent spaces to a homogeneous manifold of the group SU(n+ 1).
Also we obtain, as an application, a result about the holomorphic tangent

spaces of SU(n+1)-invariant minimal almost Hermitian extrinsic symmetric CR-
structure on Mn related to [12].

2. Notation and basic facts

Let f : M → RN be an isometric embedding. We may identify M with its image
by f . Let p be a point in M and X a unit vector in the tangent space Tp (M). If

Tp (M)⊥ denotes the normal space to M at p, we may consider the affine subspace

of RN defined by S (p,X) = p+ Span
{
X,Tp (M)⊥

}
.

If U is a small enough neighborhood of p in M , then the intersection U ∩
S (p,X) can be considered as the image of a C∞ regular curve γ (s), parametrized
by arc-length, such that γ (0) = p and γ′ (0) = X. This curve is called the normal
section of M at the point p in the direction of X.

Following B. Y. Chen, we say that the normal section γ of M at p in the
direction of X is pointwise planar at p if its first three derivatives γ′ (0) , γ′′ (0)
and γ′′′ (0) are linearly dependent, i.e. if γ′ (0) ∧ γ′′ (0) ∧ γ′′′ (0) = 0.

In previous papers we have studied the pointwise planar normal sections of
an orbit of an s-representation; i.e. of a natural embedding of an R-space or real
flag manifold (the reader is referred to [5, p. 225] and references therein, for basic
information concerning R-spaces, canonical connections, etc.). In order to recall
one of the results obtained there, that is needed in the present paper, we introduce
now some necessary notation.

Let f : M → RN be a natural embedding of an R-space and let ∇ denote
the Riemannian connection associated to the metric induced from the Euclidean
metric. Let∇c denote the canonical connection associated to the “usual” reductive
decomposition of the Lie algebra of the compact Lie group defining M . Let
D = ∇ − ∇c denote the difference tensor and let α be the second fundamental
form of the embedding f . The indicated result is the following.

Theorem 2.1. [5, p. 226,(2.5)] If f : M → RN is a natural embedding of an
R-space and p is a point in M , then the normal section γ with γ (0) = p and
γ′ (0) = X is pointwise planar at p if and only if the unit tangent vector X at p
satisfies the equation

α (D (X,X) , X) = 0. �

This result allows us to define Xp [M ] as the image (for the canonical projection)
in the real projective space RPm−1 (m = dimM) of the set of those directions
that define pointwise planar normal section at p. Since M is an orbit of a group
of isometries of the ambient space RN , it is clear that Xp [M ] does not depend on
the point p and we may denote it by X [M ].

It is known that X [M ] is a real algebraic variety of RPm−1 defined by homo-
geneous polynomials of degree 3 (see [5, p. 227, (2.9)]).
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In this paper we restrict our attention to manifolds of complete flags which
have been the subject of our work for some time and where we have obtained the
most interesting results. These are, among complex flag manifolds M , those where
X [M ] presents the greatest simplicity in geometric terms (i.e. minimal number of
defining polynomials). At the same time, these manifolds are sufficiently compli-
cated to yield interesting information about the varieties of planar normal sections.
This is so because they are the flag manifolds which stand further apart from the
corresponding Hermitian symmetric spaces, if the group under consideration has
one (this is not the case for E8, F4 and G2). For a Hermitian symmetric space
H, by results of Chen [3] and Ferus [10] (compare [5, p. 224]), it is known that
the variety X [H] is the real projective space RP h−1 where h = dimH.

We need to introduce the following notation.
Let G be a simply connected, complex, simple Lie group and let g be its Lie

algebra. Let h be a Cartan subalgebra of g and ∆ = ∆ (g, h) the root system of
g relative to h. We may write

g = h⊕
∑
γ∈∆+

(gγ ⊕ g−γ)

where ∆+ indicates the set of positive roots with respect to some order.
Let us consider in g the Borel subalgebra

b = h⊕
∑
γ∈∆+

g−γ.

Let B be the analytic subgroup of G corresponding to the subalgebra b. B is
closed and its own normalizer in G. The quotient space M = G/B is a complex
homogeneous space called the manifold of complete flags of G.

Let π = {γ1, . . . , γn} ⊂ ∆+ be a system of simple roots. We may take in g

a Weyl basis [13, III, 5] {Xβ : β ∈ ∆} and
{
Hγj

: γj ∈ π
}
. The following set of

vectors provides a basis of a compact real form gu of g
Uγ = 1√

2
(Xγ −X−γ) γ ∈ ∆+

U−γ = i√
2
(Xγ +X−γ) γ ∈ ∆+

iHγj
γj ∈ π.

(1)

We shall denote by H the real vector space generated by
{
iHγj

: γj ∈ π
}

and by
mγ that of {Uγ, U−γ}. Then we may write

gu = H⊕
∑
γ∈∆+

mγ = H⊕m.

Let Gu be the analytic subgroup of G corresponding to gu. Gu is compact and
acts transitively on M which can be written as M = Gu/ (Gu ∩B). The subgroup
T = Gu ∩ B = exp H is a maximal torus in Gu. Then M is a compact, simply
connected, complex manifold called manifold of complete flags for the simple Lie
group Gu.



W. N. Dal Lago et al.: Submanifolds in the Variety of . . . 293

Let E ∈ gu be a regular element [15, p. 48]. We want to consider the orbit of
E by the adjoint action of Gu on gu, i.e. Ad (Gu)E = {Ad (g)E : g ∈ Gu}. It is
clear that the isotropy subgroup of the point E is precisely Gu ∩ B and we have
a natural embedding of M in gu. We may take in gu the inner product given by
the opposite of the Killing form and therefore the induced Riemannian metric on
M , by the embedding f : M → gu, is invariant by the action of Gu. Then the
tangent space to M at E is TE (M) = [gu, E] = [m, E] = m and TE (M)⊥ = H is
the normal space there.

3. Polynomials associated to X [M ]

In order to study the variety X [M ] for M a complete flag manifold for the com-
pact, connected, simple Lie groupGu, we need to consider the polynomials defining
it. These polynomials are the components of the second fundamental form with
respect to a convenient basis in the normal space.

If α is the second fundamental form of the imbedding f : M → gu and
X =

∑
γ∈∆+(xγUγ + x−γU−γ) ∈ m , we may write

α ([X,E] , D ([X,E] , [X,E])) =
∑

1≤r≤n

priHγr . (2)

In [6, Lemma 3.1] we obtain the following expression

α ([X,E] , D ([X,E] , [X,E])) =
∑

σ,τ,δ∈∆+

δ=σ+τ

d(σ,τ,δ)iHδ+
∑

ε,ρ,β∈∆+

|ε−ρ|=β

b(ε,ρ,β)iHβ

where

d(σ,τ,δ) = τ(iE)√
2
Nσ,τ {(xσxτ − x−σx−τ )xδ + (xσx−τ + x−σxτ )x−δ}

b(ε,ρ,β) = ρ(iE)√
2
Nε,−ρ {(xεxρ + x−εx−ρ)xβ + sgρ−ε(xεx−ρ − x−εxρ)x−β}

and
|ε− ρ| = ε− ρ and sgε−ρ = 1 if ε− ρ ∈ ∆+

|ε− ρ| = ρ− ε and sgε−ρ = −1 if ρ− ε ∈ ∆+.

In the previous expression, we may cluster the coefficients corresponding to the
terms (σ, τ, δ) and (τ, σ, δ) and similarly those of (ε, ρ, β) and (ρ, ε, β). Let us
denote by d{σ,τ} = d(σ,τ,δ) +d(τ,σ,δ) and b{ε,ρ} = b(ε,ρ,β) + b(ρ,ε,β). Since Nσ,τ = −Nτ,σ

and Nε,−ρ = Nρ,−ε follows that

d{σ,τ} =
Nσ,τu√

2
{(xσxτ − x−σx−τ )xδ + (xσx−τ + x−σxτ )x−δ}

b{ε,ρ} =
Nε,−ρv√

2
{(xεxρ + x−εx−ρ)xβ + sgρ−ε(xεx−ρ − x−εxρ)x−β}

where u = τ (iE)− σ (iE) and v = ρ (iE) + ε (iE).
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Set Γ = {{σ, τ} : σ, τ, σ + τ ∈ ∆+} and Υ = {{ε, ρ} : ε, ρ, |ε− ρ| ∈ ∆+}.
Then we have

α ([X,E] , D ([X,E] , [X,E])) =
∑

{σ,τ}∈Γ

d{σ,τ}iHσ+τ +
∑

{ε,ρ}∈Υ

b{ε,ρ}iH|ε−ρ|. (3)

To express each root β in terms of the simple roots, it will be useful the following
notation

β =
∑

1≤j≤n

kj(β)γj. (4)

The coefficient pr in (2) is obtained as sum of all the coefficients d{σ,τ} and b{ε,ρ}
in (3), such that kr(σ + τ) 6= 0 and kr(ε− ρ) 6= 0.

In order to simplify notation, if {σ, τ} ∈ Γ we write

q{σ,τ} = (xσxτ − x−σx−τ )xσ+τ + (xσx−τ + x−σxτ )x−(σ+τ). (5)

Since each of the sets Γ and Υ gives rise the other one, we may adequately change
the clustering of the terms in (3) to conclude

α ([X,E] , D ([X,E] , [X,E])) =
∑

{σ,τ}∈Γ

{
Nσ,τ√

2
(τ (iE)− σ (iE))q{σ,τ}iHσ+τ+

+
Nσ+τ,−σ√

2
(2σ (iE) + τ (iE))q{σ,τ}iHτ +

Nσ+τ,−τ√
2

(σ (iE) + 2τ (iE))q{σ,τ}iHσ

}
=

∑
{σ,τ}∈Γ

3√
2
Nσ,τq{σ,τ} {τ (iE) iHσ − σ (iE) iHτ}

=
∑

{σ,τ}∈Γ

3√
2
Nσ,τq{σ,τ}

{ ∑
1≤r≤n

(τ (iE) kr(σ)− σ (iE) kr(τ))iHγr

}
and then

α ([X,E] , D ([X,E] , [X,E]))
= 3√

2

∑
1≤r≤n

{
∑

{σ,τ}∈Γ

Nσ,τ (τ (iE) kr(σ)− σ (iE) kr(τ)) q{σ,τ}}iHγr .

The preceding development may be summarized in the following lemma.

Lemma 3.1. For each r, 1 ≤ r ≤ n , the coefficient pr in (2) is given by

pr =
3√
2

∑
{σ,τ}∈Γ

Nσ,τ (τ (iE) kr(σ)− σ (iE) kr(τ)) q{σ,τ} (6)

where q{σ,τ} is defined by (5). �

This result allows us to obtain information about the family of polynomials defin-
ing X[M ] as follows:
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Theorem 3.1. The polynomials pr (1 ≤ r ≤ n) given in (2) satisfy:

(i)
∑

1≤r≤n
γr(iE)pr = 0.

(ii) For any j such that 1 ≤ j ≤ n the set {pr : 1 ≤ r ≤ n, r 6= j} is R-linearly
independent.

Proof. (i) By Lemma 3.1 and (4) we have∑
1≤r≤n

γr(iE)pr

=
3√
2

∑
{σ,τ}∈Γ

Nσ,τ

{ ∑
1≤r≤n

γr(iE)[kr(σ)τ (iE)− kr(τ)σ (iE)]

}
q{σ,τ}

=
3√
2

∑
{σ,τ}∈Γ

Nσ,τ {σ(iE)τ (iE)− τ (iE)σ (iE)} q{σ,τ} = 0.

(ii) Let us fix j such that 1 ≤ j ≤ n and assume that there are some real numbers
cr such that ∑

1≤r≤n
r 6=j

crpr = 0. (7)

Since given two polynomials q{σ,τ} and q{ϕ,ψ} with {σ, τ} 6= {ϕ, ψ} in Γ their
monomials are all different, by Lemma 3.1, we have that (7) implies∑

1≤r≤n
r 6=j

cr[τ (iE) kr(σ)− σ (iE) kr(τ)] = 0 (8)

for every σ, τ such that {σ, τ} ∈ Γ.
For σ = γj let τ = γs be such that σ+ τ ∈ ∆+. By (8) we have −csγj(iE) = 0

and therefore
cs = 0. (9)

If r 6= j 6= t are such that γr + γt ∈ ∆+, taking σ = γr and τ = γt in (8) we may
write crγt(iE)− ctγr(iE) = 0 and then

cr =
γr(iE)

γt(iE)
ct. (10)

By connectedness of the Dinkyn diagrams, if m 6= j, there exist positive, distinct
integers j = k0, k1, . . . , kh = m such that γkl

+ γkl+1
∈ ∆+, 0 ≤ l ≤ h− 1. By (9)

and (10), we have 0 = ck1 = · · · = ckh
= cm. Therefore (ii) follows. �

The following observation with respect to the partial derivatives of the polynomials
q{σ,τ} will be useful below:
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Remark 3.1. For {σ, τ} ∈ Γ and σ + τ = δ it occurs

∂q{σ,τ}
∂xδ

= xσxτ − x−σx−τ
∂q{σ,τ}
∂x−δ

= xσx−τ + x−σxτ
∂q{σ,τ}
∂xσ

= xδxτ + x−δx−τ
∂q{σ,τ}
∂x−σ

= x−δxτ − xδx−τ
∂q{σ,τ}
∂xτ

= xδxσ + x−δx−σ
∂q{σ,τ}
∂x−τ

= x−δxσ − xδx−σ
∂q{σ,τ}
∂x±ε

= 0 if ε /∈ {σ, τ, δ} .

Then it is easy to see that at the point X =
∑

γ∈∆+(xγUγ + x−γU−γ) of m,(
∂q{σ,τ}
∂xδ

,
∂q{σ,τ}
∂x−δ

)
6= (0, 0) if and only if (xσ, x−σ) 6= (0, 0) and (xτ , x−τ ) 6= (0, 0).

Theorem 3.2. The variety X [M ] contains an open set which is an embedded
submanifold in RPm−1 of dimension m− n, where m = dimM and n = rank g.

Proof. The proof consists of showing that there exists a point X in Sm−1, the
sphere unit of m, such that α ([X,E] , D ([X,E] , [X,E])) = 0 and where the Ja-
cobian matrix of the function P : Sm−1 → Rn−1 given by P = (p1, p2, . . . , pn−1)
has rank n− 1. Then the theorem follows from the Implicit Function Theorem.

Let

X =
n∑
j=1

(xγj
Uγj

+ x−γj
U−γj

) ∈ m

be a unit vector such that (xγj
, x−γj

) 6= (0, 0) for each j (1 ≤ j ≤ n), where γj are
the simple roots.

By Theorem 4.2 in [6, p. 226], p̃ =
∑

γj∈π mγj
defines a projective subspace in

X [M ] and therefore it follows that α ([X,E] , D ([X,E] , [X,E])) = 0.
To show that the rank of the Jacobian matrix of P at this point X is n − 1

we shall consider the partial derivatives of the polynomials pr with respect to the
variables xδ and x−δ moving δ over the set of the n− 1 positive roots of height 2.

When the simple Lie algebra is different from dn and ej (n ≥ 4 and j = 6, 7, 8),
by (6) and Remark 3.1 (using the notation from [13, p. 470]) we get for each r,
such that 1 ≤ r ≤ n− 1, at the point X(

∂pr
∂xδ

,
∂pr
∂x−δ

)
=

{
(a, b) 6= (0, 0) if δ = γr + γr+1

(0, 0) if δ = γs + γs+1 for r < s ≤ n− 1.
(11)

and therefore the rank of the Jacobian matrix of P at this point X is n − 1.
For the other Lie algebras we get analogous expressions to (11) and so the result
follows. �

Remark 3.2. Let us notice that the open set obtained in the proof of the previous
theorem is the projection of the whole set of non-singular points of P that give
rise to pointwise planar normal sections.
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4. On X[SU(n + 1)/T n]

The present section is devoted to study of the variety X [Mn] of directions of
pointwise planar normal sections of a natural embedding the manifold of complete
flags Mn = SU(n+ 1)/T n, where n ≥ 2 and T n is a maximal torus in SU(n+ 1),
for which we shall indicate some results that we feel are interesting.

We shall add to our previous notation, an extra subindex n which is the rank
of the Lie algebra sl(n+ 1,C). Let us recall that su(n+ 1) = Hn⊕

∑
γ∈∆+

n
mγ;n =

Hn ⊕mn.
We use for the Lie algebra an the notation given in [13, III, 8] and so ei(H)

(1 ≤ i ≤ n) are the diagonal elements of H ∈ hn. It is known that, for β = er−es,

Xβ;n = (2n+ 2)−
1
2 Er,s;n+1

where Er,s;n+1 denotes the (n+ 1) × (n+ 1) matrix with entry 1 where the r-th
row and the s-th column meet, all other entries being 0.

Therefore, if γj ∈ πn and β, γ ∈ ∆n we have

Hγj ;n = [Xγj ;n, X−γj ;n] = (2n+ 2)−1 (Ej,j;n+1 − Ej+1,j+1;n+1)

Nβ,γ;n =

{
± (2n+ 2)−

1
2 if β + γ ∈ ∆n

0 if β + γ /∈ ∆n

.

We consider the inclusion of the algebra an−1 into the an given by the natural
inclusion of πn−1 = {γ1, . . . , γn−1} into πn = {γ1, . . . , γn}. Then for β, γ ∈ ∆n−1 ⊂
∆n it follows that

Nβ,γ;n =

(
n

n+ 1

) 1
2

Nβ,γ;n−1.

For each n we consider in the Cartan subalgebra hn ⊂ sl(n+ 1,C) the Wolf basis
[16]

{vl}l defined by γj(vl) = δjl, 1 ≤ j, l ≤ n. (12)

Set iEn the point in sl(n+ 1,C) defined by

iEn =
∑

1≤l≤n

2lvl.

It follows that:

(a) For β, γ ∈ ∆+
n , β 6= γ, β(iEn) and γ(iEn) are different positive real numbers

(see for instance [12]).

(b) For γj ∈ πm,

γj(iEn) =

{
2j if j ≤ n
0 if j > n

. (13)

(c) En ∈ Hn, it is a regular element and then the orbit Ad(SU(n+1))En gives rise
to a natural imbedding fn of the manifold Mn into the Lie algebra of su(n + 1)
defined by fn(gT

n) = Ad(g)En.
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If X =
∑

γ∈∆+
n
(xγUγ + x−γU−γ) ∈ mn and αn is the second fundamental form

of the imbedding fn we may write (2) as

αn ([X,En] , D ([X,En] , [X,En])) =
∑

1≤r≤n

pr;niHγr;n. (14)

In order to obtain, for n ≥ 2, a recursive formula of the polynomials pr;n (1 ≤ r ≤
n) we write

σj,k =
∑
j≤s≤k

γs (15)

and we shall use indistinctly σj,j or γj to indicate the simple root γj. Then

∆+
n = {σj,k : 1 ≤ j ≤ k ≤ n} and Γ = {{σj,k, σk+1,l} : 1 ≤ j ≤ k < l ≤ n}.

It easy to verify that, for 1 ≤ j ≤ k < l ≤ n, Nσj,k,σk+1,l;n = 1√
2n+2

.

For the algebra sl(n + 1,C), if σ, τ ∈ ∆+
n and kr(σ + τ) 6= 0 only one of the

numbers kr(σ) or kr(τ) is 1 and the other one is 0. By Lemma 3.1 we have

pr;n = 3
2
√
n+1

∑
(j,k,l)∈Ir;n

cj,k,l(r)q{σj,k,σk+1,l}

where cj,k,l(r) =

{
2l+1 − 2k+1 if j ≤ r ≤ k
2j − 2k+1 if k < r ≤ l

and Ir;n = {(j, k, l) : j ≤ k < l ≤ n and j ≤ r ≤ l}.

(16)

The previous development allows us to obtain recursively the polynomials pr;n as
follows.

Proposition 4.1. Keeping the previous notation, the polynomials pr;n, n ≥ 2 of
(14) for the manifold Mn = SU(n+ 1)/T n are

p1;2 = 2
√

3 q{γ1,γ2} , p2;2 = −
√

3 q{γ1,γ2}

and given pr;n−1, for 1 ≤ r ≤ n− 1,

pr;n =
√

n
n+1

pr;n−1 + 3
2
√
n+1

{ ∑
1≤j≤r≤k<n

(2n+1 − 2k+1)q{σj,k,σk+1,n}+

+
∑

1≤j≤k<r≤n
(2j − 2k+1) q{σj,k,σk+1,n}

}

and

pn;n =
3

2
√
n+ 1

∑
1≤j≤k<n

(2j − 2k+1) q{σj,k,σk+1,n}.

Proof. The proof follows from (16) and the fact that in order to get pr;n from
pr;n−1 (1 ≤ r ≤ n − 1), it is just necessary to consider the terms of (16) coming
from the triples (j, k, n) with 1 ≤ j ≤ k < n and j ≤ r ≤ n. �

Corollary 4.1. X [Mn−1] ⊂ X [Mn].
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Proof. It follows from the previous proposition because q{σj,k,σk+1,n} (X) = 0 for
X =

∑
γ∈∆+

n−1
(xγUγ + x−γU−γ) ∈ mn−1. �

It is well known that the group SU(n + 1) gives rise to a family of irreducible
symmetric spaces of type I [13, p. 518] and among them, there are those which
are inner; i.e. the spaces in which the symmetry at each point belongs to the
group SU(n + 1). They are of the form SU(n + 1)/K where K is a subgroup of
maximal rank in SU(n+ 1). By conjugating K if necessary, we may assume that
K contains T n.

It is known that, among irreducible symmetric spaces G/K of a simple group
G, just for the inner ones there exists a simple root γ∗ such that the tangent space
T[K] (G/K) = p∗ satisfies

p∗ =
∑
γ∈∆∗

mγ with ∆∗ =
{
γ ∈ ∆+ : kγ∗ (γ) = 1

}
and also that p∗ gives rise to a projective subspace in X [G/T ] which is maximal
if and only if π2 (G/K) 6= 0 (see [6, Remark 4.1, Theorem 4.4] and [12, p. 408–9]).

This fact motivates the study of the subspaces of mn = T[Tn]SU(n+ 1)/T n of

the form p̃ =
∑

γ∈∆̃ mγ;n with ∆̃ ⊂ ∆+
n , with the goal of getting information about

the existence of projective subspaces in X [Mn]. These subspaces are exactly those
invariant by the natural action of the torus T n on mn (see for instance [12, p. 407,
Th5]).

Following the notation in [7, p. 418] we say that a set ∆̃ in ∆+
n is a presym-

metric set if it satisfies the following property

ε, ρ ∈ ∆̃ ⇒ ε+ ρ /∈ ∆̃.

We know the following results.

Theorem 4.2. [6, p. 216, (4.2)] Set p̃ =
∑

γ∈∆̃ mγ;n with ∆̃ ⊂ ∆+
n . Then

RP (p̃) ⊂ X [Mn] ⇐⇒ ∆̃ is a presymmetric set. �

Set

Kn =

{
S

(
U

(
n
2

+ 1
)
× U

(
n
2

))
if n is even,

S
(
U

(
n+1

2

)
× U

(
n+1

2

))
if n is odd;

dn =

{
n(n+2)

2
if n is even,

(n+1)2

2
if n is odd.

Theorem 4.3. [7, p. 416, (1.1), (1.2)] Let p̃ =
∑

γ∈∆̃ mγ;n be such that ∆̃ ⊂ ∆+
n

is a presymmetric set. Then
(i) dim p̃ ≤ dn.

(ii) If dim p̃ = dn then p̃ is the tangent space to the inner symmetric space
SU(n+ 1)/Kn at a fixed point of the action of the torus T n. �
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These two theorems are written in the indicated references for the manifold of
complete flags of any compact simple Lie group. Here we are considering the case
of the group SU(n+ 1) and in this case, the irreducible inner symmetric space of
maximal dimension associated is SU(n+ 1)/Kn.

Theorem 4.3 characterizes those subspaces p̃ of mn which are Ad (T n)-invariant
and define projective subspaces of maximal dimension inX [Mn]. Making a deeper
analysis in this direction we study now those subspaces p̃ that are Ad (T n)-
invariant and define projective subspaces in X [Mn] but in some “interesting”
sense are of “minimal” dimension. It is easy to see that these subspaces are those
p̃ which are of minimal dimension not properly contained in any other Ad (T n)-
invariant subspace defining projective subspaces in X [Mn]. For these subspaces
we have obtained the following

Theorem 4.4. Let n ≥ 2 and Mn = SU(n + 1)/T n be embedded in su (n+ 1)

as orbit of any regular element E. Let p̃ =
∑

β∈∆̃ mβ;n (∆̃ ⊂ ∆+
n ) be a subspace

of mn = TE (Mn) ⊂ su (n+ 1) which is maximal among the subspaces Ad (T n)-
invariant of mn defining projective subspaces in X [Mn]. Then

(i) dim p̃ ≥ 2n.

(ii) If dim p̃ = 2n then p̃ is the tangent space to the projective space CP n =
SU(n + 1)/S (U (n)× U (1)) at a point E1 = σ̃(ivn) where vn is given by
(12) and σ̃ is an element in Wn+1, the Weyl group of the pair (SU(n+ 1) ,
T n).

Proof. Let us recall that we are using for the Lie algebra sl (n+ 1, C) the notation
given in [13, III, 8]. Thus, if β ∈ ∆+

n then there exist i, j (1 ≤ i < j ≤ n+ 1) such
that β = ei − ej.

It is well known that if η̃ ∈ Wn+1 then

η̃ (ei − ej) = eη(i) − eη(j) (17)

where η is a permutation of the set {1, . . . , n+ 1}, that is η ∈ Sn+1. Conversely
if η ∈ Sn+1 the equality (17) defines an element η̃ in Wn+1.

First we shall prove (ii). Let ∆̃ be the set {βl = eil − ejl : 1 ≤ l ≤ n}. We
consider two cases.

(ii,a): Let us assume that there exists k such that k ∈ {il, jl} for all l such that
1 ≤ l ≤ n. Then by taking η ∈ Sn+1 such that η (k) = n+1 and the corresponding
η̃ defined in (17), we obtain the following subset of ∆+

n

∆̃1 = {|η̃ (βl)| : 1 ≤ l ≤ n} = {e1 − en+1, . . . , en − en+1} .

Then ∑
β∈∆̃1

mβ;n = Tivn (SU(n+ 1)/S (U (n)× U (1)))

and therefore p̃ is the tangent space at E1 = σ̃(ivn) where σ̃ = η̃−1.
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(ii,b): Let us assume now that for every k (1 ≤ k ≤ n + 1) there is at least one
set {il, jl} (1 ≤ l ≤ n) such that k /∈ {il, jl}. In this case we shall arrive to a

contradiction by showing that ∆̃ is not a maximal presymmetric set.
Let us associate to each r (1 ≤ r ≤ n+ 1), the number ro defined by

ro = # {l : 1 ≤ l ≤ n and r ∈ {il, jl}} .

Then, by our assumption, max {ro : 1 ≤ r ≤ n+ 1} < n. Let s be such that the
corresponding so = max {ro : 1 ≤ r ≤ n+ 1}.

Let us choose η ∈ Sn+1 such that η (s) = n+ 1 and

{e1 − en+1, . . . , eso − en+1} ⊂
{
|η̃ (β)| : β ∈ ∆̃

}
= ∆̃1.

Then
ei − en+1 /∈ ∆̃1 for i > so. (18)

We shall see that ∆̃ is not a maximal presymmetric set by showing that ∆̃1 is not
maximal presymmetric. To that end we shall consider two possibilities.

(ii,b,1). There exists a j, so + 1 ≤ j ≤ n such that for every i, 1 ≤ i ≤ so,

ei − ej /∈ ∆̃1. In this case, we define

∆̃2 = ∆̃1 ∪ {ej − en+1} ,

and we shall prove that ∆̃2 is a presymmetric set.
Let ε be the added root ej − en+1. If there are two positive roots γ and δ

such that γ + δ = ε, they will be of the form γ = ej − ek and δ = ek − en+1 with

so < j < k. Then by (18) the root δ cannot belong to ∆̃1. On the other hand,

if there are two roots γ and δ in ∆̃1 such that δ = γ + ε, then γ = ei − ej with
1 ≤ i < j and i ≤ so. By the assumption in (ii,b,1), this root γ cannot belong to

∆̃1 which shows that ∆̃2 is a presymmetric set. Then ∆̃1 is not maximal.

(ii,b,2) Let us assume now that for every j, so + 1 ≤ j ≤ n, there exists i,

1 ≤ i ≤ so, such that the ei − ej ∈ ∆̃1.
Since the cardinal of the set {j : so + 1 ≤ j ≤ n} is n − so, for each j in this

set, there exists a unique i (1 ≤ i ≤ so) such that ei − ej ∈ ∆̃1.
Let us consider the set of positive roots

R (so) = {ei − ej : 1 ≤ i ≤ so, so + 1 ≤ j ≤ n+ 1}

then ∑
β∈R(so)

mβ;n

is the tangent space to the symmetric space SU(n + 1)/S (U (so)× U (to)) at
some point (to = n + 1 − so). Therefore, by [6, Proposition (4.1)], R (so) is a
presymmetric set.

Since ∆̃1  R (so) we conclude that ∆̃1 is not maximal.
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To prove (i) we assume that dim p̃ < 2n, i.e. ∆̃ = {β1, . . . , βt} with t < n. We
shall see that in this case the subspace p̃ is not maximal. By proceeding as in (ii)

above, it is easy to see that only case (ii,b,1) can occur because #∆̃ < n. This

leads us into proving that ∆̃ is not maximal which contradicts our hypothesis. �

This result allows us to complete [12, Theorem 8] for the groups SU(n), keeping
the notation of that paper, as follows.

Corollary 4.2. Let w be maximal among the holomorphic tangent spaces at the
base point of SU(n+ 1)-invariant minimal almost Hermitian extrinsic symmetric
CR-structure on Mn = SU(n+ 1)/T n. Then

(i) dimR w ≥ 2n.

(ii) If dimR w = 2n then w is the tangent space to the projective space CP n =
SU(n+ 1)/S (U (n)× U (1)) at some point.

Proof. It follows from the previous theorem by noticing that the proof of [12,
Theorem 8] reduces essentially to show that w is an Ad(T n)-invariant subspace of
m and gives rise to a projective subspace in X [Mn]. �

Due to the fact that the converse statement of (ii) in Theorem 4.4 is obviously
true, this theorem gives us a geometric characterization of the subspaces p̃ of mn

which are of dimension 2n and maximal among the subspaces Ad (T n)-invariant
of mn defining projective subspaces in X [Mn].

Joining Theorems 4.3 and 4.4, the subspaces p̃ of mn which are maximal
among the subspaces Ad (T n)-invariant of mn defining projective subspaces in
X [Mn], satisfy

2n ≤ dim p̃ ≤ dn

and also, when dim p̃ is one of the two ends of the above inequality, the subspace
p̃ is tangent to the inner symmetric space of minimal and maximal dimension
associated to the group SU(n+ 1).

When the subspace p̃ is such that 2n < dim p̃ < dn, if we pose no restriction
on n and dim p̃, we cannot assure that p̃ is tangent to some inner symmetric space
of the group SU(n + 1). Furthermore we cannot assure that p̃ is tangent to a
homogeneous manifold SU(n + 1)/K with T n ⊂ K, as the following examples
show.

Example 4.1. For n = 6 we consider the following two subspaces p̃ of m6 which
are maximal among the subspaces Ad (T 6)-invariant of m6 defining projective
subspaces in X [M6].

(i) p̃ =
∑

β∈∆̃ mβ with ∆̃ = {e1 − e5, e1 − e7, e2 − e6, e2 − e7, e3 − e6, e3 − e7,
e4 − e5, e4 − e7, e5 − e6}.

Since dim p̃ = 18 and the inner symmetric spaces associated to the group
SU(7) are of dimension 12, 20 and 24, p̃ is not tangent to an inner symmetric
space of the group SU(7). Furthermore, p̃ is not tangent to a homogeneous
space of the group SU(7) because the orthogonal space p̃⊥ is not a subalgebra

(note that e1 − e2, e2 − e5 /∈ ∆̃ and e1 − e5 ∈ ∆̃).
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(ii) p̃ =
∑

β∈∆̃ mβ with ∆̃ = {e1 − e5, e1 − e7, e2 − e4, e2 − e6, e2 − e7, e3 − e4,
e3 − e6, e3 − e7, e4 − e5, e5 − e6}.

Even when the dimension of p̃ coincides now with the dimension of one of
the symmetric spaces of SU(7), it is not tangent to a homogeneous space
because p̃⊥, as above, is not a subalgebra.
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[12] Garćıa, A.; Sánchez, C.: On extrinsic symmetric CR-structures on the man-
ifolds of complete flags. Beitr. Algebra Geom. 45(2) (2004), 401–414.

Zbl pre02100230−−−−−−−−−−−−−

http://www.emis.de/MATH-item?0246.57017
http://www.emis.de/MATH-item?0699.53059
http://www.emis.de/MATH-item?0486.53004
http://www.emis.de/MATH-item?0489.53008
http://www.emis.de/MATH-item?0839.53034
http://www.emis.de/MATH-item?0964.53033
http://www.emis.de/MATH-item?0908.53029
http://www.emis.de/MATH-item?0591.53048
http://www.emis.de/MATH-item?0274.53058
http://www.emis.de/MATH-item?0446.53041
http://www.emis.de/MATH-item?0377.22001
http://www.emis.de/MATH-item?02100230


304 W. N. Dal Lago et al.: Submanifolds in the Variety of . . .

[13] Helgason, S.: Differential geometry, Lie groups, and symmetric spaces. Pure
and Applied Mathematics 80. Academic Press, New York-San Francisco-
London 1978. Zbl 0451.53038−−−−−−−−−−−−

[14] Harris, J.: Algebraic geometry. A first course. Graduate Texts in Mathematics
133. Springer-Verlag, Berlin etc. 1992. Zbl 0779.14001−−−−−−−−−−−−

[15] Humphreys, J. E.: Introduction to Lie algebras and representation theory.
Graduate Texts in Mathematics 9. Springer-Verlag, New York-Heidelberg-
Berlin 1972. Zbl 0254.17004−−−−−−−−−−−−

[16] Wolf, J. A.; Gray, A.: Homogeneous spaces defined by Lie group automor-
phisms. I. J. Differ. Geom. 2 (1968), 77–114. Zbl 0169.24103−−−−−−−−−−−−

Received January 12, 2005

http://www.emis.de/MATH-item?0451.53038
http://www.emis.de/MATH-item?0779.14001
http://www.emis.de/MATH-item?0254.17004
http://www.emis.de/MATH-item?0169.24103

