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Abstract. In this paper we deal with one of the homogeneous 3-
geometries, the Sol geometry. The Frenet frame and the curvature and
torsion of a curve has been determined, moreover, we have computed the
parametric form of geodesics, their curvatures and torsions in Theorem
4.1.

1. Introduction

Let (M, g) be a Riemannian manifold. If for any x, y ∈ M there does exist an
isometry Φ : M → M such that y = Φ(x), then the Riemannian manifold is called
homogeneous.

Homogeneous geometries have main roles in the modern theory of three-manifolds.
Homogeneous spaces are, in a sense, the nicest examples of Riemannian manifolds
and have applications in physics (e.g. the Sol geometry is useful for studying
holography, Yang-Mills theory) [1].

To underline their importance from mathematical point of view we roughly cite the
famous Thurston conjecture stating that a compact three-manifold with a given
topology has a canonical decomposition into a sum of ‘simple three-manifolds’,
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whose interiors each admits one, and only one metric, of eight homogeneous Rie-

mann geometries: E3, H3, S3, S2 × R, H2 × R, ˜SL(2, R), Nil and Sol [5].

We do not intend to prove or disprove the Thurston conjecture, our aim is just to
go a bit closer to the Sol geometry.

Sol geometry can be obtained by giving a group structure to be the semi-direct
product R n R2 as follows:

(
1 a b c

) 
1 x y z
0 e−z 0 0
0 0 ez 0
0 0 0 1

 =
(
1 x + ae−z y + bez z + c

)
(1.1)

is the right action by a translation (1, x, y, z) on a point (1, a, b, c) yielding also a
point of Sol expressed in homogeneous coordinates, for (x, y, z) and (a, b, c), after
choosing a fixed origin O(1, 0, 0, 0). Then an invariant metric on Sol(O, T ) is given
by

(ds)2 = (dx)2e2z + (dy)2e−2z + (dz)2 , (1.2)

as arc length square, now in any point (1, x, y, z) [5], [2].

2. Model of Sol geometry

The illustration of Sol geometry is really a hard task. On J. F. Weeks’s opinion:
“This (the Sol geometry) is the real weird. Unlike the previous geome-
tries, solve geometry isn’t even rotationally symmetric. I don’t know
any good intrinsic way to understand it.” [7]

Firstly for making the reader more familiar to the topic we briefly cite a good
model of Sol from [2], where the projective interpretation of all the eight homo-
geneous geometries are carried out in details by Emil Molnár.

The forthcoming computations, however, are not based on that paper.

At the beginning the intuitive idea of a manifold, having certain geometry, can
now be refreshed [5], [3]:

A model geometry (G, X) is a manifold X, with a Lie Group G of diffeomorphism
of X such that:

1. X is connected and simply connected,

2. G acts transitively on X with compact point stabilizers,

3. G is not contained in any larger groups of diffeomorphisms of X with com-
pact point stabilizers,

4. there exists at least one compact (G, X)-manifold.

The short description of the above mentioned model is the following [2]:

Consider a symmetric linear mapping (polarity) (∗) : V4 → V4, u 7→ u∗ =: u and
the induced scalar product u∗v = v∗u =: 〈u, v〉 ∈ R. Here V4 denotes the space
of four-dimensional vectors for projective points, as its 1-spaces or rays, and the
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subspace structure for lines, planes, in general. V4 is its dual for planes, similarly.
In an appropriate dual basis pair each polarity has a diagonal matrix form, where
the diagonal entries are all 0’s, 1’s and −1’s, providing the signature of the scalar
product.

In our case it is (0 − + +) with respect to our standard basis pair {fi}, {f j} with
fif

j = δj
i (the Kronecker symbol) i, j = 1, . . . , 4 of V4, V4, respectively.

The polarity is given by f 0
∗ = 0, f 1

∗ = f2, f 2
∗ = f1, f 3

∗ = f3.

Consider a collineation group, leaving invariant the above polarity, thus acting on
the points of the three dimensional projective space P3(V4, V4, R) by our matrix
(1.1) in the introduction:

α̂ :


f0
f1
f2
f3

 7→


1 x y z
0 e−z 0 0
0 0 ez 0
0 0 0 1




f0
f1
f2
f3

 (2.1)

and with the inverse matrix, acting on the planes of P3 above [2]:

α :
(
f 0 f 1 f 2 f 3

)
7→

(
f 0 f 1 f 2 f 3

) 
1 −xez −ye−z −z
0 ez 0 0
0 0 e−z 0
0 0 0 1

 . (2.2)

We obtain the full isometry group of Sol by adding two new generators
f0
f1
f2
f3

 7→


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1




f0
f1
f2
f3

 ,


f0
f1
f2
f3

 7→


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1




f0
f1
f2
f3

 (2.3)

at the origin.

The model consists of fibres of different Minkowski planes along the z-axis. This
model shows that the Sol geometry has a distinguished direction line (we denote it
by z). It is well-known that there exist only three homogeneous two-dimensional
geometries, namely the elliptic, the Euclidean and the hyperbolic geometry. They
are also isotropic, i.e. every direction can be equivalent for descriptions. Homoge-
neous, but non isotropic geometries can be found in three- or higher dimensional
manifolds. (Note that the word “geometry” means certain family of geometries.)

3. Frenet formulas in Sol geometry

One goal of our work is the computation of the Frenet frame (t,n,b) and the
presentation of the curvature and the torsion of a curve in Sol geometry by the
classical Frenet formulas

t′(s) = κ(s)n(s) ,

n′(s) = −κ(s)t(s) + τ(s)b(s) , (3.1)

b′(s) = −τ(s)n(s) .
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Let r(t) = (1, x(t), y(t), z(t)) be a curve with a real parameter t in Sol. The arc
length s is defined by (1.2) and so by

ds

dt
=

√
e2z

(
dx

dt

)2

+ e−2z

(
dy

dt

)2

+

(
dz

dt

)2

= |ṙ| and

d

ds
=

dt

ds

d

dt
=

1

|ṙ|
d

dt
, in general . (3.2)

Denote the assumed linearly independent vectors by

dr(t)

dt
=: ṙ(t),

d2r(t)

dt2
=: r̈(t),

d3r(t)

dt3
=:

...
r (t) .

Applying the Gram-Schmidt orthonormalization and derivatives by s above(
r′(s) = dr(s)

ds
, r′′(s) = d2r(s)

ds2 , r′′′(s) = d3r(s)
ds3

)
, we find first the following orthogonal

vector system:

e1(t) = |ṙ|r′(s) ,

e2(t) = |ṙ|
∣∣∣∣ r′(s) r′′(s)
〈r′(s), r′(s)〉 〈r′(s), r′′(s)〉

∣∣∣∣ ,

e3(t) = |ṙ|

∣∣∣∣∣∣
r′(s) r′′(s) r′′′(s)

〈r′(s), r′(s)〉 〈r′(s), r′′(s)〉 〈r′(s), r′′′(s)〉
〈r′′(s), r′(s)〉 〈r′′(s), r′′(s)〉 〈r′′(s), r′′′(s)〉

∣∣∣∣∣∣∣∣∣∣〈r′(s), r′(s)〉 〈r′(s), r′′(s)〉
〈r′′(s), r′(s)〉 〈r′′(s), r′′(s)〉

∣∣∣∣ .

The tangent, normal and binormal unit vectors are then consequently:

t(s) = r′(s) ,

n(s) = −

∣∣∣∣ r′(s) r′′(s)
〈r′(s), r′(s)〉 〈r′(s), r′′(s)〉

∣∣∣∣√∣∣∣∣〈r′(s), r′(s)〉 〈r′(s), r′′(s)〉
〈r′′(s), r′(s)〉 〈r′′(s), r′′(s)〉

∣∣∣∣
, (3.3)

b(s) = ·

∣∣∣∣∣∣
r′(s) r′′(s) r′′′(s)

〈r′(s), r′(s)〉 〈r′(s), r′′(s)〉 〈r′(s), r′′′(s)〉
〈r′′(s), r′(s)〉 〈r′′(s), r′′(s)〉 〈r′′(s), r′′′(s)〉

∣∣∣∣∣∣√√√√√
∣∣∣∣∣∣
〈r′(s), r′(s)〉 〈r′(s), r′′(s)〉 〈r′(s), r′′′(s)〉
〈r′′(s), r′(s)〉 〈r′′(s), r′′(s)〉 〈r′′(s), r′′′(s)〉
〈r′′′(s), r′(s)〉 〈r′′′(s), r′′(s)〉 〈r′′′(s), r′′′(s)〉

∣∣∣∣∣∣

·

√∣∣∣∣〈r′(s), r′(s)〉 〈r′(s), r′′(s)〉
〈r′′(s), r′(s)〉 〈r′′(s), r′′(s)〉

∣∣∣∣
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with formal determinants in the numerators and where denotes the sign of the
numerical determinant ∣∣∣∣∣∣

ẋ(t) ẏ(t) ż(t)
ẍ(t) ÿ(t) z̈(t)
...
x (t)

...
y (t)

...
z (t)

∣∣∣∣∣∣ . (3.4)

We note, that the considered numerical determinants under the roots are always
positive because of positive definiteness of the scalar product.

We consider the classical Frenet formulas as definitions for curvature and torsion
of a curve. For the curvature given with arc length parametrization we have found
by (3.3):

κ(s) = 〈t′(s),n(s)〉 =

√∣∣∣∣〈r′(s), r′(s)〉 〈r′(s), r′′(s)〉
〈r′′(s), r′(s)〉 〈r′′(s), r′′(s)〉

∣∣∣∣ . (3.5)

For arbitrary parameter t the formula above turns to

κ(t) = |ṙ(t)|−3

√∣∣∣∣〈ṙ(t), ṙ(t)〉 〈ṙ(t), r̈(t)〉
〈r̈(t), ṙ(t)〉 〈r̈(t), r̈(t)〉

∣∣∣∣ . (3.6)

The computation of the torsion τ is rather lengthy and based by (3.3) on the
scalar product:

τ(s) = 〈n′(s) + κ(s)t(s),b(s)〉 = 〈n′(s),b(s)〉 .

The final solution is the following:

τ(s) = ·

√√√√√
∣∣∣∣∣∣
〈r′(s), r′(s)〉 〈r′(s), r′′(s)〉 〈r′(s), r′′′(s)〉
〈r′′(s), r′(s)〉 〈r′′(s), r′′(s)〉 〈r′′(s), r′′′(s)〉
〈r′′′(s), r′(s)〉 〈r′′′(s), r′′(s)〉 〈r′′′(s), r′′′(s)〉

∣∣∣∣∣∣
·
∣∣∣∣〈r′(s), r′(s)〉 〈r′(s), r′′(s)〉
〈r′′(s), r′(s)〉 〈r′′(s), r′′(s)〉

∣∣∣∣ . (3.7)

If we use arbitrary parameter t the solution will be

τ(t) = · |ṙ(t)|−12

√√√√√
∣∣∣∣∣∣
〈ṙ(t), ṙ(t)〉 〈ṙ(t), r̈(t)〉 〈ṙ(t), ...r (t)〉
〈r̈(t), ṙ(t)〉 〈r̈(t), r̈(t)〉 〈r̈(t), ...r (t)〉
〈...r (t), ṙ(t)〉 〈...r (t), r̈(t)〉 〈...r (t),

...
r (t)〉

∣∣∣∣∣∣
·
∣∣∣∣〈ṙ(t), ṙ(t)〉 〈ṙ(t), r̈(t)〉
〈r̈(t), ṙ(t)〉 〈r̈(t), r̈(t)〉

∣∣∣∣ , (3.8)

where denotes the sign of the numerical determinant above (3.4). These can be
extended for κ = 0 curve if |ṙ| > 0, but ṙ and r̈ are dependent vectors, moreover
for τ = 0 curve where |ṙ| > 0, but ṙ, r̈,

...
r are linearly dependent vectors.

We summarize this section with
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Theorem 3.1. Let r : [a, b] → Sol be a C3 curve given with arc length and
arbitrary parametrization, respectively. Then the curvature and the torsion of the
curve fulfill (3.5) and (3.6), (3.7) and (3.8), respectively.

Remark. Of course, the formulas above are similar to those in the other homo-
geneous Riemann geometries as well with appropriate |ṙ|.

4. Geodesics in Sol geometry

Now we intend to describe the geodesics of Sol. First, consider the former funda-
mental (metric) tensor (1.2)

(gij) =

e2z 0 0
0 e−2z 0
0 0 1

 . (4.1)

Compute now the Christoffel symbols in a usual way (applying the Einstein-
Schouten conventions; i, j, k, l ∈ {1, 2, 3} and u1 = x, u2 = y, u3 = z):

Γk
ij =

1

2

(
∂gjl

∂ui
+

∂gli

∂uj
− ∂gij

∂ul

)
glk , (4.2)

where (glk) denotes the inverse of (gij).
The non-vanishing components are:

Γ1
13 = Γ1

31 = 1,

Γ2
23 = Γ2

32 = −1,

Γ3
11 = −e2z,

Γ3
22 = e−2z.

Therefore, the well-known equation of geodesics

d2uk

dt2
+ Γk

ij

dui

dt

duj

dt
= 0 (4.3)

turns to

d2x(t)

dt2
+ 2

dx(t)

dt

dz(t)

dt
= 0 ,

d2y(t)

dt2
− 2

dy(t)

dt

dz(t)

dt
= 0 ,

d2z(t)

dt2
− e2z(t)dx(t)

dt

dx(t)

dt
+ e−2z(t)dy(t)

dt

dy(t)

dt
= 0 .

As usual we abbreviate the notation:

ẍ + 2ẋż = 0

ÿ − 2ẏż = 0 (4.4)

z̈ − e2z(ẋ)2 + e−2z(ẏ)2 = 0.
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We solve this differential equation system as a Cauchy problem:

x(0) = 0 ẋ(0) = u

y(0) = 0 and ẏ(0) = v

z(0) = 0 ż(0) = w .

We start with the most general case, u 6= 0, v 6= 0, w 6= 0. By elimination

ẍ

ẋ
= −2ż and

ÿ

ẏ
= 2ż (4.5)

hold in a neighborhood of t = 0. (The case u = 0 or v = 0 will be treated later.)
The first equation of (4.5) leads to

ẋ = ue−2z (4.6)

implying

x(t) = u

t∫
0

e−2z(τ)dτ . (4.7)

Similarly we get
ẏ = ve2z (4.8)

and

y(t) = v

t∫
0

e2z(τ)dτ . (4.9)

Substituting (4.6) and (4.8) into the last equation of (4.4) we obtain

z̈ − u2e−2z + v2e2z = 0 . (4.10)

We multiply this equation by 2ż(6= 0) and get

(ż)2 = −u2e−2z − v2e2z + c2 . (4.11)

Using the initial conditions we have

w2 = −u2 − v2 + c2 .

Without loss of generality we can take c2 = 1, i.e. arc length parametrization at
the origin t = 0, and so at other t’s as well. From (4.11) it follows the separable
differential equation

dz

±
√

1− u2e−2z − v2e2z
= dt (4.12)

whose solution with elliptic integral cannot be expressed in terms of a finite num-
ber of elementary functions. Depending on the sign of w, we take the square root
either with + or −, respectively.
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If u 6= 0, v 6= 0 and w = 0, then by (4.11) and u2 + v2 = 1 it follows ż = 0, and
the solution

x(t) = ut ,

y(t) = vt , (4.13)

z(t) = 0 .

Examine now the cases when the division by ẋ or ẏ is not possible in (4.5).

Next consider u 6= 0 and v = 0 (u2 = 1 − w2). We look for ẏ(t) in the form
c(t)e2z(t). Then the second equation of (4.4) provides c(t) = constant = 0 by
v = 0 and (4.6)

z̈ − u2e−2z = 0 .

Solving this in a standard way, we get a parametric system of the geodesics:

x(t) = u
sinh t

cosh t + w sinh t
,

y(t) = 0 , (4.14)

z(t) = ln (cosh t + w sinh t) .

Similarly, if u = 0 and v 6= 0 (1 = v2 + w2) we obtain

x(t) = 0 ,

y(t) = v
sinh t

cosh t− w sinh t
, (4.15)

z(t) = − ln (cosh t− w sinh t) .

This corresponds to the second symmetric property of (2.3). Namely the change
(u, v, w) ↔ (v, u,−w) leads to the isometry of the corresponding geodesic curves.

Finally consider the case u = 0, v = 0 and w = 1 (e.g.). We look for the solution
in the form

ẋ(t) = a(t)e−2z(t) ,

ẏ(t) = b(t)e2z(t) .

Then the first and second equation of (4.4) yield a(t) = 0 = b(t) and so x(t) =
y(t) = 0.

Then from the third equation of (4.4) it is easy to see that z̈ = 0, so z(t) = t. The
system of geodesics in this case is

x(t) = 0

y(t) = 0 (4.16)

z(t) = t ,

which is not surprising at all.
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Theorem 4.1. The geodesic curves in Sol geometry have the equations in Table
1, depending on the initial conditions:

0 = x(0) = y(0) = z(0)

ẋ(0) = u

ẏ(0) = v

ż(0) = w

u2 + v2 + w2 = 1 :

(1) u 6= 0, v 6= 0, 0 < |w| =
√

1− u2 − v2 < 1 (4.12);

(2) u 6= 0, v 6= 0, w = 0 (4.13);

(3) v = 0, 0 < |w| =
√

1− u2 < 1 (4.14);

(4) u = 0, 0 < |w| =
√

1− v2 < 1 (4.15);

(5) u = 0, v = 0, |w| = 1 (4.16).

We summarize the derivatives of (x(t), y(t), z(t)) from which the curvature κ(t)
and torsion τ(t) can be computed by (3.6) and (3.8) and by computer (because of
length of formulas):

ẋ = ue−2z

ẍ = −2ue−2z ż = ∓2ue−2z
√

1− u2e−2z − v2e2z

...
x = 4ue−2z(ż)2 − 2ue−2z z̈ = −6u3e−4z + 4ue−2z − 2uv2

ẏ = ve2z

ÿ = 2ve2z ż = ±2ve2z
√

1− u2e−2z − v2e2z

...
y = 4ve2z(ż)2 + 2ve2z z̈ = −2u2v + 4ve2z − 6v3e4z

ż = ±
√

1− u2e−2z − v2e2z

z̈ = u2e−2z − v2e2z

...
z = −2u2e−2z ż − 2v2e2z ż = ∓2(u2e−2z + v2e2z)

√
1− u2e−2z − v2e2z

for example

〈ṙ, r̈〉 = −żz̈ = ∓
(
u2e−2z − v2e2z

)√
1− u2e−2z − v2e2z .
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(1) x(t) = u
∫ t

0
e−2z(τ)dτ κ(0) =

y(t) = v
∫ t

0
e2z(τ)dτ

√
(1− w2)((1 + w2)2 − 4u2v2)

z(t) comes from the separable

differential equation τ(0) = ∗ 16u2v2(1− w2)·
dz

±
√

1− u2e−2z − v2e2z = dt
, iff ((1 + w2)2 − 4u2v2)·

w ≷ 0 (3(u2+v2)(u2−v2−2)+4+2u2v2)2

whose solution is non-element-
ary function.

(2) x(t) = ut κ(t) ≡ 0

y(t) = vt τ(t) ≡ 0

z(t) = 0

(3) x(t) = u
sinh t

cosh t + w sinh t
κ(0) = (1 + w2)

√
1− w2

y(t) = 0 τ(0) = 0 (moreover τ(t) ≡ 0)

z(t) = ln (cosh t + w sinh t)

(4) x(t) = 0 κ(0) = (1 + w2)
√

1− w2

y(t) = v
sinh t

cosh t− w sinh t
τ(0) = 0 (moreover τ(t) ≡ 0)z(t) = − ln (cosh t− w sinh t)

(5) x(t) = 0 κ(t) ≡ 0

y(t) = 0 τ(t) ≡ 0

z(t) = ±t, iff w = ±1

Table 1. Curvature and torsion of geodesics in Sol geometry, depending on
the initial velocity parameters (u, v, w), u2 + v2 + w2 = 1. The curvature
κ and torsion τ are taken at the origin (t = 0). ∗ denotes the sign of
[−4uv(−2w2u2 + 4v2u2 + 4v2w2 + u4 + u4v4 − 2v4 + 4w2)].
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