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Abstract. Loxodromic arcs are shown to be the maximizers of inversive
arclength, which is invariant under Möbius transformations. Previously,
these arcs were known to be extremals. The first result says that at
any loxodromic arc, the inversive arclength functional is concave with
respect to a non-trivial perturbation that fixes the circle elements at
the endpoints. The second result says that among curves with mono-
tone curvature that connect fixed circle elements, the loxodromic arcs
uniquely maximize inversive arclength. These results prove a conjecture
made by Liebmann in 1923.

1. Introduction

In 1923, Heinrich Liebmann [6] introduced a notion of arclength that is invariant
under Möbius transformations of the complex plane. The quantity is called inver-
sive arclength and depends on three derivatives of the parameterization. Previous
authors knew the corresponding differential invariant, called inversive curvature,
which depends on five derivatives of the parameterization. Taken together, these
notions of arclength and curvature completely determine the inversive differential
geometry of a plane curve. Together, they exemplify Klein’s Erlangen program
for the group SL(2, C), and they have been of ongoing interest during much of
the twentieth century. See [2, 7, 8, 10], for instance.

Before 1923, it was known that the curves with constant inversive curvature
are the logarithmic spirals and their Möbius images, the loxodromes. In his paper,
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Liebmann showed that these curves are also the extremals of inversive arclength.
(Another proof of this fact was given by Maeda in [8].) Motivated by analogous
results from affine geometry, Liebmann furthermore conjectured the following.

Conjecture 1. (Liebmann, 1923) Among curves connecting fixed circle elements,
the loxodromic arcs maximize the inversive arclength.

In this paper we prove Liebmann’s conjecture. In proving the conjecture, we
establish two principal intermediate results that seem not to have been previously
known and may be of independent interest. The first of these, a local result, says
that perturbing a loxodromic arc results in an arc with strictly smaller inversive
arclength.

Theorem. At a loxodromic arc, the inversive arclength functional is concave
with respect to any three times differentiable perturbation that fixes the circle ele-
ments at the endpoints. In particular, loxodromic arcs are strict local maximizers
of inversive arclength.

Our second basic geometric result is a global one; to provide a natural formulation
we will first introduce a pair of invariants for a smooth arc, called respectively
the Kerzman-Stein and Coxeter invariants. In part, the Kerzman-Stein invari-
ant detects a curve’s isotopy class, viewed inside the extended complex plane.
Two curves are said to agree inversively to second order at the endpoints if their
corresponding invariants agree.

Theorem. Consider three times differentiable curves with monotone curvature
that agree inversively to second order at the endpoints. Among them there is
exactly one loxodromic arc, up to Möbius transformation, and this arc uniquely
maximizes the inversive arclength.

We mention that the analogous result in Euclidean geometry is the familiar fact
that, with respect to arclength, the only extremal path between two points is
a straight line segment, and this path minimizes the arclength. There is also a
result in affine geometry that says that after specializing to convex curves, the
parabolic arcs have constant (zero) affine curvature, and these curves uniquely
maximize the affine arclength among curves that connect fixed line elements. See
Blaschke [1, p. 40], for instance.

The paper is structured as follows. In Section 2, we review the basic notions
of inversive differential geometry, we explain the necessity of restricting to curves
with monotone curvature, and we introduce a pair of invariants for a smooth arc.
In Section 3, we give the precise statements of our main results, and in Section 4
and Section 5, we give their proofs. In Section 6, we record two additional facts
that emerge from the proofs in the previous sections.

The author thanks David E. Barrett for many helpful conversations during
the preparation of this paper.
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2. Preliminaries

In this section, we provide a brief overview of inversive differential geometry, and
we describe a pair of invariants for a smooth arc.

2.1. Inversive arclength and curvature

In one dimension, inversive geometry refers to the study of geometric structures
that behave invariantly with respect to the action of the Möbius group

SL(2, C) =

{
µ = µ(z) =

az + b

cz + d
: a, b, c, d ∈ C, ad− bc = 1

}
on the complex plane. The group law is given by composition. Of particular
interest are the integral and differential invariants of a smooth curve γ ⊂ C, which
can be described explicitly in terms of their Euclidean counterparts. We briefly
recall the definitions here and refer to Cairns and Sharpe [2] and Patterson [9] for
more extended treatments.

If κ = κ(s) gives the Euclidean curvature of γ as a function of the arclength
parameter, s, then the inversively invariant one-form is dλ = |κ′(s)|1/2 ds and
the inversive length of γ is L(γ) =

∫
γ
dλ. At times it will be helpful to use

parameterizations for curves with respect to the inversive arclength parameter;
for instance, γ = γ(λ) with |dγ/dλ| ≡ |κ′(s)|−1/2. Defining inversive arclength
usually requires that curves are three times differentiable. Moreover, to avoid an
ambiguity that occurs where κ′ changes sign, it is common to restrict to curves
with monotone curvature. Curves with monotone curvature have the property
that their oriented osculating circles are properly nested. This means that the
regions they bound (a disc, half-plane, or complement of a disc) are nested inside
each other. Möbius transformations therefore preserve curves with decreasing
(resp., increasing) curvature. We remark that whether a curve has increasing or
decreasing curvature does not depend on its orientation.

If γ is five times differentiable, then its inversive curvature is the fifth order
invariant

I5 =
4(κ′′′ − κ2κ′)κ′ − 5(κ′′)2

8(κ′)3
.

The curves with constant I5 are the loxodromes, that is, the Möbius images of the
logarithmic spirals. A logarithmic spiral is described most simply using r ∈ R →
eαr ∈ C for some α ∈ C, Re (α) 6= 0 6= Im (α). Such a spiral intersects circles
centered at the origin in a constant angle.

In general, the value of I5 for a curve at a point corresponds with the angle of
the loxodrome that best approximates the curve at that point. See Maeda [7] for
other geometric interpretations of inversive curvature. Logarithmic spirals have
one finite pole and one pole at infinity. Loxodromes generally have two finite
poles, and for this reason, they are sometimes called logarithmic double spirals.

Finally, we mention that when γ has monotone curvature, it can be recovered
up to Möbius transformation from its intrinsic equation, I5 = I5(λ). Furthermore,
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the inversive curvature is infinite at a vertex, that is, a point of stationary curva-
ture. Circles and lines have everywhere infinite inversive curvature; their inversive
arclength is zero.

2.2. The Kerzman-Stein and Coxeter invariants for a smooth arc

We here describe a pair of first and second order invariants for a twice differentiable
arc. They are expressed using distance functions on the space of line elements and
circle elements, respectively, though these distance functions are not distances in
the usual sense. We say γ connects circle elements (p, φp, κp) and (q, φq, κq) if its
endpoints are p and q, its tangent vectors there have angle φp and φq, and its
curvatures there are κp and κq, respectively. In this notation, the angles φp and
φq are not unique, rather they are determined only up to a multiple of 2π.

For line elements (p, φp) and (q, φq), the Kerzman-Stein distance is the differ-
ence in angle between the vector exp(iφp) at p and the vector gotten by reflecting
the vector exp(iφq) at q across the chord connecting p to q. It is given by

θ(p, φp; q, φq) = arg

(
q − p

q − p
· e−i(φq+φp)

)
. (1)

(Kerzman and Stein encountered this angle in their study of the Cauchy kernel;
see [5].) Then, for an arc γ that connects line elements (p, φp) and (q, φq), the
first order invariant θ = θγ is defined using the right hand side of (1). We choose
the branch of the argument function that makes θγ(p, q

′) a continuous function of
q′ ∈ γ whose value at q′ = p is zero. (The quantity in parentheses on the right
hand side of (1) approaches 1 as q → p.) In this way, the θ invariant also identifies
a curve’s isotopy class, viewed inside the space of line elements on the extended
plane Ĉ = C∪{∞}. Figure 1 shows loxodromic arcs that both connect (0, 0) and
(1,−π/4) but with θ invariants that differ by 2π.

For nonintersecting circles, the Coxeter distance (see [3]) is the quantity δ =
cosh−1 |(d2 − r2

1 − r2
2)/(2r1r2)| where the circles have radius r1 and r2, and the

distance between their centers is d. Correspondingly, for circle elements (p, φp, κp)
and (q, φq, κq), the distance is

δ(p, q) = cosh−1

∣∣∣∣∣∣∣∣∣

∣∣∣∣(p +
ieiφp

κp

)− (q +
ieiφq

κq

)

∣∣∣∣2 − 1

κ2
p

− 1

κ2
q

2
1

κp

1

κq

∣∣∣∣∣∣∣∣∣. (2)

In particular, for a twice differentiable curve γ connecting these two circle ele-
ments, the second order invariant δ = δγ is defined using the right hand side of
(2). It will not be necessary to simplify this expression for a general curve.

These distance functions are not distances in the usual sense since neither
of them satisfies a general triangle inequality. Moreover, the Coxeter distance is
zero for circles that are tangent to each other, and the Kerzman-Stein distance
is zero for line elements that are tangent to a common circle. By restricting to
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Figure 1: Loxodromic arcs that connect line elements (0, 0) and (1,−π/4) with θ
invariants that differ by 2π

curves with monotone curvature, however, we eliminate these degeneracies. In
fact, by restricting to curves with decreasing curvature we may assume that both
invariants are positive. For an explanation why the θ invariant is positive, see
Subsection 6.1. For the δ invariant, it is assumed that one uses the positive value
of cosh−1 in (2).

3. Statement of main results

Liebmann [6] showed that the extremals of inversive arclength are the loxodromic
arcs, subject to perturbations that fix the circle elements at the endpoints. Maeda
also proved this fact in [8, p. 256]. We show the loxodromic arcs are, in fact, max-
imizers of inversive arclength. Our first result is a local version of this statement.

Theorem 1. At a loxodromic arc, the inversive arclength functional is concave
with respect to any three times differentiable perturbation that fixes the circle ele-
ments at the endpoints. In particular, loxodromic arcs are strict local maximizers
of inversive arclength.

Our second result is a global version. By considering only curves with decreasing
curvature, we may assume that both of a curve’s invariants are positive. We
mention that the endpoint circle elements only determine a curve’s θ invariant up
to a multiple of 2π, so by specifying the θ invariant in Theorem 2, we require that
all curves belong to the same isotopy class.

Theorem 2. Consider three times differentiable curves with decreasing curvature
that connect two fixed circle elements and have the same θ invariant. Among them
there is exactly one loxodromic arc, and this arc uniquely maximizes the inversive
arclength.
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A Möbius transformation can send a point on a curve to the point at infinity, so
it is possible that the extremal arc will pass through the point at infinity. For this
reason, we also present the result in a more naturally inversive setting, without
specific reference to the endpoints.

Theorem 3. Consider three times differentiable curves with monotone curvature
that agree inversively to second order at the endpoints. Among them there is
exactly one loxodromic arc, up to Möbius transformation, and this arc uniquely
maximizes the inversive arclength.

In this formulation, two curves are said to agree inversively to second order at the
endpoints if they have the same (θ, δ) invariants. We also mention that the result
for curves with decreasing curvature immediately extends to curves with increasing
curvature. For instance, under conjugation (z = x + iy −→ z = x − iy), curves
with decreasing curvature become curves with increasing curvature; meanwhile,
their inversive arclength is unchanged. Loxodromes with increasing curvature
are also the Möbius images of logarithmic spirals as defined in Proposition 1, for
a < 0.

Following these observations, Theorem 3 follows directly from Theorem 2 and
Lemma 6.

In the final section we provide evidence that suggests these results are optimal.
For instance, when considering only arcs with the same θ invariant, it is possible
to make the inversive length arbitrarily large or small, even within the family of
loxodromic arcs. For this reason, it is necessary to include both invariants when
formulating the problem.

4. Proof of Theorem 1

We use the variational approach to show that loxodromic arcs are strict local max-
imizers of inversive arclength. By using an appropriate Möbius transformation,
we may assume that the loxodromic arc is an arc from a logarithmic spiral. Let
L(z; s, t) denote the inversive length of an arc parameterized by r ∈ [s, t] → z(r).

Proposition 1. Suppose r ∈ [s, t] → zr = z(r) = reia log r/(1 + ia) parameterizes
a logarithmic spiral for some a > 0. This is a parameterization by arclength.
Consider three times differentiable functions p : r ∈ [s, t] → pr = p(r) ∈ R which
satisfy

i) ps = pt = 0,

ii) p′s = p′t = 0, and

iii) p′′t /p
′′
s = s/t,

and set zp,ε
r = zr + iεprz

′
r for ε ∈ R. So zp,0

r = zr for all r. Then, for each such p,

L(zp,ε; s, t) = L(z; s, t) + ε2 ·R2(p; s, t) + o(ε2), (3)

where R2(p; s, t) ≤ 0. There is equality if and only if p ≡ 0.
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Proof. [Proof of Theorem 1] Theorem 1 follows from Proposition 1 once we show
that the conditions on p are satisfied for any perturbation that fixes the circle
elements at the endpoints. The first two conditions on p say precisely that the
perturbation should fix the line elements at the endpoints. Under these condi-
tions, the last condition says it should also fix the Coxeter invariant; we omit the
details of this last fact. For Theorem 1, however, it is essential to know that the
third condition depends on nothing beyond the second order information at the
endpoints. It is simpler, then, to verify that it says the perturbation should fix
the ratio of curvatures at the endpoints. For this, let us temporarily assume the
conclusion of Lemma 1. Then, to first order in ε, the ratio of curvatures for the
perturbed curve is (a/t + εp′′t )/(a/s + εp′′s). This equals the ratio of curvatures for
the unperturbed curve precisely when p′′t /p

′′
s = (a/t)/(a/s) = s/t. �

Proof. [Proof of Proposition 1] To simplify the notation we also write γr = zp,ε
r .

Then,

γ′r =
dγ

dr
= z′r + iεp′rz

′
r + iεpr ·

ia

r
· z′r = z′r

[
1− ε

(apr

r
− ip′r

)]
.

Suppose that u = u(r) is the arclength parameter for γ. Then∣∣∣∣dγ

du

∣∣∣∣ ≡ 1 ≡
∣∣∣∣dγ

dr

∣∣∣∣ · dr

du
=

√
(1− ε

apr

r
)2 + (εp′r)

2 · dr

du
,

so that

du

dr
= 1 +

1

2

(
−2ε

apr

r
+ ε2a2p2

r

r2
+ ε2(p′r)

2

)
− 1

8

(
−2ε

apr

r

)2

+ o(ε2)

= 1− ε
apr

r
+ ε2 (p′r)

2

2
+ o(ε2), (4)

and
dr

du
=

(
du

dr

)−1

= 1 + ε
apr

r
+ ε2

(
a2p2

r

r2
− (p′r)

2

2

)
+ o(ε2).

From now on, we will interpret the equals sign to mean equal only up to terms of
second order in ε. Terms of order o(ε2) will be counted as zero.

Lemma 1. Neglecting terms of order o(ε2) the curvature of γ at γr is given by

kr =
a

r
+ ε

(
a2pr

r2
+ p′′r

)
+ ε2

(
1

2

a(p′r)
2

r
+

2aprp
′′
r

r
− aprp

′
r

r2
+

a3p2
r

r3

)
.

Furthermore,

dk

dr
= − a

r2
+ ε

(
a2p′r
r2

− 2a2pr

r3
+ p′′′r

)
+ ε2

(
3ap′rp

′′
r

r
− 3

2

a(p′r)
2

r2

+
2aprp

′′′
r

r
− 3aprp

′′
r

r2
+

2aprp
′
r

r3
+

2a3prp
′
r

r3
− 3a3p2

r

r4

)
.
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Proof. We first express the curvature of γ in terms of the r coordinate:

kr =

d

du

(
dγ

du

)
i
dγ

du

=

d

dr

(
dγ

dr

dr

du

)
dr

du

i
dγ

dr

dr

du

=

d

dr

(
dγ

dr

)
dr

du

i
dγ

dr

+

d

dr

(
dr

du

)
i

.

It follows that

kr =

d

dr

[
z′r

(
1− ε

(apr

r
− ip′r

))]
·
[
1 + ε

apr

r
+ ε2

(
a2p2

r

r2
− (p′r)

2

2

)]
i · z′r

[
1− ε

(apr

r
− ip′r

)]
+

1

i

d

dr

[
1 + ε

apr

r
+ ε2

(
a2p2

r

r2
− (p′r)

2

2

)]
=

a

r

[
1 + ε

apr

r
+ ε2

(
a2p2

r

r2
− (p′r)

2

2

)]
−ε

i

[
ap′r
r
− apr

r2
− ip′′r

] [
1 + ε

apr

r

] [
1 + ε

(apr

r
− ip′r

)]
+

1

i

[
ε

(
ap′r
r
− apr

r2

)
+ ε2

[
2apr

r

(
ap′r
r
− apr

r2

)
− p′rp

′′
r

]]
.

The terms that have the factor of ε1 are precisely

a

r
· apr

r
− 1

i

(
ap′r
r
− apr

r2
− ip′′r

)
+

1

i

(
ap′r
r
− apr

r2

)
=

a2pr

r2
+ p′′r ,

and the terms that have the factor of ε2 are precisely

a

r

(
a2p2

r

r2
− (p′r)

2

2

)
− 1

i

(
ap′r
r
− apr

r2
− ip′′r

)(
2apr

r
− ip′r

)
+

1

i

[
2apr

r

(
ap′r
r
− apr

r2

)
− p′rp

′′
r

]
=

a3p2
r

r3
− a(p′r)

2

2r
+ p′r

(
ap′r
r
− apr

r2

)
+ p′′r

(
2apr

r

)
+i

[
2apr

r

(
ap′r
r
− apr

r2

)
− p′rp

′′
r −

2apr

r

(
ap′r
r
− apr

r2

)
+ p′rp

′′
r

]
=

1

2

a(p′r)
2

r
+

2aprp
′′
r

r
− aprp

′
r

r2
+

a3p2
r

r3
,

as claimed by the lemma. The expression for dk/dr is then easy to check; we skip
the few details. �

Next, the inversively invariant one form can be written∣∣∣∣dk

du

∣∣∣∣1/2

du =

∣∣∣∣dk

dr
· dr

du

∣∣∣∣ 12 · du

dr
dr =

∣∣∣∣dk

dr
· du

dr

∣∣∣∣ 12 dr.
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Lemma 2. Neglecting terms of order o(ε2), we have∣∣∣∣dk

dr
· du

dr

∣∣∣∣ 12 =

√
a

r
+ ε · A1(r) + ε2 · A2(r),

where

A1(r) =

√
a

2

(
−ap′r

r
+

apr

r2
− rp′′′r

a

)
and

A2(r) =

√
a

2

[
a2

(
−prp

′
r

r2
+

p2
r

r3
− 1

4r

(
p′r −

pr

r

)2
)
− 1

a2

r3(p′′′r )2

4

+

(
−3p′rp

′′
r +

2(p′r)
2

r
+

3prp
′′
r

r
− 2prp

′
r

r2
− prp

′′′
r

2
− rp′rp

′′′
r

2

)]
.

Proof. Using (4) and Lemma 1, we find that

dk

dr
· du

dr
= − a

r2
+ ε ·B1(r) + ε2 ·B2(r),

where

B1(r) =
a2p′r
r2

− a2pr

r3
+ p′′′r ,

and after simplifying,

B2(r) =
3ap′rp

′′
r

r
− 2a(p′r)

2

r2
+

aprp
′′′
r

r
− 3aprp

′′
r

r2
+

2aprp
′
r

r3
+

a3prp
′
r

r3
− a3p2

r

r4
.

Then by writing

dk

dr
· du

dr
= − a

r2

(
1− ε · r2

a
B1(r)− ε2 · r2

a
B2(r)

)
,

we have∣∣∣∣dk

dr
· du

dr

∣∣∣∣1/2

=

√
a

r

[
1− ε

2
· r2

a
B1(r) + ε2

(
− r2

2a
B2(r)−

r4

8a2
B1(r)

2

)]
.

We have left then to expand and simplify A1(r) = −rB1(r)/(2
√

a) and

A2(r) = −rB2(r)/(2
√

a)− r3B1(r)
2/(8a3/2).

We find that

−r B1(r)

2
√

a
= − r

2
√

a

(
a2p′r
r2

− a2pr

r3
+ p′′′r

)
=

√
a

2

(
−ap′r

r
+

apr

r2
− rp′′′r

a

)
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and

−r B2(r)

2
√

a
− r3B1(r)

2

8a3/2

=

√
a

2

[
−r

a

(
3ap′rp

′′
r

r
− 2a(p′r)

2

r2
+

aprp
′′′
r

r
− 3aprp

′′
r

r2
+

2aprp
′
r

r3

+
a3prp

′
r

r3
− a3p2

r

r4

)
− r3

4a2

(
a2p′r
r2

− a2pr

r3
+ p′′′r

)
2
]

=

√
a

2

[
−3p′rp

′′
r +

2(p′r)
2

r
− prp

′′′
r +

3prp
′′
r

r
− 2prp

′
r

r2
− a2prp

′
r

r2

+
a2p2

r

r3
− a2

4r

(
p′r −

pr

r

)2

− 1

2
(rp′r − pr)p

′′′
r −

r3

4a2
(p′′′r )2

]
=

√
a

2

[
a2

(
−prp

′
r

r2
+

p2
r

r3
− 1

4r

(
p′r −

pr

r

)2
)
− 1

a2

r3(p′′′r )2

4

+

(
−3p′rp

′′
r +

2(p′r)
2

r
+

3prp
′′
r

r
− 2prp

′
r

r2
− prp

′′′
r

2
− rp′rp

′′′
r

2

)]
as claimed by the lemma. �

So far, after neglecting the terms of order o(ε2),

L(zp,ε; s, t) =

∫ t

s

[√
a

r
+ ε · A1(r) + ε2 · A2(r)

]
dr.

Here,
∫ t

s

√
a/r dr =

√
a log(t/s) = L(z; s, t), the inversive length of the unper-

turbed logarithmic spiral. Furthermore,∫ t

s

A1(r) dr =

√
a

2

∫ t

s

(
−ap′r

r
+

apr

r2
− rp′′′r

a

)
dr

=
−a3/2

2

∫ t

s

d

dr

(pr

r

)
dr − 1

2
√

a

∫ t

s

rp′′′r dr.

The first integral in the last expression is zero since ps = pt = 0. The second
integral can be evaluated using integration by parts:∫ t

s

rp′′′r dr = rp′′r

∣∣∣∣t
s

−
∫ t

s

p′′r dr = (tp′′t − sp′′s)− (p′t − p′s).

This vanishes, too, since p′′t /p
′′
s = s/t and p′s = p′t = 0. It follows that

∫ t

s
A1(r)dr =

0, and for this reason there are no first order terms on the right hand side of (3).
This also confirms the already known fact that the loxodromic arcs are extremal.

We have yet then to verify that R2(p; s, t) ≤ 0 with equality precisely when p ≡ 0.
Notice that both ∫ t

s

−prp
′
r

r2
+

p2
r

r3
dr =

∫ t

s

−1

2

d

dr

(
p2

r

r2

)
dr = 0



M. Bolt: Extremal Properties of Logarithmic Spirals 503

and ∫ t

s

−3p′rp
′′
r dr =

∫ t

s

−3

2

d

dr
(p′r)

2 dr = 0

since ps = pt = 0 and p′s = p′t = 0. For the same reason,∫ t

s

(
2(p′r)

2

r
+

3prp
′′
r

r
− 2prp

′
r

r2

)
dr

=

∫ t

s

2
d

dr

(
prp

′
r

r

)
dr +

∫ t

s

prp
′′
r

r
dr =

∫ t

s

prp
′′
r

r
dr.

We can then write

R2(p; s, t) =

∫ t

s

A2(r) dr =

√
a

2

[ ∫ t

s

−a2

4r
(p′r −

pr

r
)2 dr

−
∫ t

s

r3(p′′′r )2

4a2
dr +

∫ t

s

prp
′′
r

r
− 1

2
(prp

′′′
r + rp′rp

′′′
r ) dr

]
.

To further simplify, we use the following.

Lemma 3. ∫ t

s

prp
′′
r

r
dr = −

∫ t

s

1

r

(
p′r −

pr

r

)2

dr

and ∫ t

s

prp
′′′
r + rp′rp

′′′
r dr = −

∫ t

s

r(p′′r)
2 dr.

Proof. For the first integral, we first integrate by parts:∫ t

s

prp
′′
r

r
dr =

pr

r
p′r

∣∣∣t
s
−
∫ t

s

p′r

(
p′r
r
− pr

r2

)
dr = −

∫ t

s

p′r

(
p′r
r
− pr

r2

)
dr.

Next, define qr = pr/r so that q′r = p′r/r − pr/r
2. Then also p′r = rq′r + pr/r =

rq′r + qr. We then have∫ t

s

prp
′′
r

r
dr = −

∫ t

s

(rq′r + qr)q
′
r dr = −

∫ t

s

r(q′r)
2 dr −

∫ t

s

qrq
′
r dr

= −
∫ t

s

r(q′r)
2 dr − q2

r

2

∣∣∣∣t
s

= −
∫ t

s

1

r

(
p′r −

pr

r

)2

dr.

In the last step we use the fact that qs = qt = 0. For the second integral, again
integrate by parts:∫ t

s

prp
′′′
r + rp′rp

′′′
r dr = (pr + rp′r)p

′′
r

∣∣t
s
−
∫ t

s

p′′r(2p
′
r + rp′′r) dr

= 0− (p′r)
2
∣∣t
s
−
∫ t

s

r(p′′r)
2 dr = −

∫ t

s

r(p′′r)
2 dr.

The lemma is then proved. �
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It follows that

R2(p; s, t) =

√
a

2

[
−a2

4

∫ t

s

1

r

(
p′r −

pr

r

)2

dr − 1

4a2

∫ t

s

r3(p′′′r )2 dr

+

∫ t

s

(
−1

r

(
p′r −

pr

r

)2

+
1

2
r(p′′r)

2

)
dr

]
=

1

8a3/2

[
−a4 ·X + a2(−4X + 2Y )− Z

]
, (5)

where

X =

∫ t

s

1

r

(
p′r −

pr

r

)2

dr

Y =

∫ t

s

r (p′′r)
2 dr

Z =

∫ t

s

r3 (p′′′r )2 dr.

In (5), the quantity in brackets is quadratic in a2, and has discriminant ∆ =
(−4X + 2Y )2 − 4XZ. We claim that the discriminant is negative when p is
nonzero; evidently it is zero when p ≡ 0. This suffices to prove Proposition 1
for the following reason. For p fixed, the graph of the quantity in brackets, as
a function of a2, opens downward. If the discriminant is negative, this graph
never crosses the horizontal axis. So the quantity in brackets is negative for all
values of a2. As this would be true except when p ≡ 0, we will have established
Proposition 1.

To prove the claim, we introduce new substitutions. Let r = eµ and dr = eµdµ.
Also, let y = y(µ) = p′(eµ)eµ − p(eµ). Then

y′ = p′′(eµ)e2µ and y′′ = p′′′(eµ)e3µ + 2p′′(eµ)e2µ,

and

p′r −
pr

r
=

y

eµ
, p′′r =

y′

e2µ
, and p′′′r =

y′′ − 2y′

e3µ
.

We next use the following two lemmas.

Lemma 4.

X =

∫ r=t

r=s

y2e−2µ dµ

Y =

∫ r=t

r=s

(y′)2e−2µ dµ

Z =

∫ r=t

r=s

(y′′)2e−2µ dµ



M. Bolt: Extremal Properties of Logarithmic Spirals 505

Proof. The first two integrals are immediate:

X =

∫ t

s

1

r

(
p′r −

pr

r

)2

dr =

∫ r=t

r=s

1

eµ

( y

eµ

)2

eµ dµ =

∫ r=t

r=s

y2e−2µ dµ

and

Y =

∫ t

s

r(p′′r)
2 dr =

∫ r=t

r=s

eµ

(
y′

e2µ

)2

eµ dµ =

∫ r=t

r=s

(y′)2e−2µ dµ.

For the last integral,

Z =

∫ t

s

r3(p′′′r )2 dr =

∫ r=t

r=s

e3µ

(
y′′ − 2y′

e3µ

)2

eµ dµ

=

∫ r=t

r=s

(y′′)2e−2µ dµ− 4

∫ r=t

r=s

y′y′′e−2µ dµ + 4

∫ r=t

r=s

(y′)2e−2µ dµ.

It then suffices to show that∫ r=t

r=s

y′y′′e−2µ dµ =

∫ r=t

r=s

(y′)2e−2µ dµ.

Again, integrate by parts:∫ r=t

r=s

y′y′′e−2µ dµ =
1

2
(y′)2e−2µ

∣∣∣∣r=t

r=s

+

∫ r=t

r=s

(y′)2e−2µ dµ.

The boundary terms vanish since

(y′)2e−2µ
∣∣r=t

r=s
= (r2p′′r)

2r−2
∣∣r=t

r=s
= (tp′′t )

2 − (sp′′s)
2 = 0,

so the lemma is proved. �

Lemma 5.

2X − Y =

∫ r=t

r=s

yy′′e−2µ dµ

Proof. Starting with the expression for Y from the previous lemma, we integrate
by parts. Then,

Y =

∫ r=t

r=s

(y′)2e−2µ dµ = yy′e−2µ
∣∣r=t

r=s
−
∫ r=t

r=s

y(y′′ − 2y′)e−2µ dµ

= −
∫ r=t

r=s

yy′′e−2µ du +

∫ r=t

r=s

2yy′e−2µ dµ,

the boundary terms vanishing since y = rp′r − pr = 0 for r = s, t. Integrating by
parts in the second integral on the right hand side gives

Y +

∫ r=t

r=s

yy′′e−2µ dµ = y2e−2µ
∣∣r=t

r=s
+

∫ r=t

r=s

2y2e−2µ dµ = 2X.
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In the second step, the boundary terms vanish for the same reason as before, so
the lemma is proved. �

Using these lemmas, we apply the Cauchy-Schwarz inequality to the functions
ye−µ and y′′e−µ:

(2X − Y )2 ≤
∫ r=t

r=s

y2e−2µ dµ ·
∫ r=t

r=s

(y′′)2e−2µ dµ = X · Z.

From this it follows that ∆ = 4 · [(2X − Y )2 −XZ] ≤ 0 and we are nearly done.
Cauchy-Schwarz also says there is equality only if one of the following is true:

i) y ≡ 0,

ii) y′′ ≡ 0,

iii) cye−µ = y′′e−µ for all µ; that is, y′′ − cy ≡ 0. Here, c 6= 0 is constant.
In each case, we must show that p ≡ 0.

If y ≡ 0, then p′r · r − pr = 0 for all r, so (pr/r)
′ = 0 and pr = c · r. But

ps = pt = 0, so p ≡ 0. If y′′ ≡ 0, then y is linear. But as before, y = 0 for both
r = s, t, so then y ≡ 0. The argument just given implies p ≡ 0.

In the final case, if c is positive, there are no nontrivial solutions for y that
vanish at r = s, t. If c = −λ2, there are many solutions

y(µ) = sin

[
nπ

log(t/s)
· (µ− log s)

]
,

with λ = nπ/ log(t/s) and n ∈ N. But there remains the restriction on y that
says

y′(µ) · 1

eµ

∣∣∣∣r=t

r=s

= p′′r · r
∣∣r=t

r=s
= p′′t · t− p′′s · s = 0.

For this to hold, it is necessary that cos(nπ)/t− 1/s = 0, which is impossible as
s, t > 0 and s 6= t. Again, there are no nontrivial solutions, so Proposition 1 is
proved. �

5. Proof of Theorem 2

To prove Theorem 2, we first determine how the circle elements at the endpoints
of an arc can be normalized with respect to the curve’s invariants (θ, δ). Then
we show that each pair of invariants (θ, δ) is obtained exactly once, up to Möbius
transformation, within the family of loxodromic arcs. Finally, we establish a con-
text in which the logarithmic spirals are global maximizers of inversive arclength.
With these facts in hand, we are then ready to prove Theorem 2.

Lemma 6. Using a Möbius transformation, the endpoint circle elements (p, φp,
κp) and (q, φq, κq) of a twice differentiable arc γ with decreasing curvature can be
normalized so that p = 0, φp = 0, κp = 1, and q = 1. After the normalization, the
values of φq (to a multiple of 2π) and κq are determined by the invariants (θ, δ).
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Proof. To prove the lemma, we exhaust the six degrees of freedom that are
available in SL(2, C). We first use a translation that makes p = 0 and follow that
with a rotation and dilation that makes q = 1. This uses four degrees of freedom,
but we may now assume that γ is normalized with p = 0 and q = 1, and we have
left the subgroup of Möbius transformations that fix p = 0 and q = 1. These
Möbius transformations have the form µ(z) = d−1z/(cz + d) for some 0 6= d ∈ C,
with c = 1/d− d. We claim we can choose 0 6= d ∈ C so that φp = 0 and κp = 1.

Next, µ′(z) = (cz + d)−2 and the unit tangent vector of the curve µ ◦ γ at
p = 0 is (d/d) exp(iφp). After replacing d with d · exp(iφp/2) where 0 6= d ∈ R,
this tangent vector is 1. So we have also normalized φp = 0. We may assume
then that γ is normalized with p = 0, φp = 0, and q = 1, and we have left the
subgroup of transformations of the form µ(z) = d−1z/(cz +d) for 0 6= d ∈ R, with
c = 1/d − d. Choosing d or −d results in the same Möbius transformation, so
without loss of generality, assume d > 0.

We claim we can choose 0 < d < ∞ so that κp = 1. At this point, we may
assume that κp > 0 else γ could never reach q = 1, rather it would spiral inside
the circle centered at iκ−1

p with radius |κp|−1. Suppose now that s → γ(s) is a
parameterization by arclength, and r = r(s) is defined so r → µ ◦ γ(r) is also a
parameterization by arclength. Then the curvature of µ ◦ γ can be expressed by

d2µ

dr2

i · dµ

dr

=

d

ds

(
dµ

dr

)
ds

dr

i · dµ

ds

ds

dr

=

d

ds

(
dµ

dr

)
i · dµ

ds

=

d

ds

(
cγs + d

cγs + d

dγ

ds

)
i · 1

(cγs + d)2

dγ

ds

.

At p = 0, where already φp = 0 (so γ = 0, dγ/ds = 1, and d2γ/ds2 = iκp), we

find that the curvature of µ◦γ is d2 ·κp. Choosing d = κ
−1/2
p makes this curvature

equal to 1.
Finally, after the normalization, the values of φq and κq can be recovered from

the invariants (θ, δ) by using (1) and (2). Solving (1) gives φq = −θ. Then solving
(2) gives two possibilities for κq, namely κ±q = 2(± cosh δ + cos φq + sin φq). Of
these possibilities, only κq = κ−q gives an (oriented) circle element (0, φq, κq) that
is properly nested with the circle element (0, 0, 1). �

Next we show that each pair of invariants (θ, δ) is obtained exactly once, up to
Möbius transformation, in the family of loxodromic arcs.

Lemma 7. Each pair of invariants (θ, δ) with θ, δ > 0 is obtained exactly once,
up to Möbius transformation, within the family of loxodromic arcs. In particular,
the map (a, v) → (θ, δ) determined below using (6) is both one-to-one and onto.

Once this is proved, we may conclude from Lemma 6 and Lemma 7 the following
intermediate result.

Proposition 2. Given an arc γ with decreasing curvature, there is precisely one
loxodromic arc γ∗ that connects the same circle elements as γ and has the same
θ invariant as γ.
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To prove Lemma 7 it suffices to consider arcs of the logarithmic spirals z(u) =
(exp [(1 + ia)u/

√
a]− 1) /(1 + ia) for a > 0. Then also z′(u) = exp(iu

√
a) and

z′′(u) = ia exp(−u/
√

a) · z′(u) where the primed notation indicates differentia-
tion with respect to arclength. For this spiral, the parameter u is the inver-
sive arclength parameter and can be related to the arclength parameter s by
u =

√
a log s.

Each such spiral has a one parameter family of symmetries – a point on a
logarithmic spiral can be taken to any other point on the spiral by an appropriate
translation, rotation, and dilation. We choose one endpoint to be z(0) = 0. After
a Möbius transformation, then, we consider only the arcs of logarithmic spirals

u ∈ [0, v] → z(u) =
(
exp

[
(1 + ia)u/

√
a
]
− 1
)
/(1 + ia), (6)

that connect circle elements (0, 0, a) and (z(v), v
√

a, a exp(−v/
√

a)), for a, v > 0.

The Kerzman-Stein invariant for a logarithmic spiral. Here, θ is exactly
the argument of the vector that is gotten by reflecting the tangent vector z′(v)
across the line segment connecting z(0) = 0 to z(v). We choose the branch of
the argument to be the one that makes θ into a continuous function starting with
θ = 0 at v = 0. Therefore,

θ(a, v) = arg

(
z(v)

z(v)
e−iv

√
a

)
= arg

(
1− ia

1 + ia

e(1+ia)v/
√

a − 1

e(1−ia)v/
√

a − 1
· e−iv

√
a

)
= arg

(
1− ia

1 + ia

e(1+ia)v/(2
√

a) − e−(1+ia)v/(2
√

a)

e(1−ia)v/(2
√

a) − e−(1−ia)v/(2
√

a)

)
= 2 · arg

(
(1− ia) sinh

[
(1 + ia)v/(2

√
a)
])

. (7)

Using the identity sinh(u + iv) = sinh u cos v + i cosh u sin v, we have

θ(a, v) = 2 tan−1

[
cosh( v

2
√

a
) sin(v

√
a

2
)− a sinh( v

2
√

a
) cos(v

√
a

2
)

sinh( v
2
√

a
) cos(v

√
a

2
) + a cosh( v

2
√

a
) sin(v

√
a

2
)

]

= 2 tan−1

[
tan(v

√
a

2
)− a tanh( v

2
√

a
)

tanh( v
2
√

a
) + a tan(v

√
a

2
)

]
. (8)

For fixed a > 0, we choose the branch of tan−1 that makes the right hand side
approach 0 when v approaches 0. Then we extend continuously for v > 0.

The Coxeter invariant for a logarithmic spiral. The radii of the osculating
circles at the endpoints are reciprocal to the endpoint curvatures – namely, 1/a and
exp(v/

√
a)/a. The centers of these circles are i/a and z(v)+ iz′(v) · exp(v/

√
a)/a,
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Figure 2: Contour plots for θ = θ(a, v) and δ = δ(a, v)

and the distance-squared between them is∣∣∣∣ ia − e(1+ia)v/
√

a − 1

1 + ia
− i eiv

√
a ev/

√
a

a

∣∣∣∣2
=

∣∣∣∣ i(1 + ia)− a(e(1+ia)v/
√

a − 1)− i(1 + ia)e(1+ia)v/
√

a

a(1 + ia)

∣∣∣∣2
=

∣∣∣∣ i− ie(1+ia)v/
√

a

a(1 + ia)

∣∣∣∣2 =
1 + e2v/

√
a − 2ev/

√
a cos(v

√
a)

a2(1 + a2)
.

So we get

δ(a, v) = cosh−1

∣∣∣∣∣∣∣∣∣
1 + e2v/

√
a − 2ev/

√
a cos(v

√
a)

a2(1 + a2)
− 1

a2
− e2v/

√
a

a2

2 · 1

a
· ev/

√
a

a

∣∣∣∣∣∣∣∣∣
= cosh−1

∣∣∣∣(1 + e2v/
√

a − 2ev/
√

a cos(v
√

a))− (1 + a2)(1 + e2v/
√

a)

2 · ev/
√

a · (1 + a2)

∣∣∣∣
= cosh−1

∣∣∣∣−a2(1 + e2v/
√

a)

(1 + a2) 2 · ev/
√

a
− cos(v

√
a)

1 + a2

∣∣∣∣
= cosh−1

∣∣∣∣a2 cosh(v/
√

a) + cos(v
√

a)

1 + a2

∣∣∣∣.
�

In Figure 2 we show contour plots for the functions θ = θ(a, v) and δ = δ(a, v)
which were drawn for the region 0.01 ≤ a, v ≤ 50.

To prove the injectivity of the map (a, v) → (θ, δ) it is enough to verify that the
tangent lines to the level curves of θ have negative slope, and the tangent lines
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to the level curves of δ have positive slope. Then each level curve of θ intersects
each level curve of δ at most once.

For the slope of the line tangent to a level curve of δ = δ(a, v), we differentiate
implicitly the quantity

cosh δ =
a2 cosh(v/

√
a) + cos(v

√
a)

1 + a2
.

(It is a minor point that the quantity on the right hand side is positive for a, v >
0.) Then,

∂v

∂a

∣∣∣∣
δ=const

= −∂(cosh δ)

∂a
· ∂v

∂(cosh δ)

=−

[
2a cosh( v√

a
)− v

√
a

2
· sinh( v√

a
)− v

2
√

a
· sin(v

√
a)

1 + a2

−
2a(a2 cosh( v√

a
) + cos(v

√
a))

(1 + a2)2

]
1 + a2

a3/2 sinh( v√
a
)−

√
a sin(v

√
a)

=
−4a3/2 cosh( v√

a
)+4a3/2 cos(v

√
a)+v(1+a2)(a sinh( v√

a
)+sin(v

√
a))

2a(1 + a2)(a sinh( v√
a
)− sin(v

√
a))

.

Likewise, for the slope of the line tangent to a level curve of θ = θ(a, v), we
differentiate implicitly the quantity

tan
θ

2
=

tan[v
√

a/2]− a tanh[v/(2
√

a)]

tanh[v/(2
√

a)] + a tan[v
√

a/2]

def
=

f(a, v)− a · g(a, v)

g(a, v) + a · f(a, v)
.

Then,

∂v

∂a

∣∣∣∣
θ=cnst

= −∂(tan(θ/2))

∂a
· ∂v

∂(tan(θ/2))

= − (1 + a2)(fag − fga)− (f 2 + g2)

(1 + a2)(fvg − fgv)

= −

(1 + a2) v
8a3/2 · sec2(v

√
a

2
) sech2( v

2
√

a
)(a sinh( v√

a
) + sin(v

√
a))

− sec2(v
√

a
2

) sech2( v
2
√

a
)(cosh( v√

a
)− cos(v

√
a))/2

(1 + a2)/(4
√

a) · sec2(v
√

a
2

) sech2( v
2
√

a
)(a sinh( v√

a
)− sin(v

√
a))

=
4a3/2 cosh( v√

a
)−4a3/2 cos(v

√
a)−v(1+a2)(a sinh( v√

a
)+sin(v

√
a))

2a(1 + a2)(a sinh( v√
a
)− sin(v

√
a))

.

Some steps are omitted from the next-to-last computation – they use the hyper-
bolic identity as well as the trigonometric and hyperbolic double angle formulæ.
It so happens that this slope is exactly opposite the slope that was gotten for δ.
The author first discovered this curious fact using Mathematica.
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For the injectivity, we first show that a sinh(v/
√

a)−sin(v
√

a) > 0 for a, v > 0.
For this, substitute y = v/

√
a > 0 and consider f(y) = a sinh y− sin(ay) for fixed

a. Then f(0) = 0, and f ′(y) = a cosh y − a cos(ay) ≥ 0 with equality if and only
if y = 0. So then f(y) > 0 for all y > 0, and the assertion is proved.

To prove injectivity, then, it is enough to verify that

4a3/2 cosh(v/
√

a)− 4a3/2 cos(v
√

a)

−v(1 + a2)(a sinh(v/
√

a) + sin(v
√

a)) < 0 (9)

for all a, v > 0.

Proof. [Proof of inequality (9)] After substituting a = z/y and v =
√

yz (so
y = v/

√
a, z = v

√
a), and after multiplying by −y5/2/

√
z and rearranging terms,

inequality (9) is equivalent to

4yz(cos z − cosh y) + y(y2 + z2) sin z + z(y2 + z2) sinh y > 0

for all y, z > 0. To establish this inequality, we expand the left hand side in a
power series in terms of y. Then,

LHS = 4yz cos z − 4yz ·
∞∑

j=0

y2j

(2j)!
+ y(y2 + z2) sin z

+z(y2 + z2)
∞∑

j=0

y2j+1

(2j + 1)!

= y(4z cos z − 4z + z2 sin z + z3) + y3(−2z + sin z + z + z3/6)

−4yz ·
∞∑

j=2

y2j

(2j)!
+ zy2 ·

∞∑
j=2

y2j−1

(2j − 1)!
+ z3 ·

∞∑
j=2

y2j+1

(2j + 1)!
.

Clearly the last of the five terms on the right hand side is positive. We show first
that the sum of the 3rd and 4th terms is positive

−4yz ·
∞∑

j=2

y2j

(2j)!
+ zy2 ·

∞∑
j=2

y2j−1

(2j − 1)!
= yz ·

∞∑
j=2

(
−4 + 2j

(2j)!

)
y2j > 0.

To establish (9) it is enough then to verify the inequalities for z > 0:

4 cos z − 4 + z sin z + z2 > 0 (10)

−z + sin z + z3/6 > 0. (11)

To verify (11), let f(z) = −z + sin z + z3/6. Then f ′(z) = −1 + cos z + z2/2 and
f ′′(z) = − sin z + z. Since f(0) = 0 and f ′(0) = 0, and f ′′(z) ≥ 0 for z ≥ 0 with
equality only for z = 0, we conclude that f(z) > 0 for z > 0. This establishes (11).
To verify (10), let f(z) = 4 cos z−4+z sin z+z2, so f ′(z) = −3 sin z+z cos z+2z.
Then both f(0) = 0 and f ′(0) = 0, so it is enough to show that f ′(z) > 0 for z > 0.
Since | − 3 sin z + z cos z| ≤ 3 + z, it follows that f ′(z) ≥ 2z − (3 + z) = z − 3 > 0
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for z > 3. We must then check that f ′(z) > 0 for 0 < z ≤ 3, and for this we use
power series:

−3 sin z + z cos z + 2z

= −3

[
z +

∞∑
j=1

(−1)jz2j+1

(2j + 1)!

]
+ z

[
1 +

∞∑
j=1

(−1)jz2j

(2j)!

]
+ 2z

=
∞∑

j=1

[
−3

(−1)j

(2j + 1)!
+

(−1)j

(2j)!

]
z2j+1 =

∞∑
j=2

(−1)j 2j − 2

(2j + 1)!
z2j+1

=
∞∑

k=1

[
4k − 2

(4k + 1)!
z4k+1 − 4k

(4k + 3)!
z4k+3

]
=

∞∑
k=1

[
(4k − 2)(4k + 3)(4k + 2)− 4k · z2

] z4k+1

(4k + 3)!
.

Here,

(4k − 2)(4k + 3)(4k + 2)− 4k · z2 ≥ (4k − 2)(4k + 3)(4k + 2)− 36k

= 64k3 + 48k2 − 52k − 12 > 0

since 0 < z ≤ 3 and k ≥ 1. This establishes (10), and therefore (9) as well. �

What needs to be proved, then, is the surjectivity of (a, v) → (θ, δ). For this,
we first show that if a > 0 is fixed, then θ(a, v) increases with v and attains all
positive values. We then restrict to a level curve of θ, where we may assume
v = v(a), and we establish both

lim
a→0+

δ(a, v(a)) = +∞ (12)

lim
a→+∞

δ(a, v(a)) = 0. (13)

This is enough to establish surjectivity, then Lemma 7 and Proposition 2 will be
proved.

For the first statement, we start with (7) and find

θ

2
= arg

[
(1− ia) sinh

(
(1 + ia)v

2
√

a

)]
= − tan−1 a + tan−1

[
tan(v

√
a/2)

tanh(v/(2
√

a))

]
.

With a > 0 fixed, we choose the value for tan−1 a that is between 0 and π/2. For
tan−1 [tan(v

√
a/2)/ tanh(v/(2

√
a))] we then use the value that makes the sum

equal to zero when v = 0, and extend continuously for v > 0. We first show that
v → tan(v

√
a/2)/ tanh(v/(2

√
a)) is an increasing function wherever it is defined.
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For this we make the substitution x = v
√

a/2 and compute

d

dx

tan x

tanh(x/a)
=

sec2 x tanh(x/a)− a−1 tan x sech2(x/a)

tanh2(x/a)

=
sec2 x sech2(x/a)

a tanh2(x/a)
[a sinh(x/a) cosh(x/a)− sin x cos x]

=
sec2 x sech2(x/a)

2a tanh2(x/a)
[a sinh(2x/a)− sin 2x].

In the paragraph preceding (9), we showed that the last quantity in brackets is
positive, so then both x → tan x/ tanh(x/a) and v → tan(v

√
a/2)/ tanh(v/(2

√
a))

are increasing. Furthermore, if v is large, then tanh(v/(2
√

a)) ≈ 1, and

θ(a, v)

2
≈ − tan−1 a + tan−1

(
tan(v

√
a/2)

)
≈ − tan−1 a +

v
√

a

2
.

The quantity on the right hand side of this estimate can be made arbitrarily large
by taking v large. We have left then to verify the two limits, (12) and (13).

Proof. [Proof of (12)–(13)] Again we use the substitution x = v
√

a/2. Then on
the level curve of θ, where x = x(a), we have

tan
(
θ/2 + tan−1 a

)
=

tan x

tanh(x/a)
(14)

and

cosh δ(a, v(a)) =
a2 cosh(2x/a) + cos 2x

1 + a2
. (15)

For the first limit, start with values of a that are small enough so that if a ↓ 0,
then tan(θ/2 + tan−1 a) ↓ tan(θ/2). In case θ is an odd multiple of π, take
tan(θ/2) = −∞. Then, after restricting to a level curve of θ, we claim that
x = x(a) is bounded below for these small values of a. Once this is known, then
as a → 0+,

cosh δ(a, v(a)) ≈ a2 exp(2x/a)/2 + cos 2x

1 + a2
≈ a2 exp(2x/a)/2 → +∞,

and the first limit is proved.
To prove the claim, consider the case 0 < θ < π. If x = x(a) is not bounded

below, then there is a sequence {an} with an ↓ 0 so that x(an) → 0. But then,
since tan x/ tanh(x/a) = tan(θ/2 + tan−1 a) ↓ tan(θ/2) 6= 0, using (14), it would
follow that tanh(x(an)/an) → 0. This would also mean that

tan x(an)

tanh(x(an)/an))
≈ x(an)

x(an)/an

= an → 0 6= tan(θ/2),

a contradiction. So the claim is true for 0 < θ < π.
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Figure 3: Contour plot for θ = θ(a, x) where x = v
√

a/2

For the case θ ≥ π, the claim follows from the previous case and from the fact,
shown above, that θ(a, x) increases with x for any fixed value of a. In particular,
suppose there is a sequence {an} with an ↓ 0 and xθ(an) → 0, where xθ = xθ(a)
is defined using the level curve corresponding to a fixed θ ≥ π. For the same
sequence, one has xθ′(an) < xθ(an) for any 0 < θ′ < π, since θ = θ(a, x) increases
with x. This then means that xθ′(an) → 0, contradicting the claim for the previous
case.

For the second limit, start with values of a that are large enough so that if a ↑ ∞,
then tan(θ/2 + tan−1 a) ↑ tan((θ + π)/2). In case θ is an even multiple of π, take
tan((θ+π)/2) = +∞. Then, on the level curve of θ, we claim x = x(a) is bounded
above for these large values of a. Once this is known, then as a → +∞,

cosh δ(a, v(a)) =
a2 cosh(2x/a) + cos 2x

1 + a2
≈ a2 · 1

a2
→ 1,

and the second limit is proved. The claim follows from the following observation
– if a ↑ ∞, the left hand side of (14) increases to tan((θ + π)/2) while x = x(a)
varies continuously with respect to a. So for (14) to remain true as a ↑ ∞, it is
necessary that x remains bounded between consecutive odd multiples of π/2. (If
x increases past an odd multiple of π/2, then the right hand side of (14) jumps
from +∞ to −∞.) So x(a) is bounded. �

Remark. A further analysis reveals that as a → 0+ one has x(a) = θ/2 + ε(a)
where ε(a) → 0. This is also apparent (up to scaling) from the contour plot of
θ = θ(a, x) given in Figure 3.

Furthermore, we find that as a → +∞ one has x(a) = bθ/(2π)e · π + ε(a) where
ε(a) → 0 and where d · e is the ceiling function. This, too, is apparent (up to
scaling) from the plot given in Figure 3.

We now establish a context in which the logarithmic spirals are global maxi-
mizers of inversive arclength.

Proposition 3. Suppose γ is a three times differentiable curve from p to q that
has decreasing curvature, κ. Suppose the amount of winding of the tangent vector
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along γ is ∆φ =
∫

γ
κ ds, and suppose γ has curvature κp > 0 at p and κq > 0 at

q. If L(γ) denotes the inversive length of γ, then

L(γ)2 ≤ ∆φ · log(κp/κq).

There is equality if and only if γ is a rotated and translated image of the logarithmic
spiral r ∈ [s, t] → reia log r/(1 + ia), where

a = ∆φ/ log(κp/κq), s = a/κp, and t = a/κq. (16)

Remark. Since γ has decreasing curvature and κq > 0, the curvature of γ must
always be positive. It follows that ∆φ > 0. Moreover, since κp > κq, it also
follows that a > 0 and 0 < s < t.

Proof. We use the following version of the Hölder inequality. (See Hardy,
Littlewood, and Pólya [4, p. 140].) Let 0 < k < 1 or k < 0, and let 1/k+1/k′ = 1.
If f ≥ 0 and g ≥ 0, then(∫

fk

)1/k (∫
gk′
)1/k′

≤
∫

fg,

with equality if and only if fk = c·gk′
for some constant c, or if f or g is identically

zero. In our application, both f and g will be nonzero.
First, define constants a, s, t > 0 using (16), and let r ∈ [s, l] → κ(r) be the

curvature function for γ using r as the arclength parameter. Assume that r = s
and r = l correspond to p ∈ γ and q ∈ γ, respectively. Then, applying the Hölder
inequality with k = 1/2, k′ = −1, f(r) = |κ′(r)| = −κ′(r), and g(r) = r, we find

L(γ)2 ·
(∫ l

s

1

r
dr

)−1

≤
∫ l

s

−κ′(r) · r dr = −r · κ(r)
∣∣l
s

+

∫ l

s

κ(r) dr

= −l · κ(l) + s · κ(s) + ∆φ = −l · a

t
+ a + a log

t

s
.

We conclude that

L(γ)2 ≤ log
l

s
·
(
−l · a

t
+ a + a log

t

s

)
, (17)

with equality if and only if |κ′(r)|1/2 = c/r for all r and for some constant c.

Next we claim that

log
l

s
·
(
− l

t
+ 1 + log

t

s

)
≤
(

log
t

s

)2

with equality if and only if l = t. For this we use s ≤ l < ∞, and we replace s and
t with u = log(l/s) ≥ 0 and v = log(t/s) ≥ 0. Then also eu = l/s and ev = t/s,
and the claim says

u
(
−eu−v + 1 + v

)
≤ v2,
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with equality if and only if u = v. Now the function u → u(−eu−v + 1 + v) has
value 0 at u = 0, and approaches −∞ as u → +∞. Its only critical point is where

(−eu−v + 1 + v) + u(−eu−v) = 0 ⇐⇒ ev(1 + v) = eu(1 + u) ⇐⇒ u = v.

Since the value of this function at u = v is v2, the claim is proved.

Combining (17) with the claim, we have

L(γ)2 =

(∫ l

s

|κ′(r)|1/2 dr

)2

≤ a

(
log

t

s

)2

= ∆φ · log(κp/κq), (18)

with equality if and only if both

i) l = t, and

ii) |κ′(r)|1/2 = c/r for constant c.

But these conditions, along with equality in (18), require first that c =
√

a and
then κ′(r) = −a/r2. Since also κ(s) = κp = a/s, it follows after integrating that
κ(r) = a/r for all r. This is exactly the curvature equation for the spiral defined
in the proposition, so we are done. �

We come finally to the proof of Theorem 2, which uses both Proposition 2 and
Proposition 3. The only complication is to check that in a normalized setting,
the θ invariant determines the amount of winding of the tangent vector. This
technical aspect of the proof uses a continuity argument.
Proof. [Proof of Theorem 2] Suppose that γ is a curve from p to q that has
decreasing curvature and γ∗ is the loxodromic arc that connects the same circle
elements and has the same θ invariant as γ. After a translation and rotation, we
may assume that γ starts at p = 0, and the tangent vector there has angle φp = 0.
Then after a further Möbius transformation we may also assume that γ∗ is the
logarithmic spiral that has the arclength parameterization

z : r ∈ [1, s] → z(r) = (reia log r − 1)/(1 + ia) (19)

for certain a > 0, s > 1. The curvature functions for γ and γ∗ are then not only
decreasing, but also positive, since γ∗ has positive curvature at z(s). We will show
that the tangent vectors of γ and γ∗ have the same amount of winding. After this,
Theorem 2 follows immediately from Proposition 3.

To do this, we construct a family of loxodromic arcs and use a continuity
argument. Let d = dq′ > 0 be a continuous function of q′ ∈ γ such that dp =
|κ′p/a|1/4 and dq = 1. (We will soon specify the function d.) Here, κ′p is the
derivative of the curvature function for γ taken with respect to arclength and
evaluated at p. Then, for q′ 6= p, d = dq′ determines a loxodromic arc γ∗q′ as
follows:

1. Let θ = θq′ > 0 be the θ invariant of the subarc γq′ ⊂ γ that connects p to
q′.

2. Using the (fixed) value of a > 0 determined by γ∗ in (19), the value θq′

determines a value v = vq′ > 0 as in the proof of surjectivity in Lemma 7.
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3. Define s = sq′ > 1 according to vq′ =
√

a log sq′ . The parameters a and sq′

then determine a logarithmic spiral z = zq′ as in (19).

4. Let µ = µq′ be the Möbius transformation µ = d−1z/(cz + d) where d = dq′ ,

and where c = cq′
def
= (dq′)−1 − dz(s)−1 for d = dq′ , z = zq′ , s = s′q.

5. Let γ∗q′ be the loxodromic arc γ∗q′ = µq′ ◦ zq′ . The inversive length of γ∗q′ is
vq′ and its θ invariant is θq′ .

Using this construction, the arc γ∗q′ connects the same line elements as the subarc
γq′ ⊂ γ, and it also has the same θ invariant. Moreover, each parameter θ, v,
s, and c varies continuously with respect to q′ ∈ γ, except that c = cq′ may not
extend continuously at q′ = p. Moreover, as q′ → p, one has θ → 0, v → 0, and
s → 1. Finally, the condition dp = |κ′p/a|1/4 ensures the estimate cq′ = o(1/|q′|)
for q′ near p, and the condition dq = 1 ensures that cq = 0, µq = z, and γ∗q = γ∗.

Next, for a particular choice of d = dq′ , we claim that the amount of winding
of the tangent vector for γ∗q′ varies continuously with q′ 6= p and approaches zero
as q′ → p. Evidently this is true for the amount of winding for γq′ , and as well, the
amount of winding for γ∗q′ must agree with the amount of winding for γq′ except
for possibly a multiple of 2π. Once the claim is proved, then, the two amounts
must be equal for all q′ 6= p. In particular, this is true for q′ = q, and the theorem
follows.

To establish the claim, we first express the curvature of γ∗q′ using a computation
like the one from Lemma 6. The arclength parameter for γ∗q′ , call it u, is related
to the arclength parameter for zq′ according to du/dr = |cz(r) + d|−2 for c = cq′ ,
z = zq′ , and d = dq′ . Then the curvature of γ∗q′ at µq′ ◦ zq′(r) is given by

d2(µ ◦ z)

du2

i · d(µ ◦ z)

du

=

d

dr

(
cz + d

cz + d

dz

dr

)
i · 1

(cz + d)2

dz

dr

= −2 Im
[
cz′(r)(cz(r) + d)

]
+ |cz(r) + d|2 · a

r
, (20)

and the amount of winding of the tangent vector for γ∗q′ is given by∫ s

1

(
−2 Im

[
cz′(r)(cz(r) + d)

]
+ |cz(r) + d|2 · a

r

)
· du

dr
dr (21)

=

∫ s

1

(
−2 Im

[
cz′(r)

cz(r) + d

]
+

a

r

)
dr

= −2 arg [cz(s) + d] + 2 arg d + a log s = −2 arg [z(s)/q′] + a log s.

The parameters in the two integrals, namely s, c, and d, vary continuously with
respect to q′, so the first part of the claim is proved once we show that cz(r)+d 6= 0
for 1 ≤ r ≤ s.

For this, we choose the function d = dq′ that makes the curvature of γ∗q′ at
q′ agree with the curvature of γq′ at q′. This curvature is positive, and since γ∗q′

has decreasing curvature, it then follows that γ∗q′ must have everywhere positive
curvature. From (20), it then follows that cz(r) + d 6= 0 for 1 ≤ r ≤ s.
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To find d, let κ = κq′ denote the curvature of γq′ at q′. Then, after the
substitutions cz(s) + d = (dq′)−1z(s) and c = (dq′)−1 − dz(s)−1 in (20), we find

d2
q′ =

|z(s)|2 · a/s− 2 Im [z′(s)z(s)]

κq′|q′|2 − 2 Im [q′ · z′(s)z(s)/z(s)]

=
1

1 + a2

2 sin (a log s) + a(1/s− s)

κq′|q′|2 − 2 Im
[
q′ e−iθ

] . (22)

The numerator in the second expression for d2 is always negative. To see this,
substitute y = log s and use the inequality −a sinh y + sin(ay) < 0 for y > 0,
established during the proof of Lemma 7. The denominator is also negative. This
arises from the fact that the circle elements at the endpoints of γq′ are properly
nested. In particular, the circle centered at q′ + ieiφq′/κq′ = q′ + ie−iθq′/(q′κq′)
with radius 1/κq′ must enclose the origin.

We mention that since s = sq′ , κ = κq′ , and θ = θq′ are continuous, it follows
that d = dq′ > 0 defined in (22) is well-defined and continuous. Furthermore,
if q′ = q, then z(s) = q and κ = a/s, since γ∗ and γ connect the same circle
elements. So we conclude from the first expression for d2 that dq = 1. For the
behavior as q′ → p, we estimate

a (1/s− s) + 2 sin(a log s)

1 + a2
= −a

3
(s−1)3 + O((s−1)4)

= − v3

3
√

a
+ O(v4)

= −(6θ)3/2

3
√

a
+ O(θ2) = −

(−κ′p)
3/2s̃3

3
√

a
+ o(s̃3). (23)

Here, the third estimate is gotten by expanding (8) to find v = v(θ), and the
last estimate is gotten by expanding the right hand side of (1) in terms of the
Euclidean length s̃ = s̃q′ of the arc γ = γq′ . A similar estimate gives

κq′|q′|2 − 2 Im
[
q′e−iθ

]
= κq′|q′|2 − 2 Im

[
q′eiφq′

]
=

κ′ps̃
3

3
+ o(s̃3),

so that d2
q′ = |κ′p/a|1/2 + o(1) as q′ → p.

We have yet to establish that the amount of winding in (21) approaches zero
as q′ → p. Using the same estimates as in (23), we find that s = sq′ and s̃ = s̃q′

are related by

s− 1 =
v√
a

+ O(v2) =

√
6θ√
a

+ O(θ) =

∣∣∣∣κ′pa
∣∣∣∣1/2

s̃ + o(s̃),

so

c =
1

d

(
1

q′
− d2

z(s)

)
=

1

d

(
1

s̃
−
∣∣∣∣κ′pa
∣∣∣∣1/2

1

s− 1
+ o

(
1

s−1

))

= o

(
1

s̃

)
= o

(
1

s−1

)
.
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Then, since |z′(r)| = 1 and cz(r) = o((s − 1)−1) · O(s − 1) = o(1) for 1 ≤ r ≤ s,
we find∣∣∣∣∫ s

1

(
−2 Im

[
cz′(r)

cz(r) + d

]
+

a

r

)
dr

∣∣∣∣ ≤ 2

∫ s

1

∣∣∣∣ cz′(r)

cz(r) + d

∣∣∣∣ dr + a log s

= 2(s− 1) · o
(

1

s−1

)
·O(1) + a ·O(s− 1) = o(1)

for s → 1+, and the theorem is proved. �

6. Further observations

Here we write down two observations that are related to what has already been
established.

6.1.

The function θ = θγ(p, q
′) is an increasing (resp., decreasing) function of q′ ∈ γ

from p to q provided γ has decreasing (resp., increasing) curvature.

Proof. Assume that γ connects p to q and has decreasing curvature. If s is the
arclength parameter for γ, then dθ/ds at q′ ∈ γ depends on nothing beyond the
second order information of γ at q′. Let γq′ ⊂ γ be the subarc that connects p to
q′, and let γ∗q′ be the loxodromic arc that connects the same circle elements as γq′

and has the same θ invariant as γq′ . Along γ∗q′ , the quantity dθ/ds∗ is positive,
where s∗ is the arclength parameter for γ∗q′ . Since γq′ and γ∗q′ have the same second
order information at q′, it must then be true that dθ/ds is positive for γ at q′. So
the claim is proved. �

6.2.

For arcs with monotone curvature that connect the same line elements and have
the same θ invariant (no restriction on second order information), the inversive
arclength can be made arbitrarily large or small.

Proof. This is evident even within the family of loxodromic arcs. In particular,
on a level curve of θ = θ(a, v) we have seen that θ(a, v)/2 . x . dθ(a, v)/2πeπ
where x = v

√
a/2. See Figure 3. This means that the inversive length of the

loxodromic arc is comparable to θ/
√

a. This can be made arbitrarily large by
choosing a small, and it can be made arbitrarily small by choosing a large. So the
claim is proved. �
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