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Abstract. All rings are commutative with identity and all modules are
unital. Let R be a ring, M an R-module and R(M), the idealization
of M . Homogenous ideals of R(M) have the form I (+)N , where I is an
ideal of R and N a submodule of M such that IM ⊆ N . A ring R (M)
is called a homogeneous ring if every ideal of R (M) is homogeneous.
In this paper we continue our recent work on the idealization of mul-
tiplication modules and give necessary and sufficient conditions for a
homogeneous ideal to be an almost (generalized, weak) multiplication,
projective, finitely generated flat, pure or invertible (q-invertible). We
determine when a ring R(M) is a general ZPI-ring, distributive ring,
quasi-valuation ring, P -ring, coherent ring or finite conductor ring. We
also introduce the concept of weakly prime submodules generalizing
weakly prime ideals. Various properties and characterizations of weakly
prime submodules of faithful multiplication modules are considered.
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0. Introduction

Let R be a commutative ring and M an R-module. M is a multiplication module
if every submodule N of M has the form IM for some ideal I of R. Equivalently,
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N = [N : M ]M , [12]. A submodule K of M is multiplication if and only if
N ∩K = [N : K]K for all submodules K of M , [30, Lemma 1.3].

Let P be a maximal ideal of R and let TP (M) = {m ∈ M : (1 − p)m = 0
for some p ∈ P}. Then TP (M) is a submodule of M . M is called P -torsion if
TP (M) = M . On the other hand M is called P -cyclic provided there exist m ∈ M
and q ∈ P such that (1−q)M ⊆ Rm. El-Bast and P. F. Smith, [13, Theorem 1.2],
showed that M is multiplication if and only if M is P -torsion or P -cyclic for each
maximal ideal P of R. M is said to be an almost multiplication module if MP is a
multiplication module for each prime ideal P of R. Weak multiplication modules
are defined to be the modules in which every prime submodule P has the form
[P : M ]M . The Z-module Q is weak multiplication but not multiplication. An
R-module M is weak multiplication if and only if it is locally weak multiplication,
from which it follows that a weak multiplication module over a local ring is a
multiplication module. Thus the concepts of weak multiplication and multipli-
cation coincide if the module is finitely generated. An R-module M is called a
generalized multiplication module if for every pair of proper submodules K and N
of M , K∩N = [K : N ]N , [20]. The Z-module ZP∞ is a generalized multiplication
module which is not a multiplication module. Let N be a submodule of M and I
an ideal of R. The residual submodule N by I is [N :M I] = {m ∈ M : Im ⊆ N},
[23] and [24]. Obviously, [N : IM ]M ⊆ [N :M I]. The reverse inclusion is true if
M is multiplication, [3]. If M is faithful multiplication, [0 :M I] = (annI)M . If
M is a flat R-module and I a finitely generated ideal of R, then this property also

holds. For, let I =
n∑

i=1

Rai and m ∈ [0 :M I]. Then aim = 0 for each 1 ≤ i ≤ n.

As M is flat, [24, Theorem 7.6] shows that there exist ri ∈ R and k ∈ M such
that riai = 0 and m = rik. Hence m ∈ ann(ai)M for each i, from which it follows

that m ∈
n⋂

i=1

ann(ai)M =

(
n⋂

i=1

ann(ai)

)
M = (annI)M , [24, Theorem 7.4]. Hence

(annI)M ⊇ [0 :M I] and the equality holds.
Let R be a ring and M an R-module. A submodule N of M is pure in M

if N is a direct summand of M , [24]. Every ideal I of R is pure if and only if
it is multiplication and idempotent. M is projective if and only if it is a direct
summand of a free R-module. It is proved, [31, Theorems 2.1 and 2.2], that a
finitely generated I is projective (resp. flat) if and only if I is multiplication and
annI = Re for some idempotent e of R (resp. annI is a pure ideal of R). More
generally, if M is a finitely generated multiplication such that annM = Re for
some idempotent e, then M is projective, [32, Theorem 11], and multiplication
modules with pure annihilator are flat, [6, Corollary 2.7] and [26, Theorem 4.1].
It is also well-known that a finitely generated ideal I of R is projective if and only
if I is flat and annI is finitely generated, [33, Corollary 3.1].

Let R be a ring and M an R-module. Let S be the set of regular elements of
R and RS the total quotient ring of R. For a non-zero ideal I of R, let I−1 = {x ∈
RS : xI ⊆ R}. I is an invertible ideal of R if II−1 = R. Let T = {t ∈ S : tm = 0
for some m ∈ M implies m = 0}. T is a multiplicatively closed subset of S, and
if M is torsion-free then T = S. Let N be a non-zero submodule of M and let
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N−1 = {x ∈ RT : xN ⊆ M}. N−1 is an RS-submodule of RT , R ⊆ N−1 and
NN−1 ⊆ M . Following [28], N is invertible in M if NN−1 = M . It is shown,
[28, Remark 3.2 and Lemma 3.3], that if is I an invertible ideal of R then IM
is invertible in M . The converse is true if M is finitely generated, faithful and
multiplication.

Let R be a commutative ring with identity and M an R-module. Then
R(+)M =R(M) with coordinate-wise addition and multiplication (r1, m1)(r2, m2)=
(r1r2, r1m2+r2m1) is a commutative ring with identity called idealization of M or
the trivial extension of R by M . The idealization of a module is a well-established
method to facilitate interaction between a ring on the one hand and a module over
a ring on the other. The basic construction is to embed the module M as an ideal
in a ring R(M) which contains R as a subring. This technique was used with great
success by Nagata, [25]. For a comprehensive survey on idealization, Anderson
and Winders [10] and Huckaba [19, Section 25] can be consulted. An ideal H
of R(M) is called homogeneous if H = I (+)N where I is an ideal of R and N a
submodule of M . In this case, I (+)N = (R(+)M)(I (+)N) = I (+)(IM + N) gives
that IM ⊆ N (equivalently, [N :M I] = M). In [2] we called a ring R(M) is
homogeneous if every ideal H of R(M) is homogeneous. Several properties and
characterizations of homogeneous ideals and homogeneous rings are considered
in [1] and [2]. In this note we continue our investigation of homogeneous ideals
and homogeneous rings. In Section 1 we determine when a homogeneous ideal of
R(M) is finitely generated flat (finitely generated projective), almost (generalized,
weak) multiplication, pure or invertible. In Section 2 we investigate properties of
a ring R(M), especially when R(M) is homogeneous. We show how properties of
R(M) such as SPIR, general ZPI-ring, Bezout ring, quasi-valuation ring, P -ring,
coherent ring or finite conductor ring are related to those of R and M . In the
last section of the paper we introduce the concept of weakly prime submodules as
a generalization of weakly prime ideals. Various properties and characterizations
of weakly prime submodules of faithful multiplication modules are given.

All rings are assumed to be commutative with 1 and all modules are unital.
For the basic concepts used, we refer the reader to [15], [16], [19], [23], [24], [25],
and [34].

The author is grateful to the referee for helpful suggestions which have resulted
in an improvement to the paper.

1. Homogenous ideals

Let I(+)N and J(+)K be two homogenous ideals of R(M). Then the ideal [I(+)N:R(M)

J (+)K] = [I : J ]∩[N : K](+)[N :M J ] is homogeneous, [2, Lemma 1]. Consequently,

ann(I (+)N) = annI ∩ annN (+)[0 :M I].

If I is a (finitely generated) ideal and M a (flat) faithful multiplication R-module
then [0 :M I] = (annI)M , and hence ann(I (+)N) = annI∩annN (+)(annI)M . Let r
be a regular element in R. If (r, m) is a regular element of R(M) then r is regular
in R from which it follows that if I (+)N is a regular ideal of R(M) then I is a
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regular ideal of R, see [1, Lemma 6] and [10, Theorem 3.5]. The converse is true if
M is torsion-free. For, let r be regular and m ∈ M . Let (s, n) ∈ R(M) such that
(r, m)(s, n) = (0, 0). Then rs = 0 (and hence s = 0) and rn + sm = 0. This gives
that rn = 0. As M is torsion-free, n = 0. Let Z(R) be the set of zero-divisors
of R and Z(M) the set of zero-divisors on M , that is Z(M) = {r ∈ R : rm = 0
for some non-zero m ∈ M}. Then Z(R(M)) = (Z(R) ∪ Z(M))(+)M and the
set of regular elements of R(M) is S(+)M where S = R − (Z(R) ∪ Z(M)), [10,
Theorems 3.5 and 4.3] and [19, Theorem 25.3]. If M is a torsion-free R-module
then Z(M) ⊆ Z(R) and hence Z(R(M)) = Z(R)(+)M and S(+)M = {(r, m) : r is
a regular element of R and m ∈ M}.

We start this section by a result showing how properties of a submodule N of
M are related to those of the ideal 0(+)N of R(M).

Proposition 1. Let R be a ring, M an R-module and N a submodule of M .

(1) N is almost multiplication if and only if 0(+)N is an almost multiplication
ideal of R(M).

(2) N is generalized multiplication if and only if 0(+)N is a generalized multipli-
cation ideal of R(M).

(3) If 0(+)N is a pure or projective ideal of R(M) then N = 0.

Proof. (1) This follows by the fact that N is locally cyclic if and only if 0(+)N
is a locally principal ideal of R(M), [9, Theorem 3.1].

(2) Suppose N is generalized multiplication. Let H1 and H2 be ideals of R(M)
that are properly contained in 0(+)N . Then H1 = 0(+)K and H2 = 0(+)L for some
proper submodules K and L of N . It follows that

H1 ∩H2 = 0(+)K ∩ 0(+)L = 0(+)K ∩ L = 0(+)[K : L]L

= ([K : L](+)M)(0(+)L) = [0(+)K :R(M) 0(+)L](0(+)L)

= [H1 :R(M) H2]H2,

and 0(+)N is generalized multiplication. The argument is reversible.

(3) Suppose 0(+)N is a pure ideal of R(M) then R(M) = 0(+)N⊕H for some ideal
H of R(M). It follows that 0(+)N = H(0(+)N) ⊆ H ∩0(+)N = 0, so that 0(+)N = 0
and hence N = 0. If 0(+)N is projective, it follows by, [5, Theorem 3.3], that
R (M) = ann (0(+)N)2 = ann (0(+)N) = annN + M . Hence R = annN , and hence
N = 0. Alternatively, by the Dual Basis Lemma there exist a family of R (M)-
homomorphisms fi : 0(+)N → R (M) and a family of elements {(0, ki)} ⊆ 0(+)N
such that for each (0, n) ∈ 0(+)N ,

(0, n) =
∑
i

fi (0, n) (0, ki) =
∑
i

fi ((0, n) (0, ki)) =
∑
i

fi (0, 0) = (0, 0) .

Hence n = 0, and this implies that N = 0. �

A. G. Naoum introduced in [27] quasi-invertible (q-invertible) ideals as a general-
ization of invertible ideals: An ideal I of R is called q-invertible for an idempotent
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e if II−1 = Re and annI = ann(e). If I is q-invertible for e then I is finitely
generated. It is shown, [27, Theorem 1.5], that I is q-invertible for e if and only
if I is a finitely generated projective ideal and annI = ann(a) = ann(e) for some
a ∈ I.

The next theorem shows that properties of an ideal I of a ring R such as
multiplication, projective, flat, pure, invertible or q-invertible are usually related
to those of the ideal I (+)IM of R(M).

Theorem 2. Let R be a ring, M an R-module and I an ideal of R.

(1) I is pure if and only if I (+)IM is a pure ideal of R(M).

(2) I is almost multiplication if and only if I (+)IM is an almost multiplication
ideal of R(M).

(3) If I (+)IM is an invertible ideal of R(M) then I is invertible. The converse
is true if M is torsion-free.

(4) If I (+)IM is a finitely generated flat ideal of R(M) then I is finitely generated
flat. The converse is true if M is torsion-free.

(5) If I (+)IM is a finitely generated projective ideal of R(M) then I is finitely
generated projective. The converse is true if M is flat.

(6) If M is finitely generated, faithful and multiplication and I (+)IM is q-inver-
tible for (e, 0) then I is q-invertible for e. Conversely, if M is flat and I is
q-invertible for e then I (+)IM is q-invertible for (e, 0).

(7) If I (+)IM is a generalized multiplication ideal of R(M) then I is generalized
multiplication.

Proof. (1) Suppose I is a pure ideal of R. Then R = I ⊕ J for some ideal J
of R. It follows that R(M) = (I + J)(+)(I + J)M = I (+)IM + J (+)JM . Since
I ∩ J = 0, IJ = 0. As R = I + J , we infer that

IM ∩ JM = I(IM ∩ JM) + J(IM ∩ JM) ⊆ IJM = 0,

so that IM∩JM = 0. This implies that I (+)IM∩J (+)JM = (I∩J)(+)(IM∩JM) =
0, and hence I (+)IM is a direct summand of R(M). Therefore I (+)IM is a pure
ideal of R(M). Conversely, let I (+)IM be pure. Then R(M) = I (+)IM ⊕ H
for some ideal H of R (M). Let H + 0(+)M = J (+)M for some ideal J of R.
Then R(M) = I (+)IM + J (+)M = (I+J)(+)M . Hence R = I + J . Since R(M) =
I (+)IM + H is a multiplication ideal of R(M), we obtain from, [7, Theorem 2.1],
that

0(+)M = 0(+)M+(I (+)IM∩H) = I (+)M∩H+0(+)M = I (+)M∩J (+)M = (I∩J)(+)M.

Hence I ∩ J = 0, and hence R = I ⊕ J . So I is a pure ideal of R.

(2) It follows by the fact that I is locally principal if and only if I (+)IM , is a
locally principal ideal of R(M), [1, Theorem 7].

(3) Suppose I (+)IM is an invertible ideal of R(M). Then I (+)IM is a regular
ideal of R(M) and hence it contains a regular element, say (a, n). Hence a is a
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regular element of I. As I (+)IM is multiplication, R(M)(a, 0) = H(I (+)IM) for
some ideal H of R(M). Let H + 0(+)M = J (+)M for some ideal J of R. Then

Ra(+)IM = R(M)(a, 0) + 0(+)IM = H(I (+)IM) + 0(+)IM

= (H + 0(+)M)(I (+)IM) = (J (+)M)(I (+)IM) = JI (+)IM.

So Ra = JI and hence I is an invertible ideal of R. Alternatively, as I (+)IM
is invertible, R(M) = (I (+)IM)(I (+)IM)−1. Suppose (r, m) ∈ (I (+)IM)−1. Then
(r, m) ∈ R(M)S(+)M

∼= RS (+)MS, where S = R − (Z(R) ∪ Z(M)), [10, Theorems
3.5 and 4.1]. It follows that (r, m)(a, b) ∈ R(M) for each (a, b) ∈ I (+)IM . Hence
ra ∈ R for each a ∈ I, and hence rI ⊆ R. This implies that r ∈ I−1 and hence

R(M) = (I (+)IM)(I (+)IM)−1 ⊆ (I (+)IM)(I−1
(+)MS) = II−1

(+)(IMS + II−1M).

This shows that R ⊆ II−1 ⊆ R, so that II−1 = R and I is invertible. Conversely,
let M be torsion-free and I invertible. Suppose a ∈ I is regular. Then (a, 0) is a
regular element of I (+)IM . Now, since I is invertible, Ra = JI for some ideal J
of R. Hence

R(M)(a, 0) = Ra(+)aM = JI (+)JIM = (I (+)IM)(J (+)JM),

and hence I (+)IM is an invertible ideal of R(M).

(4) An R-module M is flat if and only if it is locally flat, [15]. Also, finitely
generated flat ideals are locally either zero or invertible [18, Lemma 2.1] and [33,
Lemma 6]. The result follows by these two facts and (3).

(5) Let I (+)IM be a finitely generated projective ideal of R(M). Then I (+)IM is
finitely generated flat and by (4), I is finitely generated flat. Also, ann(I (+)IM) =
annI (+)[0 :M I] is finitely generated from which it follows that annI ∼= annI (+)[0 :M
I]/0(+)[0 :M I] is a finitely generated ideal of R. Hence I is finitely generated
projective, [33, Corollary 3.1]. Conversely, suppose M is flat (hence torsion-free)
and let I be finitely generated projective. Then I is finitely generated flat, and by
(4), I (+)IM is finitely generated flat. Since annI is finitely generated, it follows by,
[1, Theorem 7], that ann(I (+)IM) = annI (+)(annI)M is finitely generated. Hence
I (+)IM is finitely generated projective.

(6) Suppose M is finitely generated, faithful and multiplication. Let I (+)IM be
q-invertible for (e, 0). Then I (+)IM is finitely generated projective and by (5),
I is finitely generated projective. It follows by, [27, Theorem 1.5], that there
exists (a, n) ∈ I (+)IM such that ann(I (+)IM) = ann(a, n) = ann(e, 0). Hence
annI (+)(annI)M = ann(e)(+)ann(e)M , and hence annI = ann(e). Next,

annI (+)(annI)M = ann(a, n) ⊇ ann(Ra(+)Rn+aM) = ann(a)∩ann(n)(+)ann(a)M.

This implies that ann(a)M ⊆ (annI)M , and by, [32, Corollary to Theorem 9],
ann(a) ⊆ annI ⊆ ann(a), and hence annI = ann(a). This shows that I is q-
invertible for e. Conversely, let M be flat and I q-invertible for e. Then I is
finitely generated projective and by (5), I (+)IM is finitely generated projective.
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Now, there exists a ∈ I such that annI = ann(a) = ann(e). Hence ann(I (+)IM) =
ann(a, 0) = ann(e, 0), and therefore I (+)IM is q-invertible for (e, 0).

(7) Suppose A and B are ideals of R that are properly contained in I. Then
A(+)AM and B(+)BM are ideals of R(M), each of them is properly contained in
I (+)IM . As I (+)IM is generalized multiplication, we have that

A ∩B(+)AM ∩BM = A(+)AM ∩B(+)BM = [A(+)AM :R(M) B(+)BM ] (B(+)BM)

= ([A : B](+)[AM :M B]) (B(+)BM) = [A : B] B(+) ([A : B]BM + [AM :M B] B) .

Hence A ∩B = [A : B]B, and this shows that I is generalized multiplication. �

The next theorem shows how properties of I (+)N can be transferred to its com-
ponents I and N .

Theorem 3. Let R be a ring, M an R-module and I (+)N a homogeneous ideal of
R(M).

(1) If I (+)N is pure then I is a pure ideal of R and N a pure submodule of M .

(2) If I (+)N is invertible then I is an invertible ideal of R and N an invertible
submodule of M .

(3) If I (+)N is generalized multiplication then I is a generalized multiplication
ideal of R and N a generalized multiplication submodule of M .

(4) If I (+)N is almost multiplication then I is an almost multiplication ideal of
R. Assuming further that M is almost multiplication then N is an almost
multiplication submodule of M .

(5) If I (+)N is finitely generated flat then I is a finitely generated flat ideal of
R. Assuming further that M is finitely generated flat then N is a finitely
generated flat submodule of M .

(6) If I (+)N is finitely generated projective then I is a finitely generated projective
ideal of R. Assuming further that M is finitely generated projective then N
is a finitely generated projective submodule of M .

Proof. (1) If I (+)N is pure then I (+)IM = I (+)IM ∩ I (+)N = (I (+)IM)(I (+)N) =
I2

(+)IN . Hence IM = IN . But I (+)N is idempotent. Thus I (+)N = (I (+)N)2 =
I2

(+)IN . Hence N = IN = IM . By Theorem 2(1), I is a pure ideal of R. Now,
there exists an ideal J of R such that R = I ⊕ J . Then M = IM + JM . Since
R = I + J and I ∩ J = 0, we infer that IM ∩ JM = 0 (see the proof of Theorem
2(1)). Hence M = IM ⊕ JM , and hence N = IM is pure in M .

(2) Suppose I (+)N is an invertible ideal of R(M). Since (I (+)N)2 = I2
(+)IN =

(I (+)N)(I (+)IM), we obtain that

I (+)N = (I (+)N)−1(I (+)N)2 = (I (+)N)−1(I (+)N)(I (+)IM) = I (+)IM,

and hence N = IM . It follows by Theorem 2(3) that I is an invertible ideal
of R. Now, R = II−1 gives that M = IMI−1 ⊆ (IM)(IM)−1 ⊆ M . Hence
M = (IM)(IM)−1, and IM = N is invertible in M .
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(3) [1, Theorem 9] shows that if I (+)N is principal then I is a principal ideal of
R and if we assume that M is cyclic then N is a finitely generated multiplication
submodule of M (in fact N can be generated by two elements). The result is now
obvious.

(4) It is easy to check that every submodule of a generalized multiplication R-
module is generalized multiplication. If I (+)N is a generalized multiplication ideal
of R(M) then so too are 0(+)N and I (+)IM . The result follows by Proposition 1
and Theorem 2.

(5)–(6) Let I (+)N be finitely generated flat (resp. finitely generated projective).
It follows by, [5, Theorem 3.3], [33, Lemma 6] and [18, Lemma 2.1], that I (+)N is
locally either zero or invertible. Hence N = IM is locally true and hence globally.
By Theorem 2, I is a finitely generated flat (resp. finitely generated projective)
ideal of R. If M is finitely generated flat (resp. finitely generated projective) then
N = IM ∼= I ⊗M is a finitely generated flat (resp. finitely generated projective)
submodule of M . �

The next theorem gives necessary and sufficient conditions for the ideal I (+)M to
be projective (weak multiplication).

Proposition 4. Let R be a ring, M an R-module and I an ideal of R.

(1) If I (+)M is a projective ideal of R(M) then I is projective and M = IM .
Conversely, if I is projective and M torsion-free then I (+)IM is a flat ideal
of R (M).

(2) I (+)M is a weak multiplication ideal of R(M) if and only if I is weak mul-
tiplication and for every prime ideal P (+)M ⊆ I (+)M either P (+)M = I (+)M
or M = IM .

Proof. (1) Suppose I (+)M is a projective ideal R(M). There exists a free ideal
F of R(M) such that F = I (+)M ⊕ H for some ideal H of R. Let F + 0(+)M =
A(+)M and H + 0(+)M = J (+)M for some ideals A and J of R. It follows that
A(+)M = (I +J)(+)M from which one gets that A = I +J . Since F = I (+)M +H
is a free (hence multiplication) ideal of R(M), it follows by, [7, Theorem 2.1], that

0(+)M = 0(+)M +(I (+)M ∩H) = I (+)M ∩0(+)M +H = I (+)M ∩J (+)M = I ∩J (+)M.

Hence 0 = I ∩ J , and this shows that A = I ⊕ J . To complete the proof that I is
projective, we need to show that A is a free ideal of R. By, [7, Theorem 2.1], we
have that

F ∩ 0(+)M = (I (+)M + H) ∩ 0(+)M = I (+)M ∩ 0(+)M + H ∩ 0(+)M

= 0(+)M + H ∩ 0(+)M = 0(+)M.

Hence 0(+)M ⊆ F , and therefore F = F + 0(+)M is a free ideal of R(M). Next,
F = A(+)M is a free ideal of R (M) and by [29, Ex. 1.3], A(+)M is cancellation.
Since

(A(+)AM)(A(+)M) = A2
(+)A2M = (A(+)AM)2,
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it follows that A(+)M = A(+)AM . Assume {(aα, 0)} is a basis of A(+)AM . Then
A(+)AM =

∑
α

R(M)(aα, 0), from which we get that A =
∑
α

Raα. To show {aα}

is a basis of A, let
∑
α

rαaα = 0, where rα ∈ R. Then
∑
α

(rα, 0)(aα, 0) = (0, 0),

and hence (rα, 0) = (0, 0) (and hence rα = 0). This shows that A is a free ideal
of R. Next, let I (+)M be projective. If I = 0, then 0(+)M is projective implies
that M = 0, and hence M = IM . So, suppose that I 6= 0. Then I (+)M is locally
free, and hence it is locally cancellation. It follows by, [29, Proposition 2.2], that
I (+)M is cancellation and hence M = IM . Alternatively, I (+)M is locally either
zero or invertible. Hence M = IM is locally true and hence globally. Suppose I
is projective and M torsion-free. By, [5, Theorem 3.3], I is locally either zero or
invertible, and so too is I (+)IM . This gives that I (+)IM is locally flat and hence
I (+)IM is flat.

(2) Suppose I (+)M is weak multiplication. Let P ⊆ I be a prime ideal of R. Then
P (+)M ⊆ I (+)M is a prime ideal of R(M). Hence

P (+)M = [P (+)M :R(M) I (+)M ](I (+)M) = ([P : I](+)M)(I (+)M)

= [P : I]I (+)([P : I] + I)M .

It follows that P = [P : I]I (and hence I is a weak multiplication ideal of R) and
M = ([P : I] + I)M . Since P is a prime ideal of R, either P = I (and hence
P (+)M = I (+)M) or P = [P : I] and in this case M = IM . Conversely, let P (+)M ⊆
I (+)M be a prime ideal of R(M). If P (+)M = I (+)M = R(M)(I (+)M), then I (+)M
is weak multiplication. Let M = IM . Since P ⊆ I and I is weak multiplication,
P = [P : I]I. Hence P (+)M = [P : I]I (+)M = ([P : I](+)M) (I (+)M), and this also
shows that I (+)M is weak multiplication. �

The next result shows some conditions under which a homogeneous ideal I (+)N of
R(M) is multiplication, invertible, finitely generated flat (projective) or pure.

Theorem 5. Let R be a ring, M an R-module and I (+)N a homogeneous ideal of
R(M).

(1) Let M be divisible. If I is a finitely generated faithful multiplication ideal of
R then I (+)N is finitely generated multiplication.

(2) Let M be divisible and torsion-free. If I is an invertible ideal of R then I (+)N
is invertible.

(3) Let M be divisible and torsion-free. If I is a finitely generated flat ideal of
R such that annI ⊆ annN then I (+)N is finitely generated flat.

(4) Let M be divisible and flat. If I is a finitely generated projective ideal of R
such that annI ⊆ annN then I (+)N is finitely generated projective.

(5) Let M be divisible and flat. If I is q-invertible for e such that annI ⊆ annN
then I (+)N is q-invertible for (e, 0).

(6) Let ann (IP ) ⊆ ann (NP ) for each prime ideal P of R. If I is a pure ideal
of R then I (+)N is pure.



330 M. M. Ali: Homogeneous Idealization II

(7) If I is a multiplication ideal of R and N a multiplication submodule of M
such that annI + [IM : N ] = R then I (+)N is multiplication.

(8) Let M be finitely generated multiplication. If I is a finitely generated idem-
potent ideal of R then I (+)M is finitely generated multiplication.

Proof. (1) Let M be divisible and I finitely generated faithful multiplication.
Let P be a prime ideal of R. Then IP is a regular principal ideal of RP . Since
M is divisible, so too is MP and hence MP = IP MP . As IM ⊆ N , we infer that
NP = IP MP . As P is arbitrary, N = IM . Hence I (+)N = I (+)IM and the result
follows by, [1, Theorem 7], see also [2, Proposition 5].

(2) Suppose M is divisible and torsion-free and I invertible. Then I is finitely
generated faithful multiplication, [16], and by (1), I (+)N is finitely generated mul-
tiplication. Since I is regular and M torsion-free, we infer that I (+)N is regular.
Hence I (+)N is invertible. Alternatively, if M is divisible and torsion-free then
every regular ideal H of R(M) has the form I (+)IM where I is a regular ideal of
R, [10, Theorem 3.9]. Hence the result follows by Theorem 2(3).

(3) Let M be divisible and torsion-free and I finitely generated flat. Let P be
a prime ideal of R. Then IP = 0P or IP is invertible, [18] and [33]. If IP = 0P

and since annI ⊆ annN , we get that RP = ann (IP ) = (annI)P ⊆ (annN)P ⊆
ann (NP ), so that NP = 0P , and hence NP = IP MP . If IP is invertible and since
MP is divisible, we also have NP = IP MP . So both cases show that NP = IP MP .
Hence N = IM . The result follows by Theorem 2(4).

(4) This is now clear by Theorem 2(5) and the fact that projective ideals are
locally either zero or invertible, [5, Theorem 3.3].

(5) Follows by (4), Theorem 2(6) and the fact that q-invertible ideals are finitely
generated projective, [27, Theorem 1.5].

(6) Suppose I is a pure ideal of R. Let P (+)M be a prime ideal of R (M). Then
P is a prime ideal of R. Hence IP = 0P or IP = RP . As ann (IP ) ⊆ ann (NP ),
the first case shows that NP = 0P . Since IM ⊆ N , the second case gives that
NP = MP . Both cases show that NP = IP MP . Hence N = IM , and the result
follows by Theorem 2(1).

(7) [2, Proposition 7]. However, we give here an alternative proof by using a
Theorem of El-Bast and P. F. Smith, [13, Theorem 1.2], which we think that it
is of some interest. Suppose P (+)M is a maximal ideal of R(M) and let I (+)N be
not P (+)M - torsion. Then 0P (+)M 6= (I (+)N)P (+)M

∼= IP (+)NP . It follows that P is
a maximal ideal of R and either IP 6= 0P or NP 6= 0P . We discuss two cases.

Case 1. Let IP 6= 0P . Since R = annI + [IM : N ], RP = (annI)P + [IM : N ]P ⊆
ann(IP ) + [IM : N ]P ⊆ RP . Since RP is local, we have that RP = [IM : N ]P .
There exists p ∈ P such that 1−p ∈ [IM : N ] and hence (1−p)N ⊆ IM . Since I
is multiplication and I not P -torsion, we get from, [13, Theorem 1.2], that there
exists q ∈ P with (1− q)I ⊆ Ra for some a ∈ I. Let 1−p′ = (1−p)(1− q). Then
p′ ∈ P , (1− p′)I ⊆ Ra and (1− p′)N ⊆ aM . It follows that

((1, 0)− (p′, 0))(I (+)N) = (1− p′, 0)(I (+)N) = (1− p′)I (+)(1− p′)N

⊆ Ra(+)aM = R(M)(a, 0).
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Hence I (+)N is P (+)M -principal and [13, Theorem 1.2] shows that I (+)N is multi-
plication.

Case 2. Suppose NP 6= 0P . Since N is multiplication, it follows by, [13, Theorem
1.2], that there exists p ∈ P , n ∈ N such that (1 − p)N ⊆ Rn. As RP =
(annI)P + [IM : N ]P , we get either RP = (annI)P or RP = [IM : N ]P . If
RP = (annI)P , then there exists q ∈ P such that 1 − q ∈ annI, and hence
(1 − q)I = 0. Let 1 − p′ = (1 − p)(1 − q). Then p′ ∈ P and (1 − p′)I = 0 and
(1− p′)N ⊆ Rn. This implies that

((1, 0)− (p′, 0))(I (+)N) = (1− p′, 0)(I (+)N) = (1− p′)I (+)(1− p′)N

⊆ 0(+)Rn = R(M)(0, n),

and hence I (+)N is P (+)M -principal and by [13, Theorem 1.2], I (+)N is multiplica-
tion. Finally, if [IM : N ]P = RP , then there exists s ∈ P such that (1−s)N ⊆ IM .
Also RP = [IM : N ]P ⊆ [(IM)P : NP ] ⊆ RP , that is NP = (IM)P . Since
NP 6= 0P , IP 6= 0P and Case 1 shows that I (+)N is multiplication.

(8) I = Re for some idempotent e of R, [16, Corollary 6.3]. Since M is finitely gen-
erated multiplication (hence weak cancellation), we have that annI + [IM : M ] =
ann (e) + Re + annM = R. The result follows by (7). �

2. Homogeneous rings

An ideal H of R(M) need not to have the form I (+)N , that is, need not to be
homogeneous. In [2] we called a ring R(M) is a homogeneous ring if every ideal
of R(M) is homogeneous. It is shown, [10, Corollary 3.4 ], that if R is an integral
domain then R(M) is homogeneous if and only if M is divisible (that is M = sM
for every regular s in R). In this case every ideal of R(M) is comparable to 0(+)M ,
equivalently, every ideal of R(M) has the form I (+)M for some ideal I of R or 0(+)N
for some submodule N of M . It is also shown, [10, Theorem 3.3], that a ring R(M)
is homogeneous if and only if every principal ideal of R(M) is homogeneous. In this
case R(M)(a, m) = Ra(+)(Rm + aM) = R(M)(a, 0) + R(M)(0, m). Since Q is a
divisible Z-module, Z(+)Q is a homogeneous ring while Z4(+)Z2 is not homogeneous.
In fact, the principal ideal of Z4(+)Z2 that is generated by (2̄, 1̄) = {(0̄, 0̄)}, (2̄, 1̄)}
is not homogeneous. If R is a local ring but not a domain, R(M) is homogeneous
if and only if M = 0, [10, Theorem 3.3]. In this section we study ring-theoretic
constructions and properties of R(M), and in particular of homogeneous rings
and show how these properties of R and M relate to those of R(M).

A principal ideal ring (PIR) is special (SPIR) if R is a local ring, not a field,
whose maximal ideal is nilpotent. If every ideal of R is a finite product of prime
ideals, then R is called a general ZPI-ring, [19]. R is a general ZPI-ring if and
only if R is a finite direct sum of Dedekind domains and SPIRs, [19, p. 114], and
R is a general ZPI-ring if and only if it is a Noetherian multiplication ring, [16,
p. 225].

Recall that for f = a0 + a1x + · · · + anx
n ∈ R[X], the content Af of f is

the ideal
n∑

i=1

Rai. The set N = {f ∈ R[X]|Af = R} is a saturated multiplicative
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closed subset of R[X], in fact N = R[X] − ∪P [X] where the union runs over
all maximal ideals P of R. Then R(X) = R[X]N and if M is an R-module
then M(X) = M [X]N is an R(X)-module. It is shown, [10, Corollary 4.7], that
R (M) (X) is naturally isomorphic to R(X)(+)M(X).

R is a general ZPI-ring if and only if R(X) is a general ZPI-ring if and only
if R (X) is a PIR, [19, Theorem 18.8]. Another fact which is also useful for the
proof of our next result is that an ideal I of R is finitely generated and locally
principal (equivalently, finitely generated multiplication) if and only if IR(X) is
principal, [19, Corollary 15.2].

A ring R which is an almost multiplication R-module is an almost multiplica-
tion ring, [8]. A Noetherian almost multiplication module is multiplication and a
finitely generated almost multiplication module over a multiplication ring (a ring
in which every ideal is multiplication) is a multiplication module [20, Theorem
2.11]. It is proved, [23, Theorems 9.23, 9.27 and 9.28], that a ring R is an almost
multiplication ring if and only if RP is a general ZPI-ring. It is also shown, [8,
Theorem 8], that R is an almost multiplication ring if and only if R(X) is an
almost multiplication ring and R [X] is an almost multiplication ring if and only
if R is von Neumann regular.

An R-module M is said to be distributive, [34], if the lattice of its submodules
is distributive, that is, (X + Y ) ∩ Z = X ∩ Z + Y ∩ Z for any of its submodules
X, Y and Z. Equivalently, (X ∩ Y ) + Z = (X + Z)∩ (Y + Z) for all submodules
X, Y and Z of M . Some authors call such modules arithmetical modules. An
R- module M is arithmetical if and only if it is locally chained, that is for each
prime ideal P of R, the set of (cyclic) submodules of MP is totally ordered by
inclusion. If all 2-generated submodules of M are multiplication modules, then
M is distributive, [35, Proposition 2.5]. A ring R which is a distributive R-
module is called a distributive (or an arithmetical) ring. R is an arithmetical
ring if and only if every finitely generated ideal of R is multiplication, [21]. For
properties of distributive rings and modules, consult [14], [21] and [34]. M is
called a Bezout module if each of its finitely generated submodules is a cyclic
module, [34]. Equivalently, for all m, n ∈ M, Rm + Rn is cyclic. It is proved, [4,
Proposition 1.2], that if R is an integral domain and M a faithful multiplication
R-module then M is a Bezout module if and only if R is a Bezout domain.

We next characterize when a ring R(M) is a SPIR, a general ZPI-ring, an
almost multiplication ring, a distributive ring or a Bezout ring. Compare with [1,
Theorem 11] and [10, Lemma 4.9 and Theorems 4.10 and 4.16].

Theorem 6. Let R be a ring and M an R-module.

(1) If R(M) is a SPIR then R is a SPIR and M a cyclic module. The converse
is true if R(M) is homogeneous.

(2) If R(M) is a general ZPI-ring then R is a general ZPI-ring and M a finitely
generated multiplication module. The converse is true if R(M) is homoge-
neous.

(3) If R(M) is an almost multiplication ring then R is an almost multiplication
ring and M an almost multiplication module. The converse is true if R(M)
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is homogeneous.

(4) If R(M) is a distributive ring then R is a distributive ring and M a dis-
tributive module. The converse is true if R(M) is homogeneous.

(5) If R(M) is a Bezout ring then R is a Bezout ring and M a Bezout module.
The converse is true if M is finitely generated and R(M) is homogeneous.

Proof. (1) Let R(M) be a SPIR. Let I be an ideal of R. Then I (+)IM is
a principal ideal of R(M), say R(M)(a, 0) for some a ∈ I. Then I = Ra is a
principal ideal of R and hence R is a PIR. If P (+)M is the unique nilpotent
maximal ideal of R(M), then P is the unique nilpotent maximal ideal of R, and
hence R(M) is a SPIR. Since 0(+)M is a principal ideal of R(M), M is cyclic, [9,
Theorem 3.1]. The converse is trivial since M = 0.

(2) Suppose R(M) is a general ZPI-ring. It follows by, [10, Corollary 4.7] and
[19, Theorem 18.8], that R(M) (X) ∼= R (X)(+)M(X) is a PIR. Hence R(X) is a
PIR and this gives that R is a general ZPI-ring. Next, (0(+)M)(X) ∼= 0(+)M (X)
is an ideal of R (M) (X), hence it is principal. It follows by, [19, Corollary 15.2],
that 0(+)M is a finitely generated locally principal (equivalently finitely generated
multiplication) ideal of R(M). By, [9, Theorem 3.1], M is finitely generated
multiplication. Conversely, suppose R is a general ZPI-ring, M finitely generated
multiplication and R(M) is homogeneous. Since R is a general ZPI-ring, R(X) is
PIR, [19, Theorem 18.8]. As M is finitely generated multiplication (hence finitely
generated locally cyclic), we get from, [19, Theorem 18.8], that M(X) is a cyclic
R(X)-module. It follows by [1, Theorem 11] that R(M)(X) ∼= R(X)(+)M(X) is a
PIR and by [19, Theorem 18.8], R(M) is a general ZPI-ring.

(3) Using the fact that R (resp. M) is an almost multiplication ring (resp. module)
if and only if RP (resp. MP ) is a general ZPI-ring (resp. cyclic module). The result
follows by (2).

(4) Let R(M) be a distributive ring. Let A, B and C be ideals of R. Then
A(+)M, B(+)M and C(+)M are ideals of R(M). Hence

(A + B) ∩ C(+)M = A + B(+)M ∩ C(+)M

= (A(+)M + B(+)M) ∩ C(+)M = (A(+)M ∩ C(+)M)

+(B(+)M ∩ C(+)M) = A ∩ C(+)M + B ∩ C(+)M = (A ∩ C) + (B ∩ C)(+)M,

and this gives that (A + B) ∩ C = (A ∩ C) + (B ∩ C). Hence R is distributive.
Now, let K, N and L be submodules of M . Then 0(+)K, 0(+)N and 0(+)L are ideals
of R(M). Hence

0(+)((K + N) ∩ L) = (0(+)K + N) ∩ 0(+)L

= (0(+)K + 0(+)N) ∩ 0(+)L = 0(+)K ∩ 0(+)L

+0(+)N ∩ 0(+)L = 0(+)K ∩ L + 0(+)N ∩ L = 0(+)(K ∩ L) + (N ∩ L),

and hence (K + N) ∩ L = (K ∩ L) + (N ∩ L) and M is distributive. For the
converse, let A(+)N , B(+)K and C(+)L be ideals of R(M). Since each of R and M
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is distributive, we get that

(A(+)N + B(+)K) ∩ C(+)L = (A + B)(+)(N + K) ∩ C(+)L

= (A + B) ∩ C(+)(N + K) ∩ L = (A ∩ C) + (B ∩ C) (+) (N ∩ L) + (K ∩ L)

= (A ∩ C(+)N ∩ L + B ∩ C(+)K ∩ L = A(+)N ∩ C(+)L + B(+)K ∩ C(+)L,

and R(M) is a distributive ring.

(5) Suppose R(M) is a Bezout ring. Let I be a finitely generated ideal of R. Then
I (+)IM is a finitely generated ideal of R(M), hence it is principal and this gives
that I is principal. Hence R is Bezout. If N is a finitely generated submodule of
M , then 0(+)N is a finitely generated ideal of R(M), hence principal. It follows
that N is cyclic and M is Bezout. Conversely, let I (+)N be a finitely generated
ideal of R(M). Then I is a finitely generated ideal of R (hence principal). Since
M is finitely generated, N is a finitely generated submodule of M (hence cyclic),
see [1, Theorem 9]. Let I = Ra and N = Rn for some a ∈ R, n ∈ M . Since I (+)N
is homogeneous, IM ⊆ N , and hence aM ⊆ Rn. It follows by, [10, Theorem 3.3],
that

I (+)N = Ra(+)Rn = Ra(+)(Rn + aM) = R(M)(a, n)

is a principal ideal of R(M). Hence R(M) is Bezout. This concludes the proof of
the theorem. �

The condition that R(M) is homogeneous in the above theorem is crucial. For
example, the ring Z4(+)Z2 is neither SPIR nor distributive ring (and hence it is
neither ZPI-ring nor Bezout ring). In fact the maximal ideal 2Z4(+)Z2 is finitely
generated but not principal (equivalantly, not multiplication since the ring is lo-
cal).

A ring R is said to have few zero-divisors if Z(R) is a finite union of prime
ideals. A ring R is a quasi-valuation ring if it has few zero-divisors and for every
pair of regular elements a, b ∈ R, either Ra ⊆ Rb or Rb ⊆ Ra and R is a P -ring if
it has few zero-divisors and every finitely generated regular ideal of R is invertible,
[22] and [23]. Several characterizations and properties of quasi-valuation rings and
P -rings are given in [22, Theorem 5] and [23, pp. 152–155]. Among them, R is a
P -ring if and only if IJ = (I + J)(I ∩ J) for all regular ideals I and J of R. It
is also shown that R is a P -ring if and only if RS(P ) is a quasi-valuation ring for
every regular maximal ideal P of R, where S(P ) is the set of regular elements of
R/P which is a multiplicative subset of R.

We next wish to determine when R(M) is a quasi-valuation ring or a P -ring.

Theorem 7. Let R be a ring and M a torsion-free R-module.

(1) R(M) is a quasi-valuation ring if and only if R is a quasi-valuation ring and
M divisible.

(2) R(M) is a P -ring if and only if R is a P -ring and M divisible.

Proof. Since M is torsion-free, Z(M) ⊆ Z(R) and hence Z(R(M)) = Z(R)(+)M .

This shows that Z(R) =
n⋃

i=1

Pi if and only if Z(R(M)) =
n⋃

i=1

(Pi(+)M), where {Pi}
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is a finite set of prime ideals of R. Hence R has a few zero-divisors if and only if
R(M) has.

(1) Suppose R(M) is quasi-valuation. By, [23, Ex. 25(b)], R(M) is integrally

closed. Let s ∈ S and m ∈ M . Then
(
0,

m

s

)
=

(0, m)

(s, 0)
∈ R(M). Since

(
0,

m

s

)2

=

(0, m)2

(s, 0)2 = (0, 0), we infer that (0,
m

s
) is integral over R(M). Hence (0,

m

s
) ∈ R(M)

and hence
m

s
∈ M . This shows that m ∈ sM , and hence M ⊆ sM ⊆ M , so that

M = sM and hence M is divisible, see [10, Theorem 3.9]. Let a, b be regular
elements of R. Since M is torsion-free, (a, 0) and (b, 0) are regular elements of
R(M). It follows that Ra(+)aM = R(M)(a, 0) ⊆ R(M)(b, 0) = Rb(+)bM (hence
Rb ⊆ Ra) or R(M)(b, 0) ⊆ R(M)(a, 0) from which it follows that Ra ⊆ Rb.
This shows that R is a quasi-valuation ring. Conversely, let M be divisible and
R quasi-valuation. Let (a, m), (b, n) ∈ R(M) be regular elements. Since M is
divisible, [10, Theorem 3.9] shows that R(M)(a, m) is homogeneous and hence
R(M)(a, m) = Ra(+)(Rm + aM). Since a is regular, aM = M . This implies
that R(M)(a, m) = Ra(+)M . Similarly, R(M)(b, n) = Rb(+)M . The result is now
obvious.

(2) Suppose R(M) is a P -ring. Then R(M) is integrally closed, [23, Theorem
10.18], and hence M is divisible. Let I and J be regular ideals of R. Since M is
torsion-free, I (+)IM and J (+)JM are regular ideals of R(M). It follows by, [22,
Theorem 5], that

IJ (+)IJM = (I (+)IM)(J (+)JM) = (I (+)IM + J (+)JM)(I (+)IM ∩ J (+)JM)

= ((I + J)(+)(I + J)M)((I ∩ J)(+)(IM ∩ JM))

= (I + J)(I ∩ J)(+)(I ∩ J)(I + J)M + (I + J)(IM ∩ JM).

This gives that IJ = (I∩J)(I +J), and hence R is a P -ring. Conversely, suppose
M is divisible and R is a P -ring. Let H1 and H2 be regular ideals of R(M). It
follows by, [10, Theorem 3.9], that H1 = I (+)M and H2 = J (+)M for some regular
ideals I and J of R. Hence

(H1 ∩H2)(H1 + H2) = (I ∩ J (+)M)(I + J (+)M) = (I ∩ J)(I + J)(+)(I + J)M.

Since I+J is regular and M divisible, it follows that if x is a regular element in
I + J then M = xM ⊆ (I + J)M ⊆ M , so that M = (I + J)M . Hence

(H1 ∩H2)(H1 + H2) = IJ (+)M = (I (+)M)(J (+)M) = H1H2,

and this gives that R(M) is a P -ring. �

An R-module M is called a coherent (resp. finite conductor) module if for all
finitely generated submodules K and N of M (resp. for all k, n ∈ M), K∩N (resp.
Rk ∩ Rn) is a finitely generated submodule of M and for each m ∈ M , ann(m)
is a finitely generated ideal of R, [17]. A ring which is a coherent (resp. finite
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conductor) R-module is called a coherent (resp. finite conductor) ring, [17]. If R
is a coherent ring then it is a finite conductor ring. It is shown, [17, Proposition
2.1], that an R-module M is a finite conductor module if and only if for all
k, n ∈ M , [Rk : Rn] is a finitely generated ideal of R. Several properties of
coherent and finite conductor rings (modules) are given in [17]. The next theorem
gives necessary and sufficient conditions for a ring R (M) to be a coherent ring or
a finite conductor ring.

Theorem 8. Let R be a ring and M an R-module.

(1) If R(M) is coherent then R is a coherent ring and M a coherent module.
The converse is true if R(M) is homogeneous and M finitely generated flat.

(2) If R(M) is a finite conductor ring then R is a finite conductor ring and M
a finite conductor module. Conversely, if R(M) is homogeneous, R coherent
and M finitely generated faithful multiplication finite conductor module then
R(M) is finite conductor.

Proof. (1) Suppose R(M) is a coherent ring. Let I and J be finitely generated
ideals of R. Then I (+)IM and J (+)JM are finitely ideals of R(M). Hence (I ∩
J)(+)(IM ∩ JM) = I (+)IM ∩ J (+)JM is finitely generated and by [1, Theorem 7],
I ∩ J is finitely generated. Let c ∈ R then (c, 0) ∈ R(M) and hence ann(c, 0) =
ann(Rc(+)cM) = ann(c)(+)[0 :M Rc] is finitely generated. It follows that ann(c)
is a finitely generated ideal of R. Hence R is a coherent ring. Let K and N be
finitely generated submodules of M . Then 0(+)K and 0(+)N are finitely generated
ideals of R(M). Hence 0(+)K ∩N = 0(+)K ∩0(+)N is finitely generated from which
it follows that K ∩ N is finitely generated, [9, Theorem 3.1]. Let k ∈ M . Then
(0, k) ∈ R(M), and hence ann(0, k) = ann(k)(+)M is finitely generated. Hence
ann(k) is finitely generated, [1, Theorem 9], and hence M is a coherent module.
Conversely, let R(M) be homogeneous, R coherent and M a finitely generated flat
and coherent module. Suppose I (+)N and J (+)K are finitely generated ideals of
R(M). Then I, J are finitely generated ideals of R. Since M is finitely generated,
K and N are finitely generated submodules of M , [1, Theorem 9]. It follows that
I (+)N ∩ J (+)K = I ∩ J (+)N ∩K is finitely generated. Let (r, m) ∈ R(M). Since
R(M) is homogeneous and M flat, we obtain that

ann(r, m) = ann(Rr(+)Rm + rM) = ann(r) ∩ ann(m)(+)ann(r)M.

As R and M are coherent, ann(r) and ann(m) are finitely generated and so too
is ann(r) ∩ ann(m). Since M is finitely generated, [1, Theorem 9] implies that
ann(r, m) is finitely generated and hence R(M) is a coherent ring.

(2) Let R(M) be a finite conductor ring. Let a, b ∈ R. It follows that

[R(M)(a, 0) :R(M) R(M)(b, 0)] = [Ra(+)aM :R(M) Rb(+)bM ]

= [Ra : Rb](+)[aM :M Rb]

is a finitely generated ideal of R(M). Hence [Ra : Rb] is a finitely generated ideal
of R and this shows that R is a finite conductor ring, [1, Theorem 9]. Suppose
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m, n ∈ M . Then

[R(M)(0, m) :R(M) R(M)(0, n)] = [0(+)Rm :R(M) 0(+)Rn] = [Rm : Rn](+)M

is finitely generated from which it follows that [Rm : Rn] is finitely generated and
hence M is a finite conductor module. Conversely, let R(M) be homogeneous,
R coherent and M finitely generated faithful multiplication and finite conductor
module. Let (a, m), (b, n) ∈ R(M). Then

[R(M)(a, m) :R(M) R(M)(b, n)] = [Ra(+)(Rm + aM) :R(M) Rb(+)(Rn + bM ]

= [Ra : Rb] ∩ [Rm + aM : Rn + bM ](+)[Rm + aM : bM ]M.

Since Ra(+)(Rm + aM) is principal (hence finitely generated multiplication) and
M finitely generated multiplication, we infer from [1, Theorem 9] that Rm + aM
is finitely generated and multiplication, see also [2, Theorem 3]. Suppose M =∑̀
i=1

Rki. It follows by, [7, Theorem 1.2] and [32, Proposition 4], that

[Rm + aM : Rn + bM ] = [Rm : Rn + bM ] + [aM : Rn + bM ]

= [Rm : Rn] ∩ [Rm : bM ] + [aM : Rn] ∩ [aM : bM ]

= [Rm : Rn] ∩ (
⋂̀
i=1

[Rm : Rbki]) + (
∑̀
i=1

[Raki : Rn]) ∩ [Ra : Rb],

and

[Rm + aM : bM ] = [Rm : bM ] + [aM : bM ] =
⋂̀
i=1

[Rm : Rbki] + [Ra : Rb].

Since M is finitely generated finite conductor and R coherent, one gets that
[R(M), (a, m) :R(M) R(M)(b, n)] is finitely generated and by, [17, Proposition
2.1], R(M) is a finite conductor ring. �

3. Weakly prime submodules

Let R be a commutative ring with identity. D. D. Anderson and E. Smith [11]
defined a proper ideal P of R to be weakly prime if 0 6= ab ∈ P implies a ∈ P or
b ∈ P . Prime ideals are weakly prime but not conversely. Various properties and
characterizations of weakly prime ideals are given in [11]. A proper submodule
P of an R-module M is called prime if whenever rm ∈ P , where r ∈ R,m ∈ M ,
then r ∈ [P : M ] or m ∈ P . Obviously, if P is a prime submodule of M then
[P : M ] is a prime ideal of R while the converse is true if M is faithful and
multiplication, [13, Lemma 2.10]. In this section we introduce the concept of
weakly prime submodules as a generalization of weakly prime ideals and prime
submodules: A proper submodule P of M is weakly prime if 0 6= rm ∈ P , where
r ∈ R and m ∈ M , then r ∈ [P : M ] or m ∈ P . However, since 0 is weakly
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prime (by definition), a weakly prime submodule need not to be prime. For a
less trivial example, if M is a non-zero local multiplication module with unique
maximal submodule Q such that [Q : M ]Q = 0 then every proper submodule of
M is weakly prime.

We start this section by the following property of weakly prime but not prime
submodules. Compare with [11, Theorem 1]. The referee noted that this result
has been independently proved and will appear in Tamkang J. Math.

Proposition 9. Let R be a ring and M an R-module. Let P be a weakly prime
submodule of M . If P is not prime then [P : M ]P = 0.

Proof. We prove that if [P : M ]P 6= 0, then P is a prime submodule of M .
Suppose rm ∈ P for some r ∈ R and m ∈ M . If 0 6= rm, then P weakly prime
gives r ∈ [P : M ] or m ∈ P . So assume rm = 0. Suppose first that rP 6= 0.
Then rm0 6= 0 for some m0 ∈ P . Hence 0 6= r(m+m0) and therefore r ∈ [P : M ]
or m + m0 ∈ P from which it follows that m ∈ P . We can assume rP = 0. Since
[P : M ]P 6= 0, there exist r0 ∈ [P : M ], n0 ∈ P such that r0n0 6= 0. It follows
that 0 6= (r + r0)(m + n0), and hence r + r0 ∈ [P : M ] (and hence r ∈ [P : M ]) or
m + n0 ∈ P (and hence m ∈ P ). So P is a prime submodule of M . �

Let R be a ring and M an R-module. The M -radical, rad N , of a submodule N
of M is defined as the intersection of all prime submodules of M containing N .
If I is an ideal of R then

√
I is defined as the intersection of all prime ideals of

R containing I, equivalently,
√

I = {a ∈ R : an ∈ I for some positive integer n}.
If M is a faithful multiplication R-module, then M -rad N =

√
[N : M ]M , [13,

Theorem 2.12]. Hence M -rad 0 =
√

0M . As a consequence of the above result we
give the next corollary.

Corollary 10. Let R be a ring and M a faithful multiplication R-module. Let P
be a weakly prime submodule of M . Then either P ⊆ M-rad 0 or M-rad 0 ⊆ P .
If P ( M-rad 0 then P is not prime, while if M-rad 0 ( P then P is prime.
Consequently, if R is reduced then P is weakly prime if and only if P = 0 or P is
prime.

Proof. Suppose P is not prime. By Proposition 9, [P : M ]P = 0. Since M
is faithful, we infer that [P : M ]2 ⊆ [[P : M ] P : M ] = [0 : M ] = 0, so that
[P : M ]2 = 0. If a ∈ [P : M ] then a2 = 0 and hence a ∈

√
0. So [P : M ] ⊆

√
0

and therefore P = [P : M ]M ⊆
√

0M = M -rad 0. Now suppose P is prime and
let a ∈

√
0 then an = 0 ∈ [P : M ] for some positive integer n. Since [P : M ]

is a prime ideal of R, a ∈ [P : M ] and hence
√

0 ⊆ [P : M ]. This implies that
M -rad 0 ⊆ P . Finally, suppose R is reduced and P weakly prime. If [P : M ]P 6= 0
then P is prime by Proposition 9. Suppose [P : M ]P = 0. Then [P : M ]2 = 0,
and hence [P : M ] = 0. This gives that P = 0. �

We next give three other characterizations of weakly prime submodules.

Theorem 11. Let R be a ring, M an R-module and P a proper submodule of
M . Then the first three statements are equivalent. Assuming further that M is
faithful and multiplication then (1)–(4) are equivalent.
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(1) P is weakly prime.

(2) For r ∈ R− [P : M ], [P :M Rr] = P ∪ [0 :M Rr].

(3) For r ∈ R− [P : M ], [P :M Rr] = P or [P :M Rr] = [0 :M Rr].

(4) For ideals A of R and submodules K of M with 0 6= AK ⊆ P implies
A ⊆ [P : M ] or K ⊆ P .

Proof. (1)⇒(2) Let m ∈ [P :M Rr] where r /∈ [P : M ]. Then rm ∈ P . If
0 6= rm then P weakly prime gives that m ∈ P . If 0 = rm then m ∈ [0 :M Rr]
and hence [P :M Rr] ⊆ P ∪ [0 :M Rr]. As the reverse containment holds for any
submodule P , the equality holds.

(2)⇒(3) Obvious.

(3)⇒(1) Let r ∈ R, m ∈ M with 0 6= rm ∈ P . Suppose r /∈ [P : M ]. Then either
[P :M Rr] = P or [P :M Rr] = [0 :M Rr]. Since rm 6= 0, m /∈ [0 :M Rr], and hence
m ∈ P .

(1)⇒(4) Suppose P is weakly prime. Suppose A is an ideal of R and K a
submodule of M such that AK ⊆ P but A * [P : M ] and K * P . We show
that AK = 0. Let a ∈ A − [P : M ]. Then aK ⊆ P and hence K ⊆ [P :M Ra].
Since K * P , (1)⇒(3) shows that K ⊆ [0 :M Ra] and hence aK = 0. Next,
suppose a ∈ A ∩ [P : M ]. Let b ∈ [K : M ]. If b ∈ [P : M ] then by Proposition 9,
ab ∈ [P : M ]2 = 0, so that ab = 0. Assume b ∈ [K : M ]− [P : M ]. Then bM ⊆ K
and hence bAM ⊆ AK ⊆ P , from which we obtain that AM ⊆ [P :M Rb]. Since
A * [P : M ], (1)⇒(3) also gives that AM ⊆ [0 :M Rb], and hence bAM = 0.
Since M is faithful, bA = 0 and hence ba = 0. As b ∈ [K : M ] is arbitrary,
a[K : M ] = 0, and hence aK = a[K : M ]M = 0. So AK = 0.

(4)⇒(1) In this part the assumption that M is faithful multiplication is not
required. Suppose 0 6= rm ∈ P for some r ∈ R, m ∈ M . Then 0 6= RrRm ⊆ P .
Hence Rr ⊆ [P : M ] or Rm ⊆ P , and this implies r ∈ [P : M ] or m ∈ P . This
concludes the proof of the theorem. �

An R-module M is said to be zero-dimensional if every prime submodule of M
is maximal. Using, [13, Theorem 2.15], one can easily see that every non-zero
multiplication module over a zero-dimensional ring is zero-dimensional. Another
useful fact is that if M is a non-zero multiplication R-module then (M, Q) is a
local module if and only if (R, [Q : M ]) is a local ring, see also [4, Proposition
1.4].

The next two results give further properties of weakly prime submodules. The
first one should be compared with [11, Theorem 4 and Corollaries 5 and 6] and
the second one with [3, Proposition 2.9] and [13, Corollary 2.11].

Proposition 12. Let R be a ring and M a faithful multiplication R-module.

(1) If P is a weakly prime submodule of M that is not prime then
√

0P = 0.

(2) If P and Q are weakly prime submodules of M that are not prime then
[P : M ]Q = 0 = [Q : M ]P .

(3) Suppose (M, Q) is a zero-dimensional local module. If P is a weakly prime
submodule of M then P = Q or [Q : M ]P = 0.
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Proof. (1) Let a ∈
√

0. If a ∈ [P : M ] then a [P : M ] ⊆ [P : M ]2 = 0 and
hence aP = a [P : M ] M = 0. So suppose a /∈ [P : M ]. By Theorem 11, either
[P :M Ra] = P or [P :M Ra] = [0 :M Ra]. Since P ⊆ [P :M Ra], we infer from the
second case that aP ⊆ a [P :M Ra] = a [0 :M Ra] = 0. Now, let [P :M Ra] = P .
Suppose n is the minimal positive integer such that an = 0. If an−1 6= 0, then
M faithful gives that an−1M 6= 0. Since anM ⊆ P , we have that 0 6= an−1M ⊆
[P :M Ra] = P . This implies that a ∈ [P : M ], a contradiction.

(2) By Corollary 10 and part (1), P ⊆
√

0M and Q ⊆
√

0M . Hence [P : M ] Q ⊆√
0 [P : M ] M =

√
0P = 0. Similarly, [Q : M ] P = 0.

(3) Suppose P 6= Q. Then P is not prime. Since (R, [Q : M ]) is a zero-dimensional
ring, we get that

√
0 = [Q : M ]. It follows by (1) that 0 =

√
0P = [Q : M ] P . �

Proposition 13. Let R be a ring, M a faithful multiplication R-module and I a
finitely generated faithful multiplication ideal of R.

(1) The following statements are equivalent for a proper submodule P of M .

(i) P is weakly prime.

(ii) [P : M ] is a weakly prime ideal of R.

(iii) P = QM for some weakly prime ideal Q of R.

(2) P is a weakly prime submodule of IM if and only if [P :M I] is a weakly
prime submodule of M .

Proof. (i)=⇒(ii) Suppose P is a weakly prime submodule of M . Let a and b be
elements of R such that 0 6= ab ∈ [P : M ]. Then abM ⊆ P . Since M is faithful,
abM 6= 0. By Theorem 11(4), a ∈ [P : M ] or bM ⊆ P (and hence b ∈ [P : M ]).

(ii)⇒(i) Let [P : M ] be a weakly prime ideal of R. If 0 6= rm ∈ P , where r ∈
R,m ∈ M , then r[Rm : M ] ⊆ [Rrm : M ] ⊆ [P : M ]. Since M is multiplication,
r[Rm : M ] 6= 0. By [13, Theorem 3(4)], r ∈ [P : M ] or [Rm : M ] ⊆ [P : M ].
The second case gives that m ∈ [Rm : M ]M ⊆ [P : M ]M = P .

(i)⇒(iii). Take Q = [P : M ].

(2) Suppose P is a weakly prime submodule of IM . Let 0 6= rm ∈ [P :M I] for
some r ∈ R and m ∈ M . Then rIm ⊆ P . Since M is faithful multiplication
and I faithful, 0 6= rIm. It follows by Theorem 11 that Im ⊆ P (and hence
m ∈ [P :M I]) or r ∈ [P : IM ] (and hence rIM ⊆ P ). As I is a finitely generated
faithful multiplication ideal of R, it follows by, [3, Lemma 2.4], that

rM = r [IM :M I] ⊆ [rIM :M I] ⊆ [P :M I] ,

and hence r ∈ [[P :M I] : M ]. This gives that [P :M I] is a prime submodule of
M . Conversely, let 0 6= AK ⊆ P for some ideal A of R and some submodule K of
IM . Then A [K :M I] ⊆ [AK :M I] ⊆ [P :M I]. We get from, [3, Lemma 2.4], that
A [K :M I] 6= 0. It follows by Theorem11 that A ⊆ [[P :M I] : M ] ⊆ [P : IM ] or
[K :M I] ⊆ [P :M I] from which we infer that K = [K :M I] I ⊆ [P :M I] I = P .
Hence P is a weakly prime submodule of IM . �

We close by a result of weakly prime ideals (submodules) using the method of
idealization. It may be compared with [11, Theorem 17].
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Theorem 14. Let R be a ring, M an R-module and I (+)N a homogeneous weakly
prime ideal of R(M).

(1) I is a weakly prime ideal of R and N a weakly prime submodule of M .

(2) For all a, b ∈ R, ab = 0, a /∈ I, b /∈ I implies a, b ∈ annN and for all c ∈ R,
k ∈ M , ck = 0, c /∈ [N : M ], k /∈ N implies c ∈ annI and k ∈ [0 :M I].

(3) If I (+)N is not prime then I (+)N = I (+)0⊕ 0(+)N .

(4) If I (+)N is prime then N = M .

Proof. (1) Let a, b ∈ R with 0 6= ab ∈ I. Then (0, 0) 6= (a, 0)(b, 0) ∈ I (+)N ,
and hence either (a, 0) ∈ I (+)N or (b, 0) ∈ I (+)N from which it follows that a ∈ I
or b ∈ I. Hence I is weakly prime. Now, let r ∈ R,m ∈ M with 0 6= rm ∈ N .
Then (0, 0) 6= (r, 0)(0, m) ∈ I (+)N , and hence (r, 0) ∈ I (+)N or (0, m) ∈ I (+)N . If
(r, 0) ∈ I (+)N then r ∈ I ⊆ [N : M ]. The second case shows that m ∈ N and
hence N is a weakly prime submodule of M .

(2) Let a, b ∈ R with ab = 0, a /∈ I, b /∈ I. Suppose a /∈ annN . Then aN 6= 0 and
hence there exists n ∈ N with an 6= 0. This implies that (0, 0) 6= (a, 0)(b, n) =
(0, an) ∈ I (+)N . Hence (a, 0) ∈ I (+)N (and hence a ∈ I) or (b, n) ∈ I (+)N from
which we get that b ∈ I, a contradiction. Assume now that c ∈ R, k ∈ M, ck =
0, c /∈ [N : M ] and k /∈ N . We discuss two cases.

Case 1. Suppose c /∈ annI. Then cI 6= 0, and hence there exists a ∈ I with
ca 6= 0. It follows that (0, 0) 6= (ca, 0) = (c, 0)(a, k) ∈ I (+)N . Hence (c, 0) ∈ I (+)N ,
and hence c ∈ I ⊆ [N : M ] or (a, k) ∈ I (+)N and this implies k ∈ N which also
contradicts our assumption.

Case 2. Let k /∈ [0 :M I]. Then Ik 6= 0. There exists a ∈ I such that ak 6= 0. Since
ak ∈ IM ⊆ N , we infer that (0, 0) 6= (ac, ak) = (ac, ac+ak) = (a, k)(c, k) ∈ I (+)N .
Hence either (a, k) ∈ I (+)N or (c, k) ∈ I (+)N . This implies that c ∈ I ⊆ [N : M ]
or k ∈ N , a contradiction.

(3) It follows by, [11, Theorem 4], that (I (+)N)
√

0(+)0 = 0. But
√

0(+)0 =
√

0(+)M ,
see [19, Theorem 25.1] and [10, Theorem 3.2]. Hence IM = 0, and the result
follows.

(4) [11, Corollary 2] shows that if I (+)N is a prime ideal of R(M) then
√

0(+)0 ⊆
I (+)N . This shows that N = M . �

Note that the last part of the above theorem confirms that prime ideals of R(M)
have the form I (+)M where I is a prime ideal of R.
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