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Abstract. Given a matroid M represented by a linear subspace L ⊂ Cn
(equivalently by an arrangement of n hyperplanes in L), we define a
graded ring R(L) which degenerates to the Stanley-Reisner ring of the
broken circuit complex for any choice of ordering of the ground set.
In particular, R(L) is Cohen-Macaulay, and may be used to compute
the h-vector of the broken circuit complex of M . We give a geometric
interpretation of SpecR(L), as well as a stratification indexed by the
flats of M .

1. Introduction

Consider a vector space with basis Cn = C{e1, . . . , en}, and its dual (Cn)∨ =
C{x1, . . . , xn}. Let L ⊂ Cn be a linear subspace of dimension d. We define a
matroid M(L) on the ground set [n] := {1, . . . , n} by declaring I ⊂ [n] to be
independent if and only if the composition C{ei | i ∈ I} ↪→ (Cn)∨ � Cn/L∨ is
injective. Recall that a minimal dependent subset C ⊂ [n] is called a circuit ; in
this case there exist scalars {ac | c ∈ C}, unique up to scaling, such that

∑
C acxc

vanishes on L. Conversely, the support of every linear form that vanishes on L
contains a circuit.

The central object of study in this paper will be the ring R(L) generated by
the inverses of the restrictions of the linear functionals {x1, . . . , xn} to L. More
formally, let

C[x, y] := C[x1, y1, . . . , xn, yn]/〈xiyi − 1〉,
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and let C[x] and C[y] denote the polynomial subrings generated by the x and y
variables, respectively. Let C[L] denote the ring of functions on L, which is a quo-
tient of C[x] by the ideal generated by the linear forms

{∑
C acxc | C a circuit

}
.

We now set
R(L) :=

(
C[L]⊗C[x] C[x, y]

)
∩ C[y].

Geometrically, SpecR(L) is a subscheme of SpecC[y], which we will identify with
(Cn)∨. Using the isomorphism between Cn and (Cn)∨ provided by the dual bases,
SpecR(L) may be obtained by intersecting L with the torus (C∗)n, applying the
involution t 7→ t−1 on the torus, and taking the closure inside of Cn. If C is any
circuit of M(L) with

∑
c∈C acxc vanishing on L, then we have the relation

fC :=
∑
c∈C

ac
∏

c′∈C\{c}
yc′ = 0 in R(L).

Our main result (Theorem 4) will be that the elements {fC | C a circuit} are
a universal Gröbner basis for R(L), hence this ring degenerates to the Stanley-
Reisner ring of the broken circuit complex of M(L) for any choice of ordering of the
ground set [n]. It follows that R(L) is a Cohen-Macaulay ring of dimension d, and
that the quotient of R(A) by a minimal linear system of parameters has Hilbert
series equal to the h-polynomial of the broken circuit complex. In Proposition 7
we identify a natural choice of linear parameters for R(L).

The Hilbert series of R(L) has already been computed by Terao [8], using
different methods. The main novelty of our paper lies in our geometric approach,
and our interpretation of R(L) as a deformation of another well-known ring. The
ring R(L) also appears as a cohomology ring in [5], and as the homogeneous
coordinate ring of a projective variety in [3, 3.1].

Acknowledgment. Both authors would like to thank Ed Swartz for useful dis-
cussions.

2. The broken circuit complex

Choose an ordering w of [n]. We define a broken circuit of M(L) with respect
to w to be a set of the form C \ {c}, where C is a circuit of M(L) and c the
w-minimal element of C. We define the broken circuit complex bcw(L) to the
simplicial complex on the ground set [n] whose faces are those subsets of [n] that
do not contain any broken circuit. Note that all of the singletons will be faces of
bcw(L) if and only if M(L) has no parallel pairs, and the empty set will be a face
if and only if M(L) has no loops. We will not need to assume that either of these
conditions holds.

Consider the f -vector (f0, . . . , fd) of bcw(L), where fi is the number of faces of
order i. Then fi is equal to the rank of H i(A(L)), where A(L) = L\⋃n

i=1{xi = 0}
is the complement of the restriction of the coordinate arrangement from Cn to
L (see for example [4]). In particular, the f -vector of bcw(L) is independent of
the ordering w. The h-vector (h0, . . . , hd−1) of bcw(L) is defined by the formula∑
hiz

i =
∑
fiz

i(1− z)d−i.



N. Proudfoot, D. Speyer: A Broken Circuit Ring 163

The Stanley-Reisner ring SR(∆) of a simplicial complex ∆ on the ground
set [n] is defined to be the quotient of C[e1, . . . , en] by the ideal generated by
the monomials

∏
i∈N ei, where N ranges over the nonfaces of ∆. The complex

bcw(L) is shellable of dimension d− 1 [1], which implies that Spec SR(bcw(L)) is
Cohen-Macaulay and pure of dimension d. Let C[L∨] denote the ring of functions
on L∨ = (Cn)∨/L⊥, which we may think of as the symmetric algebra on L. The
inclusion of L into Cn induces an inclusion of C[L∨] into C[e1, . . . , en], which makes
SR(bcw(L)) into an C[L∨]-algebra. Let SR0(bcw(L)) = SR(bcw(L)) ⊗C[L∨] C,
where each linear function on L∨ acts on C by 0. The following proposition
asserts that L constitutes a linear system of parameters (l.s.o.p.) for SR(bcw(L)).

Proposition 1. The Stanley-Reisner ring SR(bcw(L)) is a free C[L∨]-module,
and the ring SR0(bcw(L)) is zero-dimensional with Hilbert series

∑
hiz

i.

Proof. By [6, 5.9], it is enough to prove that SR0(bcw(L)) is a zero-dimensional
ring. Let π denote the composition Spec SR(bcw(L)) ↪→ (Cn)∨ � L∨. The variety
Spec SR(bcw(L)) is a union of coordinate subspaces, one for each face of bcw(L).
Let F be such a face, with vertices (v1, . . . , v|F |). The broken circuit complex
is a subcomplex of the matroid complex, hence (v1, . . . , v|F |) is an independent
set, which implies that π maps the corresponding coordinate subspace injectively
to L∨. Thus π−1(0) = Spec SR0(bcw(L)) is supported at the origin, and we are
done.

3. A degeneration of R(L)

In this section we show that R(L) degenerates flatly to the Stanley-Reisner ring
SR(bcw(L)) for any choice of w.

Lemma 2. The spaces SpecR(L) and Spec SR(bcw(L)) are both pure d-dimensi-
onal homogeneous varieties of degree tM(L)(1, 0), where tM(w, z) is the Tutte poly-
nomial of M .

Proof. The broken circuit complex is pure of dimension d − 1, hence Spec SR(
bcw(L)) is union of d-dimensional coordinate subspaces of (Cn)∨. Its degree is the
number of facets of bcw(L), which is equal to

∑
hi = tM(L)(1, 0) [1].

The variety SpecR(L) is equal to the closure inside of (Cn)∨ ∼= Cn of L∩(C∗)n,
and is therefore d-dimensional. We will now show that deg SpecR(L) obeys the
same recurrence as tM(L)(1, 0). First, suppose that i ∈ [n] is a loop of M(L).
Then L lies in a coordinate subspace of Cn, L ∩ (C∗)n is empty, and SpecR(L)
is thus empty and has degree 0. In this case, we also have tM(L)(1, 0) = 0. Next,
suppose that i is a coloop of M(L). Then L is invariant under translation by
ei, and SpecR(L) is similarly invariant under translation by xi. Write L/i for
the quotient of L by this translation, so that SpecR(L) = SpecR(L/i) × C and
deg SpecR(L) = deg SpecR(L/i). It is clear that M(L/i) = M(L)/i, and indeed
tM(1, 0) = tM/i(1, 0) when i is a coloop.

Now consider the case where i is neither a loop nor a coloop, hence we have

tM(L)(1, 0) = tM(L)/i(1, 0) + tM(L)\i(1, 0).
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In this case, we may apply the following theorem.

Theorem 3. [2, 2.2] Let X be a homogeneous irreducible subvariety of Cn = H⊕`,
with H a hyperplane and ` a line such that X is not invariant under translation
in the ` direction. Let X1 be the closure of the projection along ` of X to H, and
let X2 be the flat limit in H × P1 of X ∩ (H × {t}) as t → ∞. Then X has a
flat degeneration to a scheme supported on (X1 × {0}) ∪ (X2 × `). In particular,
degX ≥ degX1 + degX2, with equality if the projection X → X1 is generically
one to one.

Let X = SpecR(L), ` = Cxi, and H = C{xj | j 6= i}. Then in the notation of
Theorem 3, we have X1 = SpecR(L \ i), where L \ i is the projection of L onto
H, and X2 = SpecR(L/i). The projection of SpecR(L) onto H is one to one
because the corresponding projection of L in the xi direction is one to one. Thus
the degree of SpecR(L) is additive.

We are now ready to prove our main theorem, which asserts that R(L) degenerates
flatly to SR(bcw(L)) for any choice of w.

Theorem 4. The set
{
fC | C a circuit of M(L)

}
is a universal Gröbner basis

for R(L). Given any ordering w of [n], with the induced term order on C[y], we
have Inw R(L) = SR(bcw(L)).

Proof. Suppose given an ordering w of [n] and a circuit C of M(L). Let c0

denote the w-minimal element of C, so that
∏

c′∈C\{c0} yc′ is the leading term of

fC with respect to w. Every monomial of this form vanishes in Inw R(L), hence
we deduce that Spec Inw(R(L)) is a subscheme of Spec SR(bcw(L)). However,
Lemma 2 tells us that these two schemes have the same dimension and degree,
and Spec SR(bcw(L)) is reduced. Thus they are equal.

Let R be the quotient ring of C[y] generated by the polynomials {fC}. It is
clear that Inw Spec(R(L)) ⊆ Inw SpecR ⊆ Spec SR(bcw(L)). Since the two ends
of this chain are equal, we have Inw R = Inw R(L), and thus R and R(L) have the
same Hilbert series. As R(L) is a quotient ring of R, R = R(L).

4. A stratification of SpecR(L)

Let I be a subset of [n]. The rank of I is defined to be the cardinality of the
largest independent subset of I. If any strict superset of I has strictly greater
rank, then I is called a flat of M(L). If I is a flat, let LI ⊂ CI be the projection of
L onto the coordinate subspace CI ⊂ Cn, and let LI ⊂ CIc be the intersection of
L with the complimentary coordinate subspace CIc . The matroid M(LI) is called
the localization of M(L) at I, while M(LI) is called the deletion of I from M(L).

For any I ⊂ [n], let UI = {y ∈ (Cn)∨ | yi = 0 ⇐⇒ i /∈ I}, and let
AI = SpecR(L) ∩ UI .
Proposition 5. The variety AI is nonempty if and only if I is a flat of M(L).
If nonempty, AI is isomorphic to A(LI) = LI \

⋃
i∈I{yi = 0}.
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Proof. First suppose that I is not a flat of M(L). Then there exists some circuit
C of M(L) and element c0 ∈ C such that C ∩ I = C \ {c0}. On one hand, the
polynomial fC =

∑
c∈C ac

∏
c′∈C\{c} yc′ vanishes on AI . On the other hand, fC has

a unique nonzero term
∏

c∈C\{c0} yc′ on UI , and therefore cannot vanish on this
set. Hence AI must be empty.

Now suppose that I is a flat. If I = [n], then we are simply repeating the
observation that SpecR(L) ∩ (C∗)n ∼= L ∩ (C∗)n = A(L). In the general case,
Theorem 4 tells us that SpecR(L) is cut out of (Cn)∨ by the polynomials fC , so
we need to understand the restrictions of these polynomials to the set UI . If C
is not contained in I, then C \ I has size at least 2, and therefore fC vanishes on
UI . Thus we may restrict our attention to those circuits that are contained in I.
Proposition 5 then follows from the fact that the circuits of M(LI) are precisely
the circuits of M(L) that are supported on I.

Remark 6. The stratification of SpecR(L) given by Proposition 5 is analogous
to the standard stratification of L into pieces isomorphic to A(LI), again ranging
over all flats of M(L).

The identification of ei with yi makes R(L) into an algebra over C[L∨]. We
conclude by showing that, as in Proposition 1, L provides a natural linear system
of parameters for R(L).

Proposition 7. The ring R(L) is a free module over C[L∨]. The zero dimensional
quotient R0(L) := R(L)⊗C[L∨] C has Hilbert series

∑
hiz

i.

Proof. The fact that R(L) is Cohen-Macaulay follows from Theorem 4, which
asserts that it is a deformation of the Cohen-Macaulay ring SR(bcw(L)). Further-
more, Theorem 4 tells us that any quotient of R(L) by d generic parameters has
the same Hilbert series of SR0(bcw(L)). Therefore, as in Proposition 1, we let π
denote the composition SpecR(L) ↪→ (Cn)∨ � L∨, and observe that it is enough
to show that π−1(0) is supported at the origin.

Let I ⊂ [n] and suppose that y = (y1, . . . , yn) ∈ AI = SpecR(L) ∩ UI . By
Proposition 5, AI is obtained from A(LI) by applying the inversion involution of
(C∗)I , hence there exists xI ∈ A(LI) ⊂ LI such that xi = y−1

i for all i ∈ I. Extend
xI to an element x ∈ L. Then 〈x, y〉 =

∑
xiyi = |I|, hence if y projects trivially

onto L∨, we must have I = ∅.

Remark 8. It is natural to ask the question of whether R0(L) has a g-element;
that is an element g ∈ R(L) in degree 1 such that the multiplication map gr−2i :
R0(L)i → R0(L)r−i is injective for all i < r/2, where r is the top nonzero degree
of R0(L). This property is known to fail for the ring SR0(bcw(L)) [7, §5], but the
inequalities that it would imply for the h-numbers are not known to be either true
or false. In fact, the ring R0(L) fares no better than its degeneration; Swartz’s
counterexample to the g-theorem for SR0(bcw(L)) is also a counterexample for
R0(L).
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Remark 9. All of the constructions and results in this paper generalize to arbi-
trary fields with the exception of Proposition 7, which uses in an essential manner
the fact that C has characteristic zero.
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