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1. Introduction

Borel ideals, are special monomial ideals, occurring as generic initial ideals of
homogeneous ideals a ⊆ P(n) := k[X1, . . . , Xn], widely studied after Galligo’s and
Bayer-Stillman’s results ([6] and [1]). More precisely (under the action of Gl(n,k)

on P(n) : g(Xj) =
n∑

i=1

gijXi, g = (gij) ∈ Gl(n,k)), given any term-ordering < and

homogeneous ideal a ⊆ P(n), there exists a non-empty open subset U of Gl(n,k)
such that as g ranges in U, gin(a) := in(g(a)) is constant. Moreover, gin(a) is
fixed by the group B of upper-triangular invertible matrices, if X1 > · · · > Xn,
while gin(a) is fixed by the group B′ of lower-triangular invertible matrices if
X1 < · · · < Xn. Monomial ideals a ⊆ P(n), can be studied via the associated
order-ideal N (a) consisting of all the terms (= monic monomials) ‘outside’ a and
called sous-éscalier of a ([6], [8] and [10]). For a Borel ideal b ⊆ P(n), N (b) is
fixed by B′ if X1 > · · · > Xn, and by B if X1 < · · · < Xn. Studying Borel ideals
through their sous-éscaliers, following A. Galligo ([7]), we consider X1 < · · · < Xn.

In Section 2 we fix our notation. In Section 3 we introduce the Borel subsets of
the multiplicative semigroup of terms in P(n), illustrating some of their features
and giving a ‘general construction’ to produce Borel subsets of assigned cardinality
in each degree. In Section 4 we describe the Borel ideals b ⊂ P(n); in particular,
basing on the combinatorics of N (b), we associate to every 0-dimensional b ⊆
P(n), generated in degrees ≤ s+1, an n by s+1 matrix M̃(b) with non-negative
integral entries m̃i,j(b). Since on M̃(b)′s rows one reads the Hilbert functions of
sections of P(n)/b with linear spaces (see Definition 4.10 and Remark 4.12 a)),
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inspired by [2], M̃(b) is called sous-éscalier sectional matrix. In Section 5, given
any O-sequence h = (1, n, h2, . . . , hd, . . . , hs) of positive integers we introduce an
equivalence relation ∼ on the set Bn

h of 0-dimensional Borel ideals corresponding
to h via: b ∼ b′ if they have the same sous-éscalier sectional matrix. We also
introduce a poset structure on Bn

h/ ∼, by means of the partial order relation ≺
defined via: b̄ ≺ b̄′ if b̄ 6= b̄′ and m̃i,j(b) ≤ m̃i,j(b

′) for each representatives b, b′.

The Lex-segment ideal L(h) gives the unique maximal element of Bn
h/ ∼. In the

3-variable case, by the combinatorial character of ≺, we construct the general-
ized rev-lex segment ideal £(h) and prove our main results: for any O-sequence
h = (1, 3, h2, . . . , hs) ∈ N∗(s+1), the poset B3

h/ ∼ has a ‘natural’ lattice structure

and £(h) is its unique minimal element; if n ≥ 4, Bn
h/ ∼, only admits a poset

structure having, in general, several different minimal elements (see Theorem 5.6
and Example 5.3).

We are grateful to D. Bayer for suggesting us to investigate this subject.

2. Notation

In this section we fix our notation, recalling some general facts which will be used.

For each positive integer n, P(n) is the polynomial ring in the variables X1, . . . , Xn

over a field k of characteristic 0. If n ≤ 4, X, Y, Z, T replace ordinately X1, . . . , X4.

For 1 ≤ i ≤ n, P(i) := k[X1, . . . , Xi] and P′(i) := k[Xn−i+1, . . . , Xn] are thought
as subrings of P(n) = P′(n).

For every j ∈ N let P(n)j denote the j-homogeneous part of P(n) and similarly,
for M a subset of P(n) let Mj denote the degree j part.

The multiplicative semigroup of terms T(n) is the set of monic monomials
Xa := Xa1

1 ·Xa2
2 · · ·Xan

n with ai ∈ N, for 1 ≤ i ≤ n, T(i) and T′(i) denote respec-
tively the terms involving the set of variables {X1, . . . , Xi} and {Xn−i+1, . . . , Xn}.
For each subset N of T(n), we let N(i) be the intersection N ∩ T(i) and N ′(i)
the intersection N ∩T′(i). If no confusion can arise, we ordinately write P, T, T
and T′ for P(n), T(n), T(n− 1) and T′(n− 1). On T among the possible term-
orderings, we will consider the lexicographic (l), degree-lexicographic (dl) and
degree-reverse-lexicographic (drl) with X1 < · · · < Xn. The following decomposi-
tions (in increasing order) hold for all j ∈ N∗ and n 6= 1, (see [10]):

(•) Tj = Tj tXnTj−1 t · · · tXj−1
n T1 tXj

nT0 =
n⊔

r=0

Xr
nTj−r (w.r.t. dl)

(••) Tj = X1Tj−1 t T′
j =

n⊔
i=1

XiT
′(n− i + 1)j−1 (w.r.t. drl).

For each i, j ∈ N∗, 1 ≤ i ≤ n, 1 ≤ ω ≤
(

i+j−1
j

)
, the set of the ω smallest terms

of T(i)j w.r.t. l (resp. rl) is denoted Li,ω,j (resp. Λi,ω,j), and called ω-(initial)-l-
segment (resp. ω-(initial)-rl-segment) of T(i)j.

As usual, the leading term (w.r.t. the given term-ordering) of an f ∈ P is
denoted T (f) ∈ T; for a homogeneous ideal a ⊂ P, T (a) := {T (f) : f ∈ a}
is a semigroup ideal and in(a) ⊂ P is the generated monomial ideal. We call
sous-éscalier of a the order ideal N (a) := T \ T (a).
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For each subset N of T and positive integers i, j with 0 ≤ i ≤ n− 1 we denote by
λi,j(N) the number of egree j terms of N involving the variables Xi+1, . . . , Xn:

λi,j(N) := #(N ′(n− i)j), (1)

it may be useful to conventionally put λn,j(N) := 0. If N ⊆ Tj̄ for some j̄ ∈ N∗,
then λi,j(N) = 0 for all j 6= j̄, thus we write λi(N) instead of λi,j̄(N).

For t = Xa1
1 ·Xa2

2 · · ·Xan
n ∈ T, N ⊆ T, i, j ∈ N∗ with 1 ≤ i ≤ n, we put

µ(t) := min{` ∈ {1, . . . , n} : a` 6= 0}, (2)

νi,j(N) := #{t ∈ Nj : µ(t) = i}. (3)

As for 1 ≤ i ≤ n we have t ∈ T′(n− i) iff µ(t) ≥ i + 1 for all N ⊆ T, it holds:

νi,j(N) = λi−1,j(N)− λi,j(N). (4)

If N ⊆ Tj for some j ∈ N∗ we set N(0) := N and, for all ` ∈ N∗

N(`) := Tj+` \ {X1, . . . , Xn} · (Tj+`−1 \N(`−1)), (5)

calling it potential expansion of N in Tj+`.

By definition, for each homogeneous ideal a ⊆ P, as Tj \N (a)j = a∩Tj, one has

(N (a)j)(1) = Tj+1 \ T{ajP1}, (6)

and, since ajP1 ⊆ aj+1, one also has

N (a)j+1 ⊆ (N (a)j)(1). (7)

For a monomial ideal a ⊆ P(n), G(a) denotes its minimal system of generators.
If a is generated in degrees ≤ s + 1, with initial degree d ∈ N∗, then

#G(a)j = #(N (a)j−1)(1) − #(N (a)j) holds for every d ≤ j ≤ s + 1. (8)

Note that, in the 0-dimensional case, one has in particular G(a)s+1 = (N (a)s)(1).

3. Borel subsets of T

In this section we give the notion of Borel subset of T and some useful properties.

Definition 3.1. A subset B of T is Borel if t ∈ B and Xj | t imply Xit/Xj ∈ B
for all i < j.

Remark 3.2. a) For a Borel B ⊆ T(i)j it holds Xj
i ∈ B iff B = T(i)j, if B has

cardinality ω <
(

i+j−1
j

)
, then λ0(B) = ω and λi−1(B) = 0. So, if i = 3, only λ1(B)

is meaningful.

b) For each i, j ∈ N∗, 1 ≤ i ≤ n, 1 ≤ ω ≤
(

i+j−1
j

)
, Li,ω,j and Λi,ω,j are Borel subset

of T(i)j, moreover Li,ω,j = Λi,ω,j iff ω ∈ {1, 2,
(

i+j−1
j

)
− 2,

(
i+j−1

j

)
− 1,

(
i+j−1

j

)
} and

L1,1,j = Λ1,1,j = {Xj
1}, L2,ω,j = Λ2,ω,j = {Xj

1 , . . . X
j−ω+1
1 Xω−1

2 }.
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Notation 3.3. For all a, j ∈ N∗, a{j} means the j-binomial expansion of a,

a =

(
k(j)

j

)
+

(
k(j − 1)

j − 1

)
+ · · ·+

(
k(r)

r

)
with k(j) > k(j − 1) > · · · > k(r) ≥ r ≥ 1.

Moreover, for all ` ∈ Z we let:

(a{j})` :=

(
k(j) + `

j

)
+

(
k(j − 1) + `

j − 1

)
+ · · ·+

(
k(r) + `

r

)
,

where
(

k(j−m)+`
j−m

)
= 0 if k(j−m)+` < j−m for some 0 ≤ m ≤ j−r. In particular

(a{j})1−n = 1 if a =
(

n+j−1
j

)
, (a{j})1−n = 0 if a <

(
n+j−1

j

)
.

Lemma 3.4. For each j ∈ N∗, 0 ≤ i ≤ n− 1 and 1 ≤ ω ≤
(

n+j−1
j

)
− 1 it holds:

λi(Ln,ω,j) = (ω{j})−i.

Proof. We prove by induction on n ≥ 2 and j ∈ N∗ that λ1(Ln,ω,j) = (ω{j})−1, this
if n = 2 is trivial for all j ∈ N∗. Assume our contention for m ≤ n− 1, h ≤ j − 1
and deduce it for n and j. For 1 ≤ ω ≤

(
n+j−1

j

)
− 1 we set σ(ω) := −1 and

α(ω) := ω if ω ≤
(

n+j−2
j

)
, otherwise we set α(ω) := ω −

σ(ω)∑̀
=0

(
n+j−2−`

j−`

)
with σ(ω)

defined via:(
n+j−2

j

)
+ · · ·+

(
n+j−2−σ(ω)

j−σ(ω)

)
< ω ≤

(
n+j−2

j

)
+ · · ·+

(
n+j−2−σ(ω)

j−σ(ω)

)
+

(
n+j−2−σ(ω)−1

j−σ(ω)−1

)
.

As
j∑̀
=0

(
n+j−2−`

j−`

)
=

(
n+j−1

j

)
> ω, we have σ(ω) = j − 1 iff ω =

(
n+j−1

j

)
− 1,

i.e. for all ω 6=
(

n+j−1
j

)
− 1, it holds j − σ(ω) − 1 ≥ 1. By (•) of Section 2,

every τ ∈ Ln,ω,j is not divisible by X
σ(ω)+2
n , thus, σ(ω) = −1 implies Ln,ω,j ⊆ Tj,

and the inductive hypothesis on n applies. Otherwise, j − σ(ω) − 1 ≥ j − 1 and

Ln,ω,j =
σ(ω)⊔
`=0

X`
nTj−` tX

σ(ω)+1
n Ln−1,α(ω),j−σ(ω)−1.

As ω{j} =
σ(ω)∑̀
=0

(
n+j−2−`

j−`

)
+α(ω){j−σ(ω)−1}, we end by the inductive hypothesis

on j. Similarly for i > 1.

Remark 3.5. a) One computes λi(Λn,ω,j) similarly (for this reason we gave our
proof of Lemma 3.4 different from [11], Theorem 5.5). For each j, ω ∈ N∗ and
1 ≤ ω ≤

(
n+j−1

j

)
− 1, by (••) of Section 2, we have:

λ1(Λn,ω,j) =

{
0 if ω ≤

(
n+j−2

j−1

)
ω −

(
n+j−2

j−1

)
otherwise

.

Defining ρ(ω) via:
(

n+j−2
j−1

)
+· · ·+

(
n+j−2−ρ(ω)

j−1

)
≤ ω <

(
n+j−2

j−1

)
+· · ·+

(
n+j−2−ρ(ω)−1

j−1

)
,

n−1∑̀
=0

(
n+j−2−`

j−1

)
=

(
n+j−1

j

)
> ω implies ρ(ω) ≤ n− 2 and again by (••) of Section 2
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we have

λi(Λn,ω,j) =


0 if ρ(ω) < i− 1,

ω −
i−1∑̀
=0

(
n+j−2−`

j−1

)
if ρ(ω) ≥ i− 1.

Note that ρ(ω) + 1 is the greatest i between 0 and n− 2 with λi(Λn,ω,j) 6= 0 (i.e.
ρ(ω) + 2 gives the greatest i between 1 and n− 1, for which Xj

i ∈ Λn,ω,j.)

b) Moreover, by Remark 3.2 b) and Lemma 3.4, for all Borel subsets B ⊆ Tj,
consisting of ω elements, with 3 ≤ ω ≤

(
n+j−1

j

)
− 3, we have

λi(Ln,ω,j) ≥ λi(B) ≥ λi(Λn,ω,j). (9)

Lemma 3.6. If B ⊆ Tj is Borel then B(1) is so, with cardinality
n∑

i=1

λi−1(B).

Proof. Note that for each r ∈ N∗, C ⊆ Tr is Borel iff

t ∈ Tr \ C and X`|t imply Xit/X` ∈ Tr \B for all i > `. (10)

By definition, B(1) = Tj+1 \ {X1, . . . , Xn} · (Tj \B) and we will show that (10) is
verified by {X1, . . . , Xn} · (Tj \ B). Namely, t̄ ∈ {X1, . . . , Xn} · (Tj \ B) implies
t̄ = Xαt for some 1 ≤ α ≤ n and t ∈ Tj \B. Clearly Xα|t̄ and for all i > α we have
Xit̄/Xα = Xit ∈ {X1, . . . , Xn}·(Tj \B). If X`|t̄ for ` 6= α, then Xit/X` ∈ (Tj \B)
for all i > `, since B is Borel, so Xit̄/X` = XiXαt/X` ∈ {X1, . . . , Xn} · (Tj \ B)
for all i > `. Moreover, Xi · B′(n− i + 1) ∩ {X1, . . . , Xn} · (Tj \ B) = ∅ for each
i, 1 ≤ i ≤ n− 1 and for all τ ∈ B(1) it holds τ ∈ Xµ(τ) ·B′(n− µ(τ) + 1). Thus

B(1) =
n⋃

i=1

Xi ·B′(n− i + 1) (11)

and the union is disjoint because of (••) of Section 2. Thus, by the definition of
λi−1(B) :

#(B(1)) =
n∑

i=1

λi−1(B). (12)

Theorem 3.7. If B ⊆ Tj is Borel, then for every ` ∈ N∗, B(`) ⊆ Tj+` is so and

#B(`) = #
⊔

1≤i1≤···≤i`≤n

Xi1Xi2 · · ·Xi` ·B′(n− i` + 1) =
n∑

i=1

(
i+`−2
`−1

)
λi−1(B).

Proof. Clearly B(`) is Borel being defined iteratively as (B(`−1))(1) (see (5) of

Section 2). Since B(2) = (B(1))(1) and, by the proof of Lemma 3.6, B(1) =
n⊔

i=1

Xi ·

B′(n − i + 1), one has B(2) =
n⊔

i=1

Xi · B′
(1)(n − i + 1) =

n⊔
i=1

Xi[
n⊔

r=1

XrB
′(n − r +

1)]′(n− i + 1).

Since t ∈ T′(n− i + 1) iff µ(t) ≥ i (see (4) of Section 2), one has

[XrB
′(n− r + 1)]′(n− i + 1) =

{
∅ if r < i,
XrB

′(n− r + 1) if r ≥ i.
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Thus, B(2) =
n⊔

i=1

Xi[
n⊔

r=i

XrB
′(n − r + 1)] =

⊔
1≤i≤r≤n

XiXrB
′(n − r + 1)]. Assume

our contention for ` ∈ N∗, and deduce it for ` + 1. As B(`+1) = (B(`))(1), one has

B(`+1) =
n⊔

i=1

Xi[
⊔

1≤r1≤···≤r`≤n

Xr1Xr2 · · ·Xr`
·B′(n− r` + 1)]′(n− i + 1)

=
n⊔

i=1

Xi[
⊔

i≤r1≤···≤r`≤n

Xr1Xr2 · · ·Xr`
·B′(n− r` + 1)]

=
⊔

1≤i1≤···≤i`≤i`+1≤n

Xi1Xi2 · · ·Xi`+1
·B′(n− i`+1 + 1).

By counting how many times B′(n−i+1), i running from 1 to n, contributes to the
above union, one gets #(B(`)). B = B′(n) only occurs multiplied by X`

1, B′(n−1)

occurs
(

`
`−1

)
times (multiplied by the t ∈ T(2)` divisible by X2) and B′(n− i+1)

occurs
(

i+`−2
`−1

)
times (multiplied by the t ∈ T(i)` divisible by Xi). Thus, as

claimed, #(B(`)) =
n∑

i=1

(
i+`−2
`−1

)
λi−1(B).

Theorem 3.7 shows how to construct Borel subsets of given cardinality in each
degree (for Lex-segments see [8], for the general case see [9]).

General Construction 3.8. Fix d < s ∈ N∗ and 1 ≤ ω ≤
(

n+d−1
d

)
− 1, for all

0 ≤ j ≤ d−1, we let Bj := Tj and Bd ⊆ Td a Borel subset of cardinality ω0 := ω.
We also let Bd+` ⊆ (Bd+`−1)(1) be a Borel subset of cardinality ω` for all 1 ≤ ` ≤
s− d and ω` ≤ #(Bd)(`), and Bj = ∅ for all j > s. As clearly (Bj)(1) = Tj+1, for
all 0 ≤ j ≤ d − 1, we have Br+1 ⊆ (Br)(1), for each r ∈ N. Thus, N :=

⊔
r∈N

Br is

an order ideal and a Borel subset of T, with #N =
d−1∑
i=0

(
n+i−1

i

)
+

s−d∑̀
=0

ω`.

Remark 3.9. a) From Lemma 3.4 and Lemma 3.6, we get:
• Ln,η,j+1 ⊆ (Ln,ω,j)(1) for every η ≤ #((Ln,ω,j)(1)), yet

• Λn,η,j+1 ⊆ (Λn,ω,j)(1) only for η ≤ ω.

b) For each r between 0 and n− 2, we have λr(B(1)) =
n−2∑
i=r

λi(B) .

If n = 3, #(B(`)) = λ0(B) + `λ1(B), i.e. λ1(B(`)) = λ1(B) for each ` ∈ N.

4. Borel ideals

In this and next section, h := (1, n, . . . , hd, . . . , hs) ∈ N∗(s+1) is the O-sequence of
a homogeneous 0-dimensional ideal a ⊆ P with initial degree d ≤ s and generators
in degrees ≤ s + 1 (i.e. HP/a(j) = hj for 0 ≤ j ≤ s and HP/a(j) = 0 for j ≥ s + 1.

In particular we will say that such an h is not increasing if ∆(h) := (1, n −
1, . . . , hd− hd−1, . . . , hs− hs−1) = (1, n− 1, . . . , ∆(h)d, . . . , ∆(h)s) ∈ Zs+1 satisfies
∆(h)j ≤ 0, for all j ≥ d+1 (n.b. for n ≥ 2, ∆(h)j =

(
n+j−2

j

)
> 0 if 1 ≤ j ≤ d−1;

no assumption is made on ∆(h)d).
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Notation 4.1. The l-segment ideal associated to h is L(h) with N (L(h))j =
Tj if 0 ≤ j ≤ d − 1, N (L(h))j = Ln,hj ,j if d ≤ j ≤ s and N (L(h))j = ∅ if
s + 1 ≤ j (see [8]). For h non-increasing, the associated rl-segment ideal is Λ(h)
with N (Λ(h))j = Tj if 0 ≤ j ≤ d − 1, N (Λ(h))j = Λn,hj ,j if d ≤ j ≤ s and
N (Λ(h))j = ∅ if s + 1 ≤ j (see [3] and [10]).

Definition 4.2. A monomial ideal b ⊆ P is Borel if N (b)j is so, for all j ∈ N
and Bn

h is the set of 0-dimensional Borel ideals b ⊆ P(n) corresponding to h.

For n = 2 all notions coincide. If n ≥ 3, then l-segment and rl-segment ideals are
Borel, yet there are Borel ideals neither l-segment nor rl-segment. For a Borel
ideal b ⊆ P of initial degree d ∈ N∗ Xd

n ∈ G(b), thus νn,d(b) = 1 and νn,j(b) = 0
for all j 6= d.

Remark 4.3. a) Bn
h 6= ∅ as it contains L(h); if ∆(h)j > 0 for some j ≥ d + 1, by

Remark 3.9 a) there isn’t corresponding rl-segment ideal.

b) If b ∈ Bn
h, as G(b)s+1 = (N (b)s)(1) and νn,j(b) = 0, for all j 6= d, Lemma 3.6

applied to N (b)s implies νi,s+1(b) = λi−1,s(N (b)) for each i in the range between
1 and n. Moreover, for each ` in the range between 0 and s− (d + `):

hd+`+1 = #((N (b)d+`)(1) \G(b)d+`+1) =
n−2∑
i=0

λi,d+`(N (b))− #(G(b)d+`+1).

c) By Theorem 3.7 for constructing b ∈ Bn
h one needs, for r varying from 0 to

s−d, Borel subsets Br ⊆ Td+r of cardinality hd+r, with the following constraints:
1. Br+1 ⊆ (Br)(1),

2. #(B(`)) ≥ hd+r+` for each ` in the range between 0 and s− (d + `).

Lemma 4.4. A monomial ideal a ⊆ P corresponding to h satisfies λ1,j(N (a)) ≥
∆(h)j, for all j in the range between 0 and s.

Proof. By (••) of Section 2, N (a)j = (N (a)j∩X1Tj−1)t(N (a)j)
′(n−1). Letting

ξj := #(N (a)j ∩X1Tj−1),

we have hj = #(N (a)j) = ξj + λ1,j(N (a)). Moreover, aj−1P1 ⊆ aj implies
aj−1X1 ⊆ aj ∩ X1Tj−1 or, which is the same, N (a)j ∩ X1Tj−1 ⊆ N (a)j−1X1,
i.e. ξj ≤ hj−1. So ∆(h)j := hj − hj−1 = ξj + λ1,j(N (a))− hj−1 ≤ λ1,j(N (a)).

Corollary 4.5. A b ∈ Bn
h satisfies λ1,j(N (b)) = ∆(h)j exactly for those j in the

range between 0 and s, such that G(b)j does not contain any term divisible by X1.

Proof. As clearly G(b)j = ∅ for each 0 ≤ j ≤ d− 1, only j = d + `, 0 ≤ ` ≤ s− d,
matter. Moreover, from Lemma 4.4 one infers that λ1,d+`(N (b)) = ∆(h)d+` iff
ξd+` = hd+`−1. As G(b)d+` = (N (b)d+`−1)(1) \ N (b)d+` and (N (b)d+`−1)(1) =
n−1⊔
j=1

Xj(N (b)d+`−1)
′(n− j + 1), this means exactly X1 - t, for all t ∈ G(b)d+`.

If n = 3, we can say more and therefore, from now on, unless otherwise noticed,
T := T(3) endowed with drl and h := (1, 3, h2, . . . , hd, . . . , hs), as if d = s+1 then
B3

h = {(X, Y, Z)s}, one can take d ≤ s. We begin giving the following definition:
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Definition 4.6. ([9], [10]) For j ∈ N∗ and 1 ≤ i ≤ j + 1, 0 ≤ a ≤ j + 1 we set:

`ij := {Xj−i+1Zi−1, Xj−iY Zi−1, . . . , Y j−i+1Zi−1} and Ra,j :=
a⊔

i=1

`ij.

Note that: R0,j =∅, Rj+1,j =T(3)j, and Ra,j is the (initial)-l-segment L
3,

a(2j−a+3)
2

,j
.

If B ⊆ T(3)j is Borel, then #(B ∩ `ij) > #(B ∩ `i+1j) for every 1 ≤ i ≤ j + 1; if
B ∩ ¯̀ij 6= ∅, for some 1 ≤ ī ≤ j + 1, a full segment (from the left) of ¯̀ij lies in B.

Definition 4.7. For each 0 ≤ ` ≤ s− d, the increasing character of h in degree
d + ` is a` := max{0, max

i≥d+`
{∆(h)i}}.

In Definition 4.7 we have d ≥ a0 ≥ a1 ≥ · · · ≥ as−d := max{0, ∆(h)s}. Thus,
a` = 0 for some 0 ≤ ` ≤ s− d, implies a`+r = 0 for all 0 ≤ r ≤ s− (d + `).

We point out that bonds of Remark 4.3 c) reduce (by Remark 3.9 b)) to:
• B`+1 ⊆ (B`)(1),
• λ1(B`) ≥ a`, for all 0 ≤ ` ≤ s− d.

Definition 4.8. 1. Denoting m(h) ≤ s − d the index of the last positive in-
creasing character of h, we introduce h̄ ∈ N∗(d+m(h)+1), defined by:

h̄j =

{
∆(h)j = j + 1 if 0 ≤ j ≤ d− 1,
aj−d if d ≤ j ≤ d + m(h).

2. Following our General Construction 3.8, we define the order ideal L(h) :=⊔
j∈N

L(h)j, where:

• L(h)j := Tj if 0 ≤ j ≤ d− 1,

• L(h)j := Rh̄j ,j t {t1, . . . , tb(j)} if d ≤ j ≤ d + m(h), with b(j) := hj −
h̄j(2j−h̄j+3)

2
and t1 < · · · < tb(j) the smallest terms of (L(h)j−1)(1)\Rh̄j ,j,

• L(h)j := {t1, . . . , thj
} if d + m(h) + 1 ≤ j ≤ s, with t1 < · · · < thj

the
smallest terms of (L(h)j−1)(1),

• L(h)j := ∅ if j > s.

3. The generalized-rl-segment-ideal £(h) ∈ B3
h is the monomial ideal with sous-

éscalier L(h).

Let s1 < · · · < shj
∈ N (£(h))j and τ1 < · · · < τhj

∈ N (b)j, for b ∈ B3
h, 0 ≤ j ≤ s,

be the respective elements, one has sr ≤ τr for all 1 ≤ r ≤ hj. As λ1,d+`(N (b)) ≥
a` for each b ∈ B3

h, the trace of N (£(h))d+` in T′
d+`, ` varying from 0 to s− d, is

minimal among the elements of B3
h. If h is not-increasing, then L(h) = Λ(h).

Remark 4.9. a) The sequence h of Definition 4.8 a) is an O-sequence being the
Hilbert function of the Borel ideal:

(£(h), X1)/(X1) ⊆ P′(2).

b) Letting, for all homogeneous ideal a ⊆ P and i in the range between 1 and n,
a[i] := (a, X1, . . . , Xi)/(X1, . . . , Xi), we have:

λi,j(N (a)) := #((N (a)j)
′(n− i)) = HP/a[i](j).
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Drawing inspiration from [2], we associate to every 0-dimensional Borel ideal b ⊆
P, generated in degrees ≤ s + 1, a matrix in Mn,s+1(N), defined as follows:

Definition 4.10. The sous-éscalier sectional matrix (ses-matrix) of a 0-dimen-
sional Borel ideal b ⊆ P, generated in degrees ≤ s + 1, is M̃(b) = (m̃i,j(b)) ∈
Mn,s+1(N):

m̃i,j(b) := λi−1,j−1(N (b)), 1 ≤ i ≤ n, 1 ≤ j ≤ s + 1.

In general different ideals in Bn
h can share the same ses-matrix.

Example 4.11. If h = (1, 3, 4, 3), then both Λ(h) = (Z2, Y Z, Y 3, XY 2, X3Z,
X3Y,X4) and L(h) = (Z2, Y Z, Y 3, X2Z,X2Y 2, X3Y,X4) are in B3

h. Note that

M̃(Λ(h)) =

 1 3 4 3
1 2 1 0
1 1 0 0

 = M̃(L(h)).

Remark 4.12. a) By Definition 4.10 and Remark 4.9 a) we have:

• (m̃i,1(b), . . . , m̃i,s+1(b)) = (HP/b[i−1](0), . . . , HP/b[i−1](s)) as i ranges between 1
and n, in particular, for each i the 0 6= m̃i,j(b) form an O-sequence.

• (m̃1,j(b), . . . , m̃n,j(b)) = (HP/b[0](j − 1), . . . , HP/b[n−1](j − 1)), 1 ≤ j ≤ s + 1.

b) Given any O-sequence h = (1, 3,
(
4
2

)
, . . . ,

(
d+1
d−1

)
, hd, . . . , hs), by Lemma 3.4, the

second row of M̃(L(h)) is

(1 2 3 · · · d (hd{d})−1 · · · (hs{s})−1),

while, by construction, the second row of M̃(£(h)) is

(1 2 3 · · · d a0 · · · am(h) 0 · · · 0).

In general, for all O-sequence h = (1, n, . . . ,
(

n+d−2
d−1

)
, hd, . . . , hs), the i-th row of

M̃(L(h)) is (1, n− i+1,
(

n−i+2
2

)
, . . . ,

(
n+d−(i+1)

d−1

)
, (hd{d})−(i−1), . . . , (hs{s})−(i−1)).

A well-known result of Eliahou-Kervaire [4] gives a handy formula for the graded
Betti numbers of a Borel ideal b ⊆ P. Namely, if X1 < · · · < Xn, it holds:

βq,j+q(b) =
∑

t∈G(b)
deg t=j

(
n− µ(t)

q

)
=

n∑
i=1

(
n− i

q

)
νi,j(b), (∗)

(where µ(t) is defined in (2) and νi,j(b) stays for νi,j(G(b)) (defined in (3))).

In particular, for a 0-dimensional Borel ideal b ⊆ P of initial degree d and gener-
ated in degrees ≤ s + 1, j and q in (∗) vary respectively between d and s + 1, 0
and n− 1.

Proposition 4.13. Two 0-dimensional Borel ideals b, b′ ⊆ P(n) have the same
ses-matrix iff they have the same graded Betti numbers.
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Proof. Let b, b′ have either the same ses-matrix or graded Betti numbers, and let
d (resp. s + 1) be the initial (resp. greatest) degree of generators. Denoting ?
either of b and b′, from (∗) above we get linear relations between the β−,−(?)′s and
ν+,+(?)′s, more precisely, for j varying between d and s+1, we get a Gauss-reduced
linear system of n equations, q varying between n− 1 and 0. Namely, q = n− 1

implies βn−1,j+n−1(?) =
n∑

i=1

(
n−i
n−1

)
νi,j(?) = ν1,j(?), substituting it in q = n−2 we get

βn−2,j+n−2(?) =
n∑

i=1

(
n−i
n−2

)
νi,j(?) = (n− 1)ν1,j(?) + ν2,j(?) = (n− 1)βn−1,j+n−1(?) +

ν2,j(?), i.e. ν2,j(?) = βn−2,j+n−2(?)− (n− 1)βn−1,j+n−1(?) and so on, until q = 0.
Thus βq,j+q(?)’s are function of νi,j(?)’s, 0 ≤ q ≤ n− 1, d ≤ j ≤ s + 1, 1 ≤ i ≤ n,
and conversely. As νn,d(?) = 1 and νn,j(?) = 0, for all j between d + 1 and s + 1,
dependency relations between the β−,−(?)’s hold. By (8) and (11) we have also

νi,j(?) = #(N (?)′((n− i + 1)j−1)(1) − λi,j(N (?))−
n−1∑
h=1

νi+h,j(?)

from which, recalling that λn−1,j(N (?)) = 0 for d ≤ j ≤ s, we get the following
relations between νi,j(?)’s and λi,j(N (?))’s:

• νi,d(?) =
(

n−i+d−1
d−1

)
+ λi,d(N (?))− λi−1,d(N (?)), n− 1 ≥ i ≥ 1,

• νi,j(?) = λi−1,j−1(N (?))−λi−1,j(N (?))+λi,j(N (?)), n−1 ≥ i ≥ 1, d < j ≤ s,
• νi,s+1(?) = λi−1,s(N (?)) for 1 ≤ i ≤ n− 1,

which allow to express the last ones in terms of the first ones.

We get our contention taking into account (�) and •’s and recalling that m̃i,j(?) :=
λi−1,j−1(N (?)) for i and j respectively in the range between 1 and n, 1 and s + 1.

Remark 4.14. Let n = 3, h an O-sequence and b, b′ ∈ B3
h, then:

a) ν3,d(b) = 1, ν2,d(b) = d− λ1,d(N (b)), ν1,d(b) =
(

d+1
2

)
− hd + λ1,d(N (b));

b) as G(b)d+`+1 = (XN (b)d+` t Y ((N (b)d+`)
′(2)) \ N (b)d+`+1, for `, 1 ≤ ` ≤

s − d, we have ν3,d+`+1(b) = 0, ν2,d+`+1(b) = λ1,d+`(N (b)) − λ1,d+`+1(N (b)), and
ν1,d+`+1(b) = hd+` − hd+`+1 + λ1,d+`+1(N (b));

c) if 0 → L2 → L1 → L0 → P → P/b → 0 is the minimal free resolution of

(P/b), with Li =
s+1⊕
j=d

P(−j − i)βi,j+i , letting 0 = hs+1 = λ0,s+1(N (b)), since

λ1,j(N (b)) = β0,j+1 − hj + hj+1 for j in the range between d and s, the above
found values, inserted in the [4]’s formula (∗) give:

β0,j =

{ (
d+2
2

)
− hd if j = d

hj−1 − hj + λ1,j−1(N (b)) if j varies from d + 1 to s + 1

β1,j+1 =

{
d(d + 2)− 3hd + hd+1 + β0,d+1 if j = d
hj−1 − 2hj + hj+1 + β0,j+1 + β0,j if j varies from d + 1 to s + 1

β2,j+2 = hj−1 − 2hj + hj+1 + β0,j+1 if j varies between d and s + 1.

From the above consideration we get

βq,j+q(b) ≥ βq,j+q(b
′) if and only if m̃q,j+q(b) ≥ m̃q,j+q(b

′).
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If n 6= 3, graded Betti numbers of a 0-Borel ideal are not characterized only in
terms of its h and β0,j’s.

Example 4.15. In P := P(4) (with X < Y < Z < T ) let a and b be the two
Borel ideals:

a=(X6, X5Y, X4Y 2, X3Y 3, X2Y 4, XY 5,Y 6, X5Z,X4Y Z, X3Y 2Z,X2Y 3Z,XY 4Z,
Y 5Z,X4Z2, X3Y Z2, X2Y 2Z2, XY 3Z2, Y 4Z2, X3Z3, X2Y Z3, XY 2Z3,Y 3Z3,
X2Z4, XY Z4, Y 2Z4, Z5, X5T,X4Y T, X3Y 2T,X2Y 3T, XY 4T, Y 5T, X4ZT,
X3Y ZT, X2Y 2ZT,XY 3ZT, Y 4ZT,X2Z2T, Y Z2T, Z3T,X2T 2, XY T 2,
Y 2T 2, XZT 2, Y ZT 2, Z2T 2, XT 3, Y T 3, ZT 3, T 4),

b=(X6, X5Y,X4Y 2, X3Y 3, X2Y 4, XY 5,Y 6, X5Z,X4Y Z, X3Y 2Z,X2Y 3Z,XY 4Z,
Y 5Z,X4Z2, X3Y Z2, X2Y 2Z2, XY 3Z2, Y 4Z2, X3Z3, X2Y Z3, XY 2Z3, Y 3Z3,
X2Z4, XY Z4, Y 2Z4, XZ5, Y Z5, Z6, X5T, X4Y T, X3Y 2T, X2Y 3T, Y 4T,
X4ZT, X3Y ZT, X2Y 2ZT, Y 3ZT,X3Z2T, Y Z2T, Z3T, X2T 2, XY T 2, Y 2T 2,
XZT 2, Y ZT 2, Z2T 2, XT 3, Y T 3, ZT 3, T 4).

We have a, b ∈ B4
h with h = (1, 4, 10, 20, 23, 29), P/a and P/b have the same

β0,j’s, but different βi,j+i for i ≥ 1, indeed their minimal free resolutions are:

0→ P4(−7)⊕P(−8)⊕P29(−9)→ P16(−6)⊕P3(−7)⊕P94(−8)→ P23(−5)⊕
P4(−6)⊕P101(−7)→ P12(−4)⊕P2(−5)⊕P36(−6)→ P→ P/a→ 0,

0→ P4(−7)⊕P29(−9)→ P16(−6)⊕P2(−7)⊕P93(−8)→ P23(−5)⊕P4(−6)⊕
P100(−7)→ P12(−4)⊕P2(−5)⊕P36(−6)→ P→ P/b→ 0.

5. The poset structure

In this section, for each h = (1, n, h2, . . . , hd, . . . , hs), with n ≥ 3, we first introduce
an equivalence relation ∼ on the set Bn

h of 0-dimensional Borel ideals of P(n)
corresponding to h. Then we define a partial order ≺ on Bn

h/ ∼, which endows it
with a poset structure, some features of which are studied.

Definition 5.1. 1. Two Borel ideals b, b′ ∈ Bn
h are equivalent (in symbol b ∼

b′) if share the same ses-matrix (see Definition 4.10).

2. Two equivalence classes b̄, b̄′ ∈ Bn
h/ ∼ satisfy b̄ ≺ b̄′ if b̄ 6= b̄′ and for all

representatives b, b′ the ses-matrices’s entries satisfy mi,j(b) ≤ mi,j(b
′).

Remark 5.2. a) In Example 4.15, the rl-segment ideal Λ(h) and the l-segment
ideal L(h) are distinct but Λ(h) ∼ L(h).

b) By Proposition 4.13, equivalent elements of Bn
h have the same minimal free

resolution. After Proposition 4.13, tedious but easy computations show that b̄ ≺
b̄′ ∈ Bn

h/ ∼ implies βi,j(b) ≤ βi,j(b
′), for all b ∈ b̄, b′ ∈ b̄′.

c) The ses-matrices of Example 4.15 are not comparable w.r.t. ≺, indeed:

M̃(a) =


1 4 10 20 23 29
1 3 6 10 7 7
1 2 3 4 1 0
1 1 1 1 0 0

 and
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M̃(b) =


1 4 10 20 23 29
1 3 6 10 7 6
1 2 3 4 1 1
1 1 1 1 0 0

 .

Yet, as their minimal free resolutions show: βi,j(b) ≤ βi,j(a), for all i = 0, 1, 2, 3,
j = 4, 5, 6, this means that ≺ is a partial order stronger than the one given by the
graded Betti numbers.

d) By (9) and Remark 3.9 a), the class L(h) of the l-segment ideal corresponding
to h is the maximum element of Bn

h/ ∼.

e) If h is not increasing, (9) and Remark 3.9 b) imply that the la class Λ(h) of
the rl-segment ideal corresponding to h is the minimum element of Bn

h/ ∼.

f) If n = 3, by Remark 4.9 b) the class £(h) of the generalized-rl-segment ideal
corresponding to h is the minimum element of Bn

h/ ∼, whatsoever h could be.
Altogether we have that B3

h/ ∼, endowed with ≺, is a poset with universal

extremes 0 = £(h) and 1 = L(h).

Example 5.3. Let h = (1, 4, 10, 20, 35, 46, 59). Then ∆(h) = (1, 3, 6, 10, 15, 11,
13), in.deg.(h) = 5, as ∆(h)6 = 13 > 0, does not exist rl-segment ideal. By
Lemma 4.4 m̃2,6(b) ≥ 11 and m̃2,7(b) ≥ 13 for all b ∈ B4

h. We have to look for
λ1,6(N (b)) = 13, by Proposition 3.6 and Remark 4.3 e), λ1,5(N (b))+λ2,5(N (b))−
#(G(b)6) = 13 so the minimal values of λ1,5(N (b)) and λ2,5(N (b)) are for G(b)6 =
∅. We have for this only the following possibilities:

λ1,5(N (b)) = 11 and λ2,5(N (b)) = 2; or
λ1,5(N (b)) = 12 and λ2,5(N (b)) = 1; or
λ1,5(N (b)) = 13 and λ2,5(N (b)) = 0, which give ordinately:

b1 =(T 5, ZT 4, Z2T 3, Z3T 2, Y T 4, Y ZT 3, Y Z2T 2, Y 2T 3, Y 2ZT 2, Y 3T 2, Z6T, Z7,
Y Z5T, Y Z6, Y 2Z4T, Y 2Z5, Y 3Z3T, Y 3Z4, Y 4Z2T, Y 4Z3, Y 5ZT, Y 5Z2, Y 6T,
Y 6Z, Y 7, XZ5T,XZ6, XY Z4T, XY Z5, XY 2Z3T, XY 2XZ4, XY 3Z2T,
XY 3Z3, XY 4ZT, XY 4Z2, XY 5T, XY 5Z,XY 6, X2Z4T, X2Z5, X2Y Z3T,
X2Y Z4, X2Y 2Z2T,X2Y 2Z3, X2Y 3ZT,X2Y 3Z2, X2Y 4T,X2Y 4Z,X2Y 5) +
X3(Y, Z, T )4 + X4(Y, Z, T )3 + X5(Y, Z, T )2 + X6(Y, Z, T ) + (X7),

M̃(b1) =


1 4 10 20 35 46 59
1 3 6 10 15 11 13
1 2 3 4 5 2 2
1 1 1 1 1 0 0

 ;

b2 =(T 5, ZT 4, Z2T 3, Z3T 2, Z4T, Y T 4, Y ZT 3, Y Z2T 2, Y 2T 3, XT 4, Z7, Y Z6, Y 2Z5,
Y 3Z3T, Y 3Z4, Y 4ZT 2, Y 4Z2T, Y 4Z3, Y 5T 2, Y 5ZT, Y 5Z2, Y 6T, Y 6Z, Y 7,
XZ6, XY 2Z3T,XY Z5, XY 2Z4, XY 3ZT 2, XY 3Z2T, XY 3Z3, XY 4T 2,
XY 4ZT, XY 4Z2, XY 5T, XY 5Z,XY 6) + X2(Z5, Y Z3T, Y Z4, Y 2ZT 2,
Y 2Z2T, Y 2Z3, Y 3T 2, Y 3ZT, Y 3Z2, Y 4T, Y 4Z, Y 5) + X3[(Y, Z, T )4 \ {T 4}] +
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X4(Y, Z, T )3 + X5(Y, Z, T )2 + X6(Y, Z, T ) + (X7),

M̃(b2) =


1 4 10 20 35 46 59
1 3 6 10 15 12 13
1 2 3 4 5 1 1
1 1 1 1 1 0 0

 ;

b3 =(T 5, ZT 4, Z2T 3, Z3T 2, Z4T, Y T 4, Y ZT 3, Y Z2T 2, Y Z3T,XT 4, Z7, Y Z6, Y 2Z5,
Y 3Z4, Y 4T 3, Y 4ZT 2, Y 4Z2T, Y 4Z3, Y 5T 2, Y 5ZT, Y 5Z2, Y 6T, Y 6Z, Y 7, XZ6,
XY Z5, XY 2Z4, XY 3T 3, XY 3ZT 2, XY 3Z2T,XY 3Z3, XY 4T 2, XY 4ZT,
XY 4Z2, XY 5T, XY 5Z,XY 6) + X2(Z5, Y Z4, Y 2T 3, Y 2ZT 2, Y 2Z2T, Y 2Z3,
Y 3T 2, Y 3ZT, Y 3Z2, Y 4T, Y 4Z, Y 5) + X3[(Y, Z, T )4 \ {T 4}] + X4(Y, Z, T )3 +
X5(Y, Z, T )2 + X6(Y, Z, T ) + (X7), with

M̃(b3) = M̃(b2);

b4 =(T 5, ZT 4, Z2T 3, Z3T 2, Z4T, Z5, Y T 4, Y ZT 3, XT 4, XZT 3, Y 3Z2T 2, Y 3Z3T,
Y 3Z4, Y 3Z4, Y 4T 3, Y 4ZT 2, Y 4Z2T, Y 4Z3, Y 5T 2, Y 5ZT, Y 5Z2, Y 6T, Y 6Z,
Y 7) + X(Y 2Z2T 2, Y 2Z3T, Y 2Z4, Y 3T 3, Y 3ZT 2, Y 3Z2T, Y 3Z3, Y 4T 2, Y 4ZT,
Y 4Z2, Y 5T, Y 5Z, Y 6) + X2(Y Z2T 2, Y Z3T, Y Z4, Y 2T 3, Y 2ZT 2, Y 2Z2T,
Y 2Z3, Y 3T 2, Y 3ZT, Y 3Z2, Y 4T, Y 4Z, Y 5) + X3[(Y, Z, T )4 \ {T 4, ZT 3}] +
X4(Y, Z, T )3 + X5(Y, Z, T )2 + X6(Y, Z, T ) + (X7),

M̃(b4) =


1 4 10 20 35 46 59
1 3 6 10 15 13 13
1 2 3 4 5 0 0
1 1 1 1 1 0 0

 .

The above Example 5.3 shows that if n ≥ 4, and h is such that ∆(h)j � 0, for
some j ≥ d + 1,then Bn

h/ ∼ does not have minimum element but several minimal
ones. Recently, using different methods, C. A. Francisco in [5] proved a similar
result for the partial ordering on Bn

h given by the graded Betti numbers.

We prove now that for each O-sequence h = (1, 3,
(
4
2

)
, . . . , hd, . . . , hs) ∈ N∗(s+1),

the ≺ above endows B3
h/ ∼ with a lattice structure.

Lemma 5.4. Let µ0, . . . , µs−d ∈ N satisfy λ1,d+`(N (L(h))) ≥ µ` ≥ λ1,d+`(N (£
(h))), as ` varies from 0 to s−d, then there exists an ideal d∈B3

h with λ1,d+`(N (d))
= µ`.

Proof. We argue as in the construction of £(h) :

• for all 0 ≤ j ≤ d− 1 : ∆j = Tj,

• for all 0 ≤ ` ≤ s − d : ∆d+` = Rµ`,d+` t {t1, . . . , tc(`)} with c(`) := hd+` −
µ`(2(d+`)−µ`+3)

2
and t1 < · · · < tc(`) smallest terms of (∆d+`−1)(1) \Rµ`,d+`,

• for all r ∈ N∗ : ∆s+r = ∅, ∆ :=
⊔

j∈N
∆j ⊂ T is a Borel subset which is

an order ideal. The wanted d ∈ B3
h is the monomial ideal having ∆ as

sous-éscalier.
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Remark 5.5. a) The (d + `)-degree terms of G(d) (d defined in Lemma 5.4 and
0 ≤ ` ≤ s − d), are ordinately greater or equal than those of any b ∈ B3

h with

λ1(N (b)d+`) = µ`. In fact G(d)d consists of the ( (d+2)(d+1)
2

−hd) biggest elements of
Td\Rµ0,d, G(d)d+` consists of the greatest hd+`+µ`−hd+`+1 elements of (∆d+`)(1)\
Rµ`+1,d+` for all 1 ≤ ` ≤ s− d, and G(d)s+1 = (∆s)(1).

b) Lemma 5.4 allows to determine all possible ses-matrix of ideals in B3
h. Indeed,

the second row in the matrix of Remark 4.12 b) must be of the form:

(1 2 3 · · · d µ0 · · · µs−d)

for all µ0 ≥ · · · ≥ µs−d ∈ N such that a` ≤ µ` ≤ (hd+`{d + `})−1.

Theorem 5.6. The poset B3
h/ ∼ has a lattice structure.

Proof. Given b̄, b̄′ ∈ B3
h/ ∼, let b ∈ b̄, b′ ∈ b̄′, and µ0 ≥ · · · ≥ µs−d (resp. µ′0 ≥

· · · ≥ µ′s−d) be the (d−s+1)-tuple defined, for ` ranging from 0 to s−d, by: µ` :=
min{λ1(N (b)d+`), λ1(N (b′)d+`)} (resp. µ′` := max{λ1(N (b)d+`), λ1(N (b′)d+`)}).
We set: b̄∧ b̄′ := d̄, b̄∨ b̄′ := d̄′, with d ∈ B3

h (resp. d′ ∈ B3
h), the ideal constructed,

as in Lemma 5.4, from the above (d−s+1)-tuple µ0, . . . , µs−d (resp. µ′0, . . . , µ
′
s−d).

Note that if b̄ � b̄′, then, by construction, b̄ ∧ b̄′ := b̄ and b̄ ∨ b̄′ := b̄′.

For all b, b′ ∈ B3
h we have b̄ ∧ b̄′ � b̄, b̄′, and b̄ ∨ b̄′ � b̄, b̄′. Moreover, ā � b̄ ∧ b̄′

and ā′ � b̄ ∨ b̄′ for all a, a′ ∈ Bh with ā � b̄, b̄′ and ā′ � b̄, b̄′. All this proves that
we have the claimed lattice structure.

Example 5.7. If h = (1, 3, 6, 10, 15, 16, 11), then #B3
h = 20 and Bh/ ∼ consists

of six classes b1 = Λ(h), . . . , b6 = L(h). The poset structure is described in next
picture where for all 1 ≤ i ≤ 6, i represents the class bi and an oriented arrow
from i to j (i 6= j) indicates that bi � bj

2 ← 4 ← 6

↓ ↓ ↓

1 ← 3 ← 5.

Moreover,
b2 ∧ b3 = b1 b2 ∨ b3 = b4

b2 ∧ b5 = b1 b2 ∨ b5 = b6

b4 ∧ b5 = b3 b4 ∨ b5 = b6

Finally notice that, according to Remark 4.14 c), for all a ∈ b2 ∪ b3 we have
β0 = 23, β1 = 39, β2 = 17. Of course βi,j+i’s distinguish the elements of b2 from
those of b3.
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