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Abstract. Given a matroid M represented by a linear subspace L C C"
(equivalently by an arrangement of n hyperplanes in L), we define a
graded ring R(L) which degenerates to the Stanley-Reisner ring of the
broken circuit complex for any choice of ordering of the ground set.
In particular, R(L) is Cohen-Macaulay, and may be used to compute
the h-vector of the broken circuit complex of M. We give a geometric
interpretation of Spec R(L), as well as a stratification indexed by the
flats of M.

1. Introduction

Consider a vector space with basis C" = C{ey,...,e,}, and its dual (C")" =
C{z1,...,z,}. Let L C C" be a linear subspace of dimension d. We define a
matroid M(L) on the ground set [n] := {1,...,n} by declaring I C [n] to be
independent if and only if the composition C{e; | i € I} — (C")¥Y — C"/LV is
injective. Recall that a minimal dependent subset C' C [n] is called a circuit; in
this case there exist scalars {a. | ¢ € C'}, unique up to scaling, such that >, a.z.
vanishes on L. Conversely, the support of every linear form that vanishes on L
contains a circuit.

The central object of study in this paper will be the ring R(L) generated by
the inverses of the restrictions of the linear functionals {z1,...,x,} to L. More
formally, let

C[.ﬁl?,y] = (C[xlayla s 7xn7yn]/<x1yl - 1>7
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and let C[x] and Cly] denote the polynomial subrings generated by the z and y
variables, respectively. Let C[L] denote the ring of functions on L, which is a quo-
tient of Clz] by the ideal generated by the linear forms { Y acz. | C a circuit}.
We now set

R(L) := (C[L] @ew Cla, ]) N Cly).

Geometrically, Spec R(L) is a subscheme of Spec C[y], which we will identify with
(C™)Y. Using the isomorphism between C" and (C™)¥ provided by the dual bases,
Spec R(L) may be obtained by intersecting L with the torus (C*)", applying the
involution ¢t — t~! on the torus, and taking the closure inside of C". If C is any
circuit of M (L) with ) .. a.v. vanishing on L, then we have the relation

fo ::z:ac H Yo =0 in R(L).

ceC  deC\{c}

Our main result (Theorem 4) will be that the elements {fc | C a circuit} are
a universal Grobner basis for R(L), hence this ring degenerates to the Stanley-
Reisner ring of the broken circuit complex of M (L) for any choice of ordering of the
ground set [n]. It follows that R(L) is a Cohen-Macaulay ring of dimension d, and
that the quotient of R(A) by a minimal linear system of parameters has Hilbert
series equal to the h-polynomial of the broken circuit complex. In Proposition 7
we identify a natural choice of linear parameters for R(L).

The Hilbert series of R(L) has already been computed by Terao [8], using
different methods. The main novelty of our paper lies in our geometric approach,
and our interpretation of R(L) as a deformation of another well-known ring. The
ring R(L) also appears as a cohomology ring in [5], and as the homogeneous
coordinate ring of a projective variety in [3, 3.1].

Acknowledgment. Both authors would like to thank Ed Swartz for useful dis-
cussions.

2. The broken circuit complex

Choose an ordering w of [n]. We define a broken circuit of M (L) with respect
to w to be a set of the form C \ {c}, where C is a circuit of M (L) and ¢ the
w-minimal element of C. We define the broken circuit complex be, (L) to the
simplicial complex on the ground set [n] whose faces are those subsets of [n] that
do not contain any broken circuit. Note that all of the singletons will be faces of
be, (L) if and only if M (L) has no parallel pairs, and the empty set will be a face
if and only if M (L) has no loops. We will not need to assume that either of these
conditions holds.

Consider the f-vector (fo,. .., fa) of bey, (L), where f; is the number of faces of
order 7. Then f; is equal to the rank of H*(A(L)), where A(L) = L\ U}, {z; =0}
is the complement of the restriction of the coordinate arrangement from C” to
L (see for example [4]). In particular, the f-vector of bec, (L) is independent of
the ordering w. The h-vector (ho, ..., hq—1) of bcy, (L) is defined by the formula

Sohizt =3 fi24(1 — 2)4
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The Stanley-Reisner ring SR(A) of a simplicial complex A on the ground
set [n] is defined to be the quotient of Cley,...,e,| by the ideal generated by
the monomials ],y €;, where N ranges over the nonfaces of A. The complex
bey, (L) is shellable of dimension d — 1 [1], which implies that Spec SR(bc,, (L)) is
Cohen-Macaulay and pure of dimension d. Let C[L"] denote the ring of functions
on LY = (C")V/L*, which we may think of as the symmetric algebra on L. The
inclusion of L into C" induces an inclusion of C[L"] into Cley, . . ., €,], which makes
SR(bcy(L)) into an C[LY]-algebra. Let SRo(bcw(L)) = SR(bcw(L)) ®cprv) C,
where each linear function on LY acts on C by 0. The following proposition
asserts that L constitutes a linear system of parameters (1.s.0.p.) for SR(bc,(L)).

Proposition 1. The Stanley-Reisner ring SR(bc, (L)) is a free C[LY]-module,
and the ring SRo(be, (L)) is zero-dimensional with Hilbert series > h;z".

Proof. By [6, 5.9], it is enough to prove that SRqy(bc,, (L)) is a zero-dimensional
ring. Let m denote the composition Spec SR(bc,, (L)) — (C")¥ — LY. The variety
Spec SR(bey, (L)) is a union of coordinate subspaces, one for each face of be,,(L).
Let F' be such a face, with vertices (vq,...,vp). The broken circuit complex
is a subcomplex of the matroid complex, hence (vy,...,vp|) is an independent
set, which implies that m maps the corresponding coordinate subspace injectively
to LY. Thus 71(0) = Spec SRg(bc, (L)) is supported at the origin, and we are
done. O

3. A degeneration of R(L)

In this section we show that R(L) degenerates flatly to the Stanley-Reisner ring
SR (bcy (L)) for any choice of w.

Lemma 2. The spaces Spec R(L) and Spec SR(bc,, (L)) are both pure d-dimensi-
onal homogeneous varieties of degree tyrr)(1,0), where ty(w, 2) is the Tutte poly-
nomial of M.

Proof. The broken circuit complex is pure of dimension d — 1, hence Spec SR(
bey, (L)) is union of d-dimensional coordinate subspaces of (C™)Y. Its degree is the
number of facets of be,, (L), which is equal to ) h; = tar)(1,0) [1].

The variety Spec R(L) is equal to the closure inside of (C")¥ = C" of LN(C*)",
and is therefore d-dimensional. We will now show that deg Spec R(L) obeys the
same recurrence as ty;z)(1,0). First, suppose that ¢ € [n] is a loop of M(L).
Then L lies in a coordinate subspace of C"*, L N (C*)" is empty, and Spec R(L)
is thus empty and has degree 0. In this case, we also have t3;(z)(1,0) = 0. Next,
suppose that i is a coloop of M(L). Then L is invariant under translation by
e;, and Spec R(L) is similarly invariant under translation by x;. Write L/i for
the quotient of L by this translation, so that Spec R(L) = Spec R(L/i) x C and
deg Spec R(L) = deg Spec R(L/i). 1t is clear that M (L/i) = M(L)/i, and indeed
tam(1,0) = tar/i(1,0) when 4 is a coloop.

Now consider the case where ¢ is neither a loop nor a coloop, hence we have

tar)(1,0) = tarryi(1,0) + tarepni(1,0).
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In this case, we may apply the following theorem.

Theorem 3. [2,2.2] Let X be a homogeneous irreducible subvariety of C" = H&®/,
with H a hyperplane and ¢ a line such that X is not invariant under translation
in the ¢ direction. Let X7 be the closure of the projection along ¢ of X to H, and
let Xy be the flat limit in H x P! of X N (H x {t}) as t — oo. Then X has a
flat degeneration to a scheme supported on (X7 x {0}) U (X3 x £). In particular,
deg X > deg X, + deg Xs, with equality if the projection X — Xy is generically
one to one.

Let X = SpecR(L), ¢ = Cx;, and H = C{x; | j # i}. Then in the notation of
Theorem 3, we have X; = Spec R(L \ i), where L \ ¢ is the projection of L onto
H, and X, = Spec R(L/i). The projection of Spec R(L) onto H is one to one
because the corresponding projection of L in the x; direction is one to one. Thus

the degree of Spec R(L) is additive. O

We are now ready to prove our main theorem, which asserts that R(L) degenerates
flatly to SR(bc, (L)) for any choice of w.

Theorem 4. The set {fc | C a circuit of M(L)} is a universal Grébner basis
for R(L). Given any ordering w of [n|, with the induced term order on Cly|, we
have In,, R(L) = SR(bc,(L)).

Proof. Suppose given an ordering w of [n] and a circuit C' of M(L). Let ¢
denote the w-minimal element of C, so that [].cc (. Y 18 the leading term of
fo with respect to w. Every monomial of this form vanishes in In,, R(L), hence
we deduce that SpeclIn,(R(L)) is a subscheme of SpecSR(bc,,(L)). However,
Lemma 2 tells us that these two schemes have the same dimension and degree,
and Spec SR(bc,, (L)) is reduced. Thus they are equal.

Let R be the quotient ring of C[y| generated by the polynomials {fc}. It is
clear that In, Spec(R(L)) C In, Spec R C Spec SR(bc,,(L)). Since the two ends
of this chain are equal, we have In,, R = In,, R(L), and thus R and R(L) have the
same Hilbert series. As R(L) is a quotient ring of R, R = R(L). O

4. A stratification of Spec R(L)

Let I be a subset of [n]. The rank of I is defined to be the cardinality of the
largest independent subset of I. If any strict superset of I has strictly greater
rank, then I is called a flat of M (L). If I is a flat, let L; C C! be the projection of
L onto the coordinate subspace C! ¢ C", and let L’ C C'* be the intersection of
L with the complimentary coordinate subspace C'*. The matroid M (Ly) is called
the localization of M (L) at I, while M (L) is called the deletion of I from M(L).

For any I C [n], let Uy = {y € (C")Y |y =0 <= i ¢ I}, and let
Ay = Spec R(L) N Uyj.

Proposition 5. The variety A; is nonempty if and only if I is a flat of M(L).
If nonempty, Ay is isomorphic to A(Ly) = Ly \ Uiel{yi =0}.
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Proof. First suppose that I is not a flat of M (L). Then there exists some circuit
C of M(L) and element ¢y € C such that C NI = C\ {¢}. On one hand, the
polynomial fo =" .~a.]], cc\{¢} Yo Vanishes on A;. On the other hand, fc has
a unique nonzero term Hcec\ {co} Yo' OD U;, and therefore cannot vanish on this
set. Hence A; must be empty.

Now suppose that [ is a flat. If I = [n], then we are simply repeating the
observation that Spec R(L) N (C*)" = L N (C*)™ = A(L). In the general case,
Theorem 4 tells us that Spec R(L) is cut out of (C™)¥ by the polynomials fe, so
we need to understand the restrictions of these polynomials to the set U;. If C
is not contained in I, then C'\ I has size at least 2, and therefore fo vanishes on
Ur. Thus we may restrict our attention to those circuits that are contained in I.
Proposition 5 then follows from the fact that the circuits of M (L) are precisely
the circuits of M (L) that are supported on I. O

Remark 6. The stratification of Spec R(L) given by Proposition 5 is analogous
to the standard stratification of L into pieces isomorphic to A(L?), again ranging
over all flats of M (L).

The identification of e; with y; makes R(L) into an algebra over C[LY]. We
conclude by showing that, as in Proposition 1, L provides a natural linear system
of parameters for R(L).

Proposition 7. The ring R(L) is a free module over C[LY]. The zero dimensional
quotient Ry(L) := R(L) ®crv] C has Hilbert series Y h;z".

Proof. The fact that R(L) is Cohen-Macaulay follows from Theorem 4, which
asserts that it is a deformation of the Cohen-Macaulay ring SR(bc,,(L)). Further-
more, Theorem 4 tells us that any quotient of R(L) by d generic parameters has
the same Hilbert series of SRy(bcy,(L)). Therefore, as in Proposition 1, we let 7
denote the composition Spec R(L) — (C")¥ — LY, and observe that it is enough
to show that 7=1(0) is supported at the origin.

Let I C [n] and suppose that y = (yi1,...,yn) € Ar = Spec R(L) N U;. By
Proposition 5, A; is obtained from A(L;) by applying the inversion involution of
(C*)!, hence there exists z; € A(L;) C Ly such that x; = y;* for alli € I. Extend
xr to an element x € L. Then (x,y) = > x;y; = |I|, hence if y projects trivially
onto LY, we must have I = (). Il

Remark 8. It is natural to ask the question of whether Ry(L) has a g-element;
that is an element g € R(L) in degree 1 such that the multiplication map g™ =2 :
Ro(L); — Ro(L),—; is injective for all ¢ < r/2, where r is the top nonzero degree
of Ry(L). This property is known to fail for the ring SRq(bc,, (L)) [7, §5], but the
inequalities that it would imply for the h-numbers are not known to be either true
or false. In fact, the ring Ry(L) fares no better than its degeneration; Swartz’s
counterexample to the g-theorem for SRy(bc,(L)) is also a counterexample for
Ro(L).
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Remark 9. All of the constructions and results in this paper generalize to arbi-
trary fields with the exception of Proposition 7, which uses in an essential manner
the fact that C has characteristic zero.
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