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Abstract. For every k ≥ 2, we construct a dissection of a square into
finitely many topological discs, each having a piecewise k times differ-
entiable boundary, such that images of these pieces under appropriate
maps of the group Aff+ of orientation preserving affine transformations
of the plane form a dissection of a circular disc. The dissections consist
of six pieces in the case k = 2 and of 14 pieces for every k ≥ 3.
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1. Introduction and results

Motivated by Tarski’s set theoretical circle squaring problem (see [6]), Dubins,
Hirsch, and Karush have shown that a circular disc cannot be dissected into finitely
many topological discs such that images of these pieces under suitable Euclidean
motions form a dissection of a square (see [1]). In contrast with that, positive
results are possible if the group of Euclidean motions is replaced by appropriate
other groups of affine transformations. In [2] one can find first observations of
that kind including a circle squaring result based on the group of homotheties.
We recall the corresponding definitions.
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A topological disc D ⊆ R2 is the image of the closed unit disc of the Euclidean
plane under a homeomorphism of the plane onto itself. We denote the set of all
topological discs by D0. Let Dr be the family of all D ∈ D0 whose boundary is
rectifiable in the sense that its one-dimensional Hausdorff measure is finite. The
class Dc contains all D ∈ D0 whose boundary splits into finitely many subarcs
each being a subset of the boundary of some convex topological disc. More-
over, Dk, k ∈ {1, 2, . . .}, is to denote the class of all D ∈ D0 whose boundaries
are finite unions of k times continuously differentiable closed subarcs. Similarly,
D∞ includes all discs whose boundaries split into a finite number of infinitely
differentiable arcs. (In the end-points of an arc one has to consider one-sided
differentiability.) Note that D∞ 6=

⋂
k∈NDk. Indeed, the convex hull of the graph

of f : [−1, 0] → R, f(x) =
∑∞

i=1
1
i!
(max{x + 2−i, 0})i, belongs to

⋂
k∈NDk \ D∞,

since the restrictions f |[−1,−2−1], f |[−2−1,−2−2], . . . , f |[−2−(k−1),−2−k], and f |[−2−k,0] are
k times continuously differentiable, but f is not k times differentiable at the points
−2−1,−2−2, . . . ,−2−k.

A disc D ∈ D0 is said to be dissected into the pieces D1, . . . , Dn ∈ D0 if
D = D1 ∪ · · · ∪Dn and int(Di) ∩ int(Dj) = ∅ for 1 ≤ i < j ≤ n.

Given a group G of affine transformations of R2, two discs D, E ∈ D0 are
called congruent by dissection with respect to G if there exist an integer n ≥ 1
and dissections of D and E into subdiscs D1, . . . , Dn ∈ D0 and E1, . . . , En ∈ D0,
respectively, such that Di and Ei are congruent with respect to G, 1 ≤ i ≤ n
(that is; Ei = γi(Di) with some γi ∈ G).

The paper [3] is devoted to the question if (or under what conditions) two discs
of a class D ∈ {D0,Dr,D1,D2} admit a congruence by dissection with respect to
one of the groups Isom (isometries), Aff1 (equiaffine maps), Hot (homotheties),
Sim (similarities), Aff+ (affine transformations preserving the orientation), or
Aff (general affine transformations) such that all pieces of dissection belong to
D.

The main results of [4, 5] comprise the following: Given a subgroup G of Aff ,
any two discs from D0 are congruent by dissection with respect to G if and only
if G contains a contraction and every orbit G(x), x ∈ R2, is dense in R2. In this
case any two discs from D0 admit a congruence by dissection realized by only
three pieces of dissection from D0. The number three is minimal in general, in
particular for the circle squaring problem. The same are true if D0 is replaced by
Dr.

The situation is more difficult if one considers dissections into discs with piece-
wise continuously differentiable boundaries (see [3]): A congruence by dissection
of a circular disc and a square with respect to Sim cannot be realized with pieces
of dissection exclusively from D1. But for any two discs from D1 there exists a
congruence by dissection with respect to Aff+ whose pieces of dissection are from
D1. Although the last general statement becomes false if D1 is replaced by D2,
there exists a solution of the circle squaring problem with respect to Aff+ based
on pieces of dissection from D2, more specifically even from D2 ∩ Dc. This is
shown in [2]. However, there one uses a large number of pieces (about 100). In
the present paper we improve this result in two directions.



C. Richter: Affine Congruence by Dissection of Square and Circle 425

.........

.........

..........
..........
..........
..........
...........
............

.............
...............

...................
...............................

............................................................................

r

r
r

(1, 0)

(1,
√

3)

(
− 1

2
,
√

3
2

)
Θ

r

rrαγt(Θ)

γt(Θ)

(1, 1)

(a, b)

(a2, b2)

t+α−1(t)

t−

α(t)

t

Figure 1. Proof of Lemma 1

Theorem 1. There is a congruence by dissection of a square S and a circular
disc C with respect to the group Aff+ realized by only six pieces of dissection from
D2 ∩ Dc.

Theorem 2. For every k ≥ 3, there is a congruence by dissection of a square
S and a circular disc C with respect to the group Aff+ realized by 14 pieces of
dissection from Dk.

It is shown in [4] that any congruence by dissection of a square and a circular
disc with respect to Aff requires at least three pieces of dissection, even if the
pieces are allowed to be arbitrary topological discs. We do not know if the number
six given in Theorem 1 is optimal if the dissections are restricted to pieces from
D2 ∩Dc. In contrast with that, we expect that a refined analysis of the following
proof of Theorem 2 would allow a reduction of the number 14 to 13.

The question for an affine congruence by dissection of a square and a circular
disc with pieces exclusively from

⋂
k∈NDk or even from D∞ remains open. We

conjecture that such realizations do not exist.

2. Proof of Theorem 1

Lemma 1. Let 0 < b < a < 1 and let α : R2 → R2, α(x, y) = (ax, by). Then
there exists an arc Γ between (a, b) and (1, 1) with the following properties:

(i) Γ is the image of Θ =
{
(cos(ϕ), sin(ϕ)) : 0 ≤ ϕ ≤ 2π

3

}
under a map from

Aff+.

(ii) Γ is the graph of a strictly increasing convex function f : [a, 1] → [b, 1] whose

slope in the point (1, 1) is less than a(1−b)
b(1−a)

.

(iii) Γ ∪ α(Γ) is a twice continuously differentiable arc.

Proof. Let t be a straight line through (a, b) such that (1, 1) and (a2, b2) belong
to the same open half plane generated by t (see Figure 1).

The lines t and α−1(t) have an intersection point in the interior of the triangle

4((a, b), (1, b), (1, 1)). We find γt ∈ Aff+ such that γt(1, 0) = (a, b), γt

(
− 1

2
,
√

3
2

)
=

(1, 1), and γt(1,
√

3) is the intersection point of t and α−1(t). Then γt(Θ) is an arc
between (a, b) and (1, 1) that certainly satisfies (i) and the first part of (ii). The
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slope of γt(Θ) in (1, 1) agrees with that of the tangent α−1(t). Since the slope
of t is strictly less than that of the straight line t+ through (a, b) and (1, 1), the
slope of α−1(t) is less then that of α−1(t+). Passing through (1, 1) and (a−1, b−1),

α−1(t+) has a slope of b−1−1
a−1−1

= a(1−b)
b(1−a)

. This gives the second part of (ii).

The arcs γt(Θ) and αγt(Θ) have the end-point (a, b) in common. Since α−1(t)
is the tangent of γt(Θ) at (1, 1), t = αα−1(t) is the tangent of αγt(Θ) at the point
(a, b) = α(1, 1). So γt(Θ) and αγt(Θ) have the same tangent t in the common
end-point; that is, the arc γt(Θ) ∪ αγt(Θ) is continuously differentiable.

The arc γt(Θ) would satisfy condition (iii) if the curvatures κ0(t) of γt(Θ)
and κ1(t) of αγt(Θ) at the point (a, b) would agree. This is not the case in
general. If t approaches the extremal position t+ then κ0(t) tends to zero. If t
is sufficiently close to t+, there exists a neighbourhood Ut of (a, b) such that the
elliptic disc E containing γt(Θ) in its boundary covers the part Ut ∩ α(E) of the
disc α(E) associated with αγt(Θ). Hence κ0(t) ≤ κ1(t) if t is close to t+. Similarly,
κ0(t) ≥ κ1(t) if t approaches the other extremal position t−, which is the straight
line through (a, b) and (a2, b2). By the Intermediate Value Theorem there is a
position t0 of the tangent t such that κ0(t0) = κ1(t0). Hence the arc Γ = γt0(Θ)
satisfies (iii). �

Corollary 1. Let a, b, α, and Γ be as in Lemma 1 and suppose that b < a2. Then
∆ = {(0, 0)} ∪

⋃∞
i=0 αi(Γ) is a twice continuously differentiable arc between (0, 0)

and (1, 1) that is the graph of a strictly increasing convex function g : [0, 1] → [0, 1]
and is contained in the triangle 4

(
(0, 0), (1, 1),

(
a−b
a−ab

, 0
))

.

Proof. The arcs αi(Γ), i = 0, 1, 2, . . . , are graphs of the increasing convex
functions gi(x) = bif(a−ix) : [ai+1, ai] → [bi+1, bi] with gi(a

i+1) = bi+1 and
gi(a

i) = bi. Since limi→∞[ai+1, ai] × [bi+1, bi] = {(0, 0)} in the Hausdorff dis-
tance, ∆ = {(0, 0)} ∪

⋃∞
i=0 αi(Γ) is the graph of a strictly increasing continuous

function g : [0, 1] → [0, 1] with g(0) = 0 and g(1) = 1. By claim (iii) of the lemma,
αi+1(Γ) ∪ αi(Γ) is a twice continuously differentiable arc for all i ≥ 0. So ∆ is
twice continuously differentiable in all points apart from (0, 0). This proves in
particular the convexity of g, because all functions gi are convex.

By (i) and (ii), there is a bound r > 0 such that |f ′(x)| ≤ r and |f ′′(x)| ≤ r for

all x ∈ [a, 1]. Hence |g′i(x)| = bi

ai |f ′(a−ix)| ≤
(

b
a

)i
r and |g′′i (x)| = bi

a2i |f ′′(a−ix)| ≤(
b
a2

)i
r for i ≥ 0, x ∈ [ai+1, ai]. The assumptions b < a and b < a2 yield

limi→∞
(

b
a

)i
= limi→∞

(
b
a2

)i
= 0 and give limx↓0 g′(x) = limx↓0 g′′(x) = 0 and

g′(0) = g′′(0) = 0. Hence ∆ is twice continuously differentiable in (0, 0), too.
Since ∆ is the graph of an increasing differentiable convex function, it is

contained in the triangle whose vertices are the end-points (0, 0) and (1, 1) of
∆ and the intersection point of the tangents t0 and t1 of ∆ in (0, 0) and (1, 1),
respectively. We replace t1 by the straight line t∗1 through (1, 1) of the slope
a(1−b)
b(1−a)

. By (ii), the slope of t∗1 exceeds that of t1. Therefore the replacement of
t1 by t∗1 leads to a triangle covering the previous one. The third vertex of the
enlarged triangle is

(
a−b
a−ab

, 0
)
, because the slope of t0 is g′(0) = 0. This yields

∆ ⊆ 4
(
(0, 0), (1, 1),

(
a−b
a−ab

, 0
))

. �
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Lemma 2. Let b = −1+
√

5
2

and let a, c ∈ R be such that the numbers

p = 2a+(1−
√

5)a2+(3−
√

5)(c−1)
2c

and q = (6−2
√

5)a2+(1−
√

5)a3+(7−3
√

5)(c−1)

2a2+(1−
√

5)a3c+(3−
√

5)(c−1)

are well-defined and coincide. Then there exists an affine map β : R2 → R2

satisfying β(ai) = bi, i = 1, 2, 3, 4, where

a1 = (1− c, 1), a2 = (1, 1), a3 = (a2, b2), a4 = (a, b),

b1 =
(

a2−b2(1−c)
1−b2

, 0
)
, b2 = (a3c, 0), b3 = (a2, b2), b4 = (a3, b3).

Proof. The vectors −−→a1a2 = (c, 0) and −−→a1a3 = (a2 + c − 1, b2 − 1) are linearly
independent, for c 6= 0 and b2 − 1 6= 0. Hence there is an affine map β : R2 → R2

such that β(ai) = bi, i = 1, 2, 3. The relations −−→a1a4 = p−−→a1a2 + b−−→a1a3,
−−→
b1b4 =

q
−−→
b1b2 + b

−−→
b1b3, and p = q yield β(a4) = b4. (The numbers p and q as well as

the following particular value of c were found by the aid of the computer algebra
system Maple 9.01.) �

An example of numbers a, b, c satisfying all assumptions of the lemmas and the
corollary are

a = 4
5

= 0.8, b = −1+
√

5
2

= 0.61803 . . . , and

c = 1
6400

(
4809− 1281

√
5 +

√
17699286− 5344658

√
5
)

= 0.67846 . . . .

We fix these values for the further constructions and illustrations. (Other choices
of a and c are possible.)

Since 0 < a−b
a−ab

< c, the triangle 4
(
(0, 0), (1, 1),

(
a−b
a−ab

, 0
))

is a subset of the
parallelogram P with the vertices (0, 0), (c, 0), (1, 1), and (1− c, 1). Hence, by the
corollary, the arc ∆ = {(0, 0)} ∪

⋃∞
i=0 αi(Γ) is contained in P (see Figure 2).
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Figure 2. Dissections of the parallelogram P and the triangle T
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We obtain a dissection

P = P1 ∪ P2 ∪ P3 ∪ P4 ∪ P5 ∪ P6

of P into the discs Pi = conv(αi−1(Γ)), i = 1, 2, 3, the disc P4 bounded by ∆ and
the polygonal arc (0, 0), (c, 0), (1, 1), the disc P5 bounded by {(0, 0)} ∪

⋃∞
i=3 αi(Γ)

and the polygonal arc (0, 0), (1− c, 1), (a2, b2), (a3, b3), and the quadrangle P6 with
the vertices (1− c, 1), (1, 1), (a, b), and (a2, b2).

The triangle T = 4
(
(0, 0), (1−c, 1),

(
a2−b2(1−c)

1−b2
, 0

))
splits into P5, into α3(P4),

which is the disc bounded by {(0, 0)} ∪
⋃∞

i=3 αi(Γ) = α3(∆) and the polygonal

arc (0, 0), (a3c, 0), (a3, b3) = α3
(

(0, 0), (c, 0), (1, 1)
)
, and into the quadrangle with

the vertices
(a2−b2(1−c)

1−b2
, 0

)
, (a3c, 0), (a3, b3), and (a2, b2) (see the dotted lines in

Figure 2). By Lemma 2, there is an affine map β such that the last quadrangle
can be written as β(P6). The particular choice of a and c yields β ∈ Aff+. Thus
we have the dissection

T = α3(P4) ∪ P5 ∪ β(P6) with α, β ∈ Aff+.

We come to the claim of the theorem (see Figure 3).
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Figure 3. The constructed congruence by dissection

The square S can be represented as S = γ(P ) with γ ∈ Aff+. This gives the
dissection

S = γ(P1) ∪ γ(P2) ∪ γ(P3) ∪ γ(P4) ∪ γ(P5) ∪ γ(P6) with γ ∈ Aff+.

The circular disc C is dissected into an equilateral triangle, that can be expressed
as δ(T ) with δ ∈ Aff+, and into three discs Ci, i = 1, 2, 3, each of which being
the convex hull of a circular arc covering an angle of size 2π

3
. By Lemma 1 (i), the

discs Pi = conv(αi−1(Γ)) and the discs Ci, i = 1, 2, 3, are congruent with respect
to Aff+. We pick ηi ∈ Aff+ such that Ci = ηi(Pi), i = 1, 2, 3. Using this and the
above representation of T we obtain the dissection of C = C1 ∪ C2 ∪ C3 ∪ δ(T )
into

C = η1(P1)∪ η2(P2)∪ η3(P3)∪ δα3(P4)∪ δ(P5)∪ δβ(P6) with α, β, δ, ηi ∈ Aff+.
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The boundaries of the pieces Pi, i = 1, . . . , 6, split into finitely many line seg-
ments, elliptic arcs, and affine images of ∆. The corollary shows that ∆ is twice
continuously differentiable and convex, as well as the line segments and the elliptic
arcs are. This proves Theorem 1.

3. Proof of Theorem 2

Lemma 3. For every k ≥ 1, there exist numbers 0 < a < a1 < a2 < a3 < a4 < 1
and 0 < b < ak and a strictly increasing and infinitely differentiable function
f : [a, 1] → [b, 1] with the following properties:

(i) f(a) = b, f(1) = 1, af ′(a) = bf ′(1), f (l)(a) = f (l)(1) = 0 for all l ≥ 2.

(ii) The graph Γ0 of f |[a3,a4] and the arc Θ =
{
(cos(ϕ), sin(ϕ)) : 0 ≤ ϕ ≤ 2π

3
}

are congruent with respect to Aff+.

(iii) The arc Γ0 and the line segment Λ0 = (a3, f(a3))(a4, f(a4)) bound a disc D0

situated below Λ0.

(iv) The graph Γ+ of f |[a4,1] and the line segment Λ+ = (a4, f(a4))(1, f(1)) bound
a disc D+ situated above Λ+.

(v) The graph Γ− of f |[a2,a3] and the line segment Λ− = (a2, f(a2))(a3, f(a3))
bound a disc D− situated above Λ−.

(vi) The graph Γ− of f |[a1,a2] and the line segment Λ− = (a1, f(a1))(a2, f(a2))
bound a disc D− situated below Λ− and congruent with D− with respect to
Aff+.

(vii) The graph Γ+ of f |[a,a1] and the line segment Λ+ = (a, f(a))(a1, f(a1)) bound
a disc D+ situated below Λ+ and congruent with D+ with respect to Aff+.

(viii) The segments Λ+, Λ0, Λ−, and Λ− are subsets of the tangent of f at the point
(1, 1).

(ix) The segment Λ+ is a subset of the tangent of f at the point (a, b).

Proof. The graph of h0 :
[
−

√
3

2
,
√

3
2

]
→ R, h(x) = 1

2
−
√

1− x2, can be described
as Σ0 =

{(
cos(ϕ), sin(ϕ) + 1

2

)
: 7π

6
≤ ϕ ≤ 11π

6

}
and therefore is congruent with Θ

(see Figure 4).
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Let h+ :
[√

3
2

, 2
]
→ R be a function with h+

(√
3

2

)
= h+(2) = 0, h+

((√
3

2
, 2

))
⊆

(0,∞), h′+
([√

3
2

, 2
])
⊆

(
−

√
3

5
,∞

)
, and h

(l)
+ (2) = 0, l ≥ 1, such that h0 and h+

together form an infinitely differentiable function on
[
−

√
3

2
, 2

]
. A reflection of the

graph Σ+ of h+ with respect to the vertical axis yields the graph Σ− of a function

h− on
[
−2,−

√
3

2

]
such that h−, h0, and h+ together are an infinitely differentiable

function.
Let Σ∗

+ and Σ∗
− be the images of Σ+ and Σ− under the rotation

(x, y) 7→
(
− 1

2
x−

√
3

2
y +

√
3

4
,
√

3
2

x− 1
2
y + 3

4

)
(with center

(
0, 1

2

)
and angle 2π

3
) and its inverse

(x, y) 7→
(
− 1

2
x +

√
3

2
y −

√
3

4
,−

√
3

2
x− 1

2
y + 3

4

)
,

respectively. Then Σ∗
+ ∪ Σ∗

− is infinitely differentiable, because its differential
behaviour at

(
0, 3

2

)
coincides with that of the unit circle centered at

(
0, 1

2

)
. Next

we apply the map (x, y) 7→
(√

3x,
√

3
3

y
)

to obtain Σ∗∗
+ ∪ Σ∗∗

− . Then we use

(x, y) 7→
(√

3
2

x + 1
2
y − 4 +

√
3

4
,−1

2
x +

√
3

2
y − 3

4

)
(a rotation mapping the right-hand end-point of Σ∗∗

− onto (−2, 0) and
(
0,

√
3

2

)
onto(

− 4 +
√

3
2

, 0
)
) and arrive at Σ+ ∪ Σ−.

The resulting arc Σ = Σ0 ∪ Σ+ ∪ Σ− ∪ Σ+ ∪ Σ− is infinitely differentiable,
because all derivatives of the subarcs Σ− and Σ− at the common point (−2, 0)
vanish. Note that Σ is the graph of a function h. This is obvious for Σ0∪Σ+∪Σ−.
The arc Σ+ is obtained from Σ+ by the map

(x, y) 7→
(
− 1

2
x− 5

√
3

6
y − 4 + 3

√
3

4
,
√

3
2

x + 1
2
y − 3

4

)
.

The slope of Σ+ in the image of a point (x, h+(x)) ∈ Σ+ is given by the deriva-

tive
d
(√

3
2

x+ 1
2
h+(x)− 3

4

)
d
(
− 1

2
x− 5

√
3

6
h+(x)−4+ 3

√
3

4

) =

√
3

2
+ 1

2
h′+(x)

− 1
2
− 5

√
3

6
h′+(x)

. This derivative has no singularities,

because we have chosen h′+(x) > −
√

3
5

. Therefore Σ+ describes a function. Simi-

larly, Σ− is obtained from Σ+ by

(x, y) 7→
(
x + 2

√
3

3
y − 4,−y

)
.

The derivative d(−h+(x))

d
(

x+ 2
√

3
3

h+(x)−4
) =

−h′+(x)

1+ 2
√

3
3

h′+(x)
is not singular, for h′+(x) > −

√
3

2
.

Now we pick a map % ∈ Aff+ transforming Σ into the graph of strictly in-
creasing and infinitely differentiable function h% : [0, 1] → [0, 1] with h%(0) = 0,
h%(1) = 1, and 0 < h′%(0) < h′%(1). (One fixes a straight line l0 through the left-

hand end-point
(
− 5 + 3

√
3

4
,−3

4
+
√

3
)

of Σ whose slope is less than minx h′(x)
and a straight line l1 through the right-hand end-point (2, 0) of Σ with a slope

larger than maxx h′(x). Then one defines % by %
(
− 5 + 3

√
3

4
,−3

4
+
√

3
)

= (0, 0),
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%(2, 0) = (1, 1), and %(l0 ∩ l1) = {(1, 0)}. The result is illustrated in the left-hand
part of Figure 5. The dotted lines are the tangents at (0, 0) and (1, 1).

r r
r

r
r

r

q
0

q
1

q1

%(Σ)

r r
r

r
r

r

q
0

q
1

q1

q
a

q
a1

q
a2

q
a3

q
a4

qb

D+

D0

D−

D−
D+

Γ+

Γ0

Γ−

Γ−
Γ+

Figure 5. End of the proof of Lemma 3

Finally, we fix 0 < b < a < 1 such that ah′%(0) = bh′%(1) and b < ak. Application of
the map σ(x, y) = ((1−a)x+a, (1−b)y+b) to %(Σ) yields the graph σ%(Σ) of the
strictly increasing and infinitely differentiable function f : [a, 1] → [b, 1], f(x) =
(1−b)h%

(
x−a
1−a

)
+b. We obtain f(a) = (1−b)h%(0)+b = b, f(1) = (1−b)h%(1)+b = 1,

and af ′(a) = a 1−b
1−a

h′%(0) = b 1−b
1−a

h′%(1) = bf ′(1). The derivatives f (l)(a) and f (l)(1)
vanish for all l ≥ 2, because in certain neighbourhoods of (a, b) and (1, 1) the
graph of f is an affine image of the graph of h+ close to (2, 0) and all derivatives

h
(l)
+ (2) are zero.

The other claims of the lemma follow easily. The right-hand part of Figure 5
shows the final situation. (The illustration is highly simplified in order to improve
the visibility of the curved arcs.) �

Corollary 2. Let α : R2 → R2, α(x, y) = (ax, by), and let Γ be the graph of f ,
a, b, f being chosen as in Lemma 3. Then ∆ = {(0, 0)} ∪

⋃∞
i=0 αi(Γ) is the graph

of a k times continuously differentiable function g : [0, 1] → [0, 1].

Proof. The arcs αi(Γ) describe the functions gi(x) = bif(a−ix) : [ai+1, ai] →
[bi+1, bi]. Consecutive functions fit continuously together, because gi+1(a

i+1) =
bi+1 = gi(a

i+1). Hence ∆ is the graph of a continuous function g : [0, 1] → [0, 1].
The functions gi are infinitely differentiable, because f is. Property (i) yields in
particular

g′i(a
i+1) = bi

ai f
′(a) = bi+1

ai+1 f
′(1) = g′i+1(a

i+1) and

g
(l)
i (ai+1) = bi

ali f
(l)(a) = 0 = bi+1

al(i+1) f
(l)(1) = g

(l)
i+1(a

i+1) for l ≥ 2.

Thus g is infinitely differentiable on (0, 1].
Since f is infinitely differentiable, there exists a bound r such that |f (l)(x)| < r

for x ∈ [a, 1], l ∈ {1, . . . , k}. Consequently,
∣∣g(l)

i (x)
∣∣ =

(
b
al

)i∣∣f (l)(a−ix)
∣∣ <

(
b
al

)i
r

for x ∈ [ai+1, ai], l ∈ {1, . . . , k}, and in turn g(l)(0) = limx↓0 g(l)(x) = 0, l ∈
{1, . . . , k}, because 0 < b < ak ≤ al. This is the claimed smoothness at 0. �
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Figure 6. The dissections of a square and a circular disc

We come to the proof of Theorem 2. Given k ≥ 3, we apply Lemma 3 and
Corollary 2. Then the square S, say S = [0, 1]2 without loss of generality, admits
the following dissection

S = S1 ∪ · · · ∪ S14

(see Figure 6):

Si = αi−1(D0) for i = 1, 2, 3, Si = αi−4
(
D−

)
for i = 4, 5, 6, and Si = αi−7

(
D+

)
for i = 7, 8, 9. The boundary of S10 consists of the polygonal arc (0, 0)(1, 0)(1, 1)
and ∆.
S11 is bounded by {(0, 0)}∪

⋃∞
i=3 αi(Γ) = α3(∆), (a3, b3)α2(a1, f(a1))α2(a2, f(a2)),

α2(Γ−), α2(a3, f(a3))α2(a4, f(a4)), α2(Γ+), and (a2, b2)α(a1, f(a1))(0, 1)(0, 0).
The boundary of the disc S12 splits into the arcs
(a, b)(a1, f(a1))(0, 1)α(a1, f(a1))α(a2, f(a2)), α(Γ−), α(a3, f(a3))α(a4, f(a4)), and
α(Γ+). S13 is the triangle 4

(
(0, 1)(a1, f(a1))

(
1
2
, 1

))
. The disc S14 is bounded by

(1, 1)
(

1
2
, 1

)
(a1, f(a1))(a2, f(a2)), Γ−, (a3, f(a3))(a4, f(a4)), and Γ+.

Let (c, 0) be the intersection point of the horizontal axis with the straight line
through (0, 1) and α(a1, f(a1)). The triangle T = 4((0, 0)(c, 0)(0, 1)) is dissected



C. Richter: Affine Congruence by Dissection of Square and Circle 433

into
T = α3(S10) ∪ S11 ∪ α2(D+) ∪ α2(D−) ∪ P (1)

where P is the non-convex pentagon with the vertices (a3, 0), (c, 0), α(a1, f(a1)),
α2(a1, f(a1)), and (a3, b3) = α2(a, b) (see the dotted lines in Figure 6). The
triangles conv(S12) and conv(S14) admit the dissections

conv(S12) = S12 ∪ α(D+) ∪ α(D−), conv(S14) = S14 ∪D+ ∪D−. (2)

We split P into three triangles η12(conv(S12)), η13(S13), and η14(conv(S14)) with
η12, η13, η14 ∈ Aff+. Using (2) we can refine the dissection (1) to

T = α3(S10) ∪ S11 ∪ α2(D+) ∪ α2(D−) ∪ η12(S12) ∪ η12α(D+)∪
∪ η12α(D−) ∪ η13(S13) ∪ η14(S14) ∪ η14(D+) ∪ η14(D−).

By Lemma 3 (vi) and (vii), the discs Si = αi−4
(
D−

)
, i = 4, 5, 6, and Si =

αi−7
(
D+

)
, i = 7, 8, 9, can be written as S4 = η−1

4 α2(D−), S5 = η−1
5 η12α(D−),

S6 = η−1
6 η14(D−), S7 = η−1

7 α2(D+), S8 = η−1
8 η12α(D+), and S9 = η−1

9 η14(D+)
with appropriate η4, . . . , η9 ∈ Aff+. This yields

T =
⋃9

i=4 ηi(Si) ∪ α3(S10) ∪ S11 ∪
⋃14

i=12 ηi(Si). (3)

As in the proof of Theorem 1, we dissect the circular disc C into an inscribed
equilateral triangle, that we express as δ(T ) with δ ∈ Aff+, and into three discs
Ci, i = 1, 2, 3, each of which being the convex hull of a circular arc covering an
angle of size 2π

3
. By Lemma 3 (ii), the discs Ci and the discs Si = αi−1(D0) =

αi−1(conv(Γ0)), i = 1, 2, 3, are congruent with respect to Aff+. We pick ηi ∈ Aff+

such that Ci = ηi(Si), i = 1, 2, 3. Using this and (3) we obtain the final dissection
of C = C1 ∪ C2 ∪ C3 ∪ δ(T ) into

C =
⋃3

i=1 ηi(Si) ∪
⋃9

i=4 δηi(Si) ∪ δα3(S10) ∪ δ(S11) ∪
⋃14

i=12 δηi(Si),

where α, δ, ηi ∈ Aff+. Corollary 2 implies that all pieces Si belong to Dk. This
completes the proof.

We would like to remind that the arc ∆ is infinitely differentiable in all points
apart from (0, 0) (see the proof of Corollary 2). So the discs S1, . . . , S9, S12, S13, S14

belong to D∞ and S10, S11 are “not far” from D∞.
We finally remark that the congruence by dissection of S and C uses a piece-

wise congruence of the quadrangle conv(S12) ∪ S13 ∪ conv(S14) with the pen-
tagon P ⊆ S (dotted in Figure 6). This is essentially realized by the three
triangles conv(S12), S13, conv(S14) and by their images η12(conv(S12)), η13(S13),
η14(conv(S14)), respectively. By a good use of the freedom in the construction of
∆, one could probably obtain a situation where a congruence by dissection of the
quadrangle and the pentagon can be realized by the aid of two pieces. This should
be the key to a congruence by dissection of S and C based on 13 pieces only.
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