Squaring the Circle via Affine Congruence by Dissection with Smooth Pieces

Christian Richter*
Mathematisches Institut, Friedrich-Schiller-Universität
D-07737 Jena, Germany
e-mail:richterc@minet.uni-jena.de

Abstract

For every $k \geq 2$, we construct a dissection of a square into finitely many topological discs, each having a piecewise k times differentiable boundary, such that images of these pieces under appropriate maps of the group $\mathbf{A f f}_{+}$of orientation preserving affine transformations of the plane form a dissection of a circular disc. The dissections consist of six pieces in the case $k=2$ and of 14 pieces for every $k \geq 3$.

MSC 2000: 52B45
Keywords: squaring the circle, congruence by dissection, topological disc with piecewise smooth boundary, affine transformation

1. Introduction and results

Motivated by Tarski's set theoretical circle squaring problem (see [6]), Dubins, Hirsch, and Karush have shown that a circular disc cannot be dissected into finitely many topological discs such that images of these pieces under suitable Euclidean motions form a dissection of a square (see [1]). In contrast with that, positive results are possible if the group of Euclidean motions is replaced by appropriate other groups of affine transformations. In [2] one can find first observations of that kind including a circle squaring result based on the group of homotheties. We recall the corresponding definitions.

[^0]0138-4821/93 \$ 2.50 © 2007 Heldermann Verlag

A topological disc $D \subseteq \mathbb{R}^{2}$ is the image of the closed unit disc of the Euclidean plane under a homeomorphism of the plane onto itself. We denote the set of all topological discs by \mathcal{D}^{0}. Let \mathcal{D}^{r} be the family of all $D \in \mathcal{D}^{0}$ whose boundary is rectifiable in the sense that its one-dimensional Hausdorff measure is finite. The class \mathcal{D}^{c} contains all $D \in \mathcal{D}^{0}$ whose boundary splits into finitely many subarcs each being a subset of the boundary of some convex topological disc. Moreover, $\mathcal{D}^{k}, k \in\{1,2, \ldots\}$, is to denote the class of all $D \in \mathcal{D}^{0}$ whose boundaries are finite unions of k times continuously differentiable closed subarcs. Similarly, \mathcal{D}^{∞} includes all discs whose boundaries split into a finite number of infinitely differentiable arcs. (In the end-points of an arc one has to consider one-sided differentiability.) Note that $\mathcal{D}^{\infty} \neq \bigcap_{k \in \mathbb{N}} \mathcal{D}^{k}$. Indeed, the convex hull of the graph of $f:[-1,0] \rightarrow \mathbb{R}, f(x)=\sum_{i=1}^{\infty} \frac{1}{i!}\left(\max \left\{x+2^{-i}, 0\right\}\right)^{i}$, belongs to $\bigcap_{k \in \mathbb{N}} \mathcal{D}^{k} \backslash \mathcal{D}^{\infty}$, since the restrictions $\left.f\right|_{\left[-1,-2^{-1}\right]},\left.f\right|_{\left[-2^{-1},-2^{-2}\right]}, \ldots,\left.f\right|_{\left[-2^{\left.-(k-1),-2^{-k}\right]}\right.}$, and $\left.f\right|_{\left[-2^{-k}, 0\right]}$ are k times continuously differentiable, but f is not k times differentiable at the points $-2^{-1},-2^{-2}, \ldots,-2^{-k}$.

A disc $D \in \mathcal{D}^{0}$ is said to be dissected into the pieces $D_{1}, \ldots, D_{n} \in \mathcal{D}^{0}$ if $D=D_{1} \cup \cdots \cup D_{n}$ and $\operatorname{int}\left(D_{i}\right) \cap \operatorname{int}\left(D_{j}\right)=\emptyset$ for $1 \leq i<j \leq n$.

Given a group \mathbf{G} of affine transformations of \mathbb{R}^{2}, two discs $D, E \in \mathcal{D}^{0}$ are called congruent by dissection with respect to \mathbf{G} if there exist an integer $n \geq 1$ and dissections of D and E into subdiscs $D_{1}, \ldots, D_{n} \in \mathcal{D}^{0}$ and $E_{1}, \ldots, E_{n} \in \mathcal{D}^{0}$, respectively, such that D_{i} and E_{i} are congruent with respect to $\mathbf{G}, 1 \leq i \leq n$ (that is; $E_{i}=\gamma_{i}\left(D_{i}\right)$ with some $\gamma_{i} \in \mathbf{G}$).

The paper [3] is devoted to the question if (or under what conditions) two discs of a class $\mathcal{D} \in\left\{\mathcal{D}^{0}, \mathcal{D}^{r}, \mathcal{D}^{1}, \mathcal{D}^{2}\right\}$ admit a congruence by dissection with respect to one of the groups Isom (isometries), Aff ${ }_{1}$ (equiaffine maps), Hot (homotheties), Sim (similarities), Aff ${ }_{+}$(affine transformations preserving the orientation), or Aff (general affine transformations) such that all pieces of dissection belong to \mathcal{D}.

The main results of $[4,5]$ comprise the following: Given a subgroup G of Aff, any two discs from \mathcal{D}^{0} are congruent by dissection with respect to \mathbf{G} if and only if \mathbf{G} contains a contraction and every orbit $\mathbf{G}(\mathfrak{x}), \mathfrak{x} \in \mathbb{R}^{2}$, is dense in \mathbb{R}^{2}. In this case any two discs from \mathcal{D}^{0} admit a congruence by dissection realized by only three pieces of dissection from \mathcal{D}^{0}. The number three is minimal in general, in particular for the circle squaring problem. The same are true if \mathcal{D}^{0} is replaced by \mathcal{D}^{r}.

The situation is more difficult if one considers dissections into discs with piecewise continuously differentiable boundaries (see [3]): A congruence by dissection of a circular disc and a square with respect to Sim cannot be realized with pieces of dissection exclusively from \mathcal{D}^{1}. But for any two discs from \mathcal{D}^{1} there exists a congruence by dissection with respect to $\mathbf{A f f}_{+}$whose pieces of dissection are from \mathcal{D}^{1}. Although the last general statement becomes false if \mathcal{D}^{1} is replaced by \mathcal{D}^{2}, there exists a solution of the circle squaring problem with respect to Aff_{+}based on pieces of dissection from \mathcal{D}^{2}, more specifically even from $\mathcal{D}^{2} \cap \mathcal{D}^{c}$. This is shown in [2]. However, there one uses a large number of pieces (about 100). In the present paper we improve this result in two directions.

Figure 1. Proof of Lemma 1

Theorem 1. There is a congruence by dissection of a square S and a circular disc C with respect to the group $\mathbf{A f f}_{+}$realized by only six pieces of dissection from $\mathcal{D}^{2} \cap \mathcal{D}^{c}$.

Theorem 2. For every $k \geq 3$, there is a congruence by dissection of a square S and a circular disc C with respect to the group Aff $_{+}$realized by 14 pieces of dissection from \mathcal{D}^{k}.

It is shown in [4] that any congruence by dissection of a square and a circular disc with respect to Aff requires at least three pieces of dissection, even if the pieces are allowed to be arbitrary topological discs. We do not know if the number six given in Theorem 1 is optimal if the dissections are restricted to pieces from $\mathcal{D}^{2} \cap \mathcal{D}^{c}$. In contrast with that, we expect that a refined analysis of the following proof of Theorem 2 would allow a reduction of the number 14 to 13 .

The question for an affine congruence by dissection of a square and a circular disc with pieces exclusively from $\bigcap_{k \in \mathbb{N}} \mathcal{D}^{k}$ or even from \mathcal{D}^{∞} remains open. We conjecture that such realizations do not exist.

2. Proof of Theorem 1

Lemma 1. Let $0<b<a<1$ and let $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \alpha(x, y)=(a x, b y)$. Then there exists an arc Γ between (a, b) and $(1,1)$ with the following properties:
(i) Γ is the image of $\Theta=\left\{(\cos (\varphi), \sin (\varphi)): 0 \leq \varphi \leq \frac{2 \pi}{3}\right\}$ under a map from Aff_{+}.
(ii) Γ is the graph of a strictly increasing convex function $f:[a, 1] \rightarrow[b, 1]$ whose slope in the point $(1,1)$ is less than $\frac{a(1-b)}{b(1-a)}$.
(iii) $\Gamma \cup \alpha(\Gamma)$ is a twice continuously differentiable arc.

Proof. Let t be a straight line through (a, b) such that $(1,1)$ and $\left(a^{2}, b^{2}\right)$ belong to the same open half plane generated by t (see Figure 1).
The lines t and $\alpha^{-1}(t)$ have an intersection point in the interior of the triangle $\triangle((a, b),(1, b),(1,1))$. We find $\gamma_{t} \in \mathbf{A f f}_{+}$such that $\gamma_{t}(1,0)=(a, b), \gamma_{t}\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)=$ $(1,1)$, and $\gamma_{t}(1, \sqrt{3})$ is the intersection point of t and $\alpha^{-1}(t)$. Then $\gamma_{t}(\Theta)$ is an arc between (a, b) and $(1,1)$ that certainly satisfies (i) and the first part of (ii). The
slope of $\gamma_{t}(\Theta)$ in $(1,1)$ agrees with that of the tangent $\alpha^{-1}(t)$. Since the slope of t is strictly less than that of the straight line t_{+}through (a, b) and $(1,1)$, the slope of $\alpha^{-1}(t)$ is less then that of $\alpha^{-1}\left(t_{+}\right)$. Passing through $(1,1)$ and $\left(a^{-1}, b^{-1}\right)$, $\alpha^{-1}\left(t_{+}\right)$has a slope of $\frac{b^{-1}-1}{a^{-1}-1}=\frac{a(1-b)}{b(1-a)}$. This gives the second part of (ii).

The arcs $\gamma_{t}(\Theta)$ and $\alpha \gamma_{t}(\Theta)$ have the end-point (a, b) in common. Since $\alpha^{-1}(t)$ is the tangent of $\gamma_{t}(\Theta)$ at $(1,1), t=\alpha \alpha^{-1}(t)$ is the tangent of $\alpha \gamma_{t}(\Theta)$ at the point $(a, b)=\alpha(1,1)$. So $\gamma_{t}(\Theta)$ and $\alpha \gamma_{t}(\Theta)$ have the same tangent t in the common end-point; that is, the arc $\gamma_{t}(\Theta) \cup \alpha \gamma_{t}(\Theta)$ is continuously differentiable.

The arc $\gamma_{t}(\Theta)$ would satisfy condition (iii) if the curvatures $\kappa_{0}(t)$ of $\gamma_{t}(\Theta)$ and $\kappa_{1}(t)$ of $\alpha \gamma_{t}(\Theta)$ at the point (a, b) would agree. This is not the case in general. If t approaches the extremal position t_{+}then $\kappa_{0}(t)$ tends to zero. If t is sufficiently close to t_{+}, there exists a neighbourhood U_{t} of (a, b) such that the elliptic disc E containing $\gamma_{t}(\Theta)$ in its boundary covers the part $U_{t} \cap \alpha(E)$ of the disc $\alpha(E)$ associated with $\alpha \gamma_{t}(\Theta)$. Hence $\kappa_{0}(t) \leq \kappa_{1}(t)$ if t is close to t_{+}. Similarly, $\kappa_{0}(t) \geq \kappa_{1}(t)$ if t approaches the other extremal position t_{-}, which is the straight line through (a, b) and $\left(a^{2}, b^{2}\right)$. By the Intermediate Value Theorem there is a position t_{0} of the tangent t such that $\kappa_{0}\left(t_{0}\right)=\kappa_{1}\left(t_{0}\right)$. Hence the arc $\Gamma=\gamma_{t_{0}}(\Theta)$ satisfies (iii).

Corollary 1. Let a, b, α, and Γ be as in Lemma 1 and suppose that $b<a^{2}$. Then $\Delta=\{(0,0)\} \cup \bigcup_{i=0}^{\infty} \alpha^{i}(\Gamma)$ is a twice continuously differentiable arc between $(0,0)$ and $(1,1)$ that is the graph of a strictly increasing convex function $g:[0,1] \rightarrow[0,1]$ and is contained in the triangle $\triangle\left((0,0),(1,1),\left(\frac{a-b}{a-a b}, 0\right)\right)$.
Proof. The arcs $\alpha^{i}(\Gamma), i=0,1,2, \ldots$, are graphs of the increasing convex functions $g_{i}(x)=b^{i} f\left(a^{-i} x\right):\left[a^{i+1}, a^{i}\right] \rightarrow\left[b^{i+1}, b^{i}\right]$ with $g_{i}\left(a^{i+1}\right)=b^{i+1}$ and $g_{i}\left(a^{i}\right)=b^{i}$. Since $\lim _{i \rightarrow \infty}\left[a^{i+1}, a^{i}\right] \times\left[b^{i+1}, b^{i}\right]=\{(0,0)\}$ in the Hausdorff distance, $\Delta=\{(0,0)\} \cup \bigcup_{i=0}^{\infty} \alpha^{i}(\Gamma)$ is the graph of a strictly increasing continuous function $g:[0,1] \rightarrow[0,1]$ with $g(0)=0$ and $g(1)=1$. By claim (iii) of the lemma, $\alpha^{i+1}(\Gamma) \cup \alpha^{i}(\Gamma)$ is a twice continuously differentiable arc for all $i \geq 0$. So Δ is twice continuously differentiable in all points apart from $(0,0)$. This proves in particular the convexity of g, because all functions g_{i} are convex.

By (i) and (ii), there is a bound $r>0$ such that $\left|f^{\prime}(x)\right| \leq r$ and $\left|f^{\prime \prime}(x)\right| \leq r$ for all $x \in[a, 1]$. Hence $\left|g_{i}^{\prime}(x)\right|=\frac{b^{i}}{a^{i}}\left|f^{\prime}\left(a^{-i} x\right)\right| \leq\left(\frac{b}{a}\right)^{i} r$ and $\left|g_{i}^{\prime \prime}(x)\right|=\frac{b^{i}}{a^{2 i}}\left|f^{\prime \prime}\left(a^{-i} x\right)\right| \leq$ $\left(\frac{b}{a^{2}}\right)^{i} r$ for $i \geq 0, x \in\left[a^{i+1}, a^{i}\right]$. The assumptions $b<a$ and $b<a^{2}$ yield $\lim _{i \rightarrow \infty}\left(\frac{b}{a}\right)^{i}=\lim _{i \rightarrow \infty}\left(\frac{b}{a^{2}}\right)^{i}=0$ and give $\lim _{x \downarrow 0} g^{\prime}(x)=\lim _{x \downarrow 0} g^{\prime \prime}(x)=0$ and $g^{\prime}(0)=g^{\prime \prime}(0)=0$. Hence Δ is twice continuously differentiable in $(0,0)$, too.

Since Δ is the graph of an increasing differentiable convex function, it is contained in the triangle whose vertices are the end-points $(0,0)$ and $(1,1)$ of Δ and the intersection point of the tangents t_{0} and t_{1} of Δ in $(0,0)$ and $(1,1)$, respectively. We replace t_{1} by the straight line t_{1}^{*} through $(1,1)$ of the slope $\frac{a(1-b)}{b(1-a)}$. By (ii), the slope of t_{1}^{*} exceeds that of t_{1}. Therefore the replacement of t_{1} by t_{1}^{*} leads to a triangle covering the previous one. The third vertex of the enlarged triangle is $\left(\frac{a-b}{a-a b}, 0\right)$, because the slope of t_{0} is $g^{\prime}(0)=0$. This yields $\Delta \subseteq \triangle\left((0,0),(1,1),\left(\frac{a-b}{a-a b}, 0\right)\right)$.

Lemma 2. Let $b=\frac{-1+\sqrt{5}}{2}$ and let $a, c \in \mathbb{R}$ be such that the numbers

$$
p=\frac{2 a+(1-\sqrt{5}) a^{2}+(3-\sqrt{5})(c-1)}{2 c} \quad \text { and } \quad q=\frac{(6-2 \sqrt{5}) a^{2}+(1-\sqrt{5}) a^{3}+(7-3 \sqrt{5})(c-1)}{2 a^{2}+(1-\sqrt{5}) a^{3} c+(3-\sqrt{5})(c-1)}
$$

are well-defined and coincide. Then there exists an affine map $\beta: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ satisfying $\beta\left(\mathfrak{a}_{i}\right)=\mathfrak{b}_{i}, i=1,2,3,4$, where

$$
\begin{array}{llll}
\mathfrak{a}_{1}=(1-c, 1), & \mathfrak{a}_{2}=(1,1), & \mathfrak{a}_{3}=\left(a^{2}, b^{2}\right), & \mathfrak{a}_{4}=(a, b), \\
\mathfrak{b}_{1}=\left(\frac{a^{2}-b^{2}(1-c)}{1-b^{2}}, 0\right), & \mathfrak{b}_{2}=\left(a^{3} c, 0\right), & \mathfrak{b}_{3}=\left(a^{2}, b^{2}\right), & \mathfrak{b}_{4}=\left(a^{3}, b^{3}\right) .
\end{array}
$$

Proof. The vectors $\overrightarrow{\mathfrak{a}_{1} \mathfrak{a}_{2}}=(c, 0)$ and $\overrightarrow{\mathfrak{a}_{1} \mathfrak{a}_{3}}=\left(a^{2}+c-1, b^{2}-1\right)$ are linearly independent, for $c \neq 0$ and $b^{2}-1 \neq 0$. Hence there is an affine map $\beta: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $\beta\left(\mathfrak{a}_{i}\right)=\mathfrak{b}_{i}, i=1,2,3$. The relations $\overrightarrow{\mathfrak{a}_{1} \mathfrak{a}_{4}}=p \overrightarrow{\mathfrak{a}_{1} \mathfrak{a}_{2}}+b \overrightarrow{\mathfrak{a}_{1} \mathfrak{a}_{3}}, \overrightarrow{\mathfrak{b}_{1} \mathfrak{b}_{4}}=$ $q \overrightarrow{\mathfrak{b}_{1} \mathfrak{b}_{2}}+b \overrightarrow{\mathfrak{b}_{1} \mathfrak{b}_{3}}$, and $p=q$ yield $\beta\left(\mathfrak{a}_{4}\right)=\mathfrak{b}_{4}$. (The numbers p and q as well as the following particular value of c were found by the aid of the computer algebra system Maple 9.01.)

An example of numbers a, b, c satisfying all assumptions of the lemmas and the corollary are

$$
\begin{gathered}
a=\frac{4}{5}=0.8, \quad b=\frac{-1+\sqrt{5}}{2}=0.61803 \ldots, \quad \text { and } \\
c=\frac{1}{6400}(4809-1281 \sqrt{5}+\sqrt{17699286-5344658 \sqrt{5}})=0.67846 \ldots
\end{gathered}
$$

We fix these values for the further constructions and illustrations. (Other choices of a and c are possible.)

Since $0<\frac{a-b}{a-a b}<c$, the triangle $\triangle\left((0,0),(1,1),\left(\frac{a-b}{a-a b}, 0\right)\right)$ is a subset of the parallelogram P with the vertices $(0,0),(c, 0),(1,1)$, and $(1-c, 1)$. Hence, by the corollary, the arc $\Delta=\{(0,0)\} \cup \bigcup_{i=0}^{\infty} \alpha^{i}(\Gamma)$ is contained in P (see Figure 2).

Figure 2. Dissections of the parallelogram P and the triangle T

We obtain a dissection

$$
P=P_{1} \cup P_{2} \cup P_{3} \cup P_{4} \cup P_{5} \cup P_{6}
$$

of P into the discs $P_{i}=\operatorname{conv}\left(\alpha^{i-1}(\Gamma)\right), i=1,2,3$, the disc P_{4} bounded by Δ and the polygonal arc $\overline{(0,0),(c, 0),(1,1)}$, the disc P_{5} bounded by $\{(0,0)\} \cup \bigcup_{i=3}^{\infty} \alpha^{i}(\Gamma)$ and the polygonal arc $\overline{(0,0),(1-c, 1),\left(a^{2}, b^{2}\right),\left(a^{3}, b^{3}\right)}$, and the quadrangle P_{6} with the vertices $(1-c, 1),(1,1),(a, b)$, and $\left(a^{2}, b^{2}\right)$.

The triangle $T=\triangle\left((0,0),(1-c, 1),\left(\frac{a^{2}-b^{2}(1-c)}{1-b^{2}}, 0\right)\right)$ splits into P_{5}, into $\alpha^{3}\left(P_{4}\right)$, which is the disc bounded by $\{(0,0)\} \cup \bigcup_{i=3}^{\infty} \alpha^{i}(\Gamma)=\alpha^{3}(\Delta)$ and the polygonal $\operatorname{arc} \overline{(0,0),\left(a^{3} c, 0\right),\left(a^{3}, b^{3}\right)}=\alpha^{3}(\overline{(0,0),(c, 0),(1,1)})$, and into the quadrangle with the vertices $\left(\frac{a^{2}-b^{2}(1-c)}{1-b^{2}}, 0\right),\left(a^{3} c, 0\right),\left(a^{3}, b^{3}\right)$, and $\left(a^{2}, b^{2}\right)$ (see the dotted lines in Figure 2). By Lemma 2, there is an affine map β such that the last quadrangle can be written as $\beta\left(P_{6}\right)$. The particular choice of a and c yields $\beta \in \mathbf{A f f}_{+}$. Thus we have the dissection

$$
T=\alpha^{3}\left(P_{4}\right) \cup P_{5} \cup \beta\left(P_{6}\right) \quad \text { with } \quad \alpha, \beta \in \mathbf{A f f}_{+} .
$$

We come to the claim of the theorem (see Figure 3).

Figure 3. The constructed congruence by dissection
The square S can be represented as $S=\gamma(P)$ with $\gamma \in$ Aff $_{+}$. This gives the dissection

$$
S=\gamma\left(P_{1}\right) \cup \gamma\left(P_{2}\right) \cup \gamma\left(P_{3}\right) \cup \gamma\left(P_{4}\right) \cup \gamma\left(P_{5}\right) \cup \gamma\left(P_{6}\right) \quad \text { with } \quad \gamma \in \mathbf{A f f}_{+} .
$$

The circular disc C is dissected into an equilateral triangle, that can be expressed as $\delta(T)$ with $\delta \in \mathbf{A f f}_{+}$, and into three discs $C_{i}, i=1,2,3$, each of which being the convex hull of a circular arc covering an angle of size $\frac{2 \pi}{3}$. By Lemma 1 (i), the discs $P_{i}=\operatorname{conv}\left(\alpha^{i-1}(\Gamma)\right)$ and the discs $C_{i}, i=1,2,3$, are congruent with respect to $\mathbf{A f f}_{+}$. We pick $\eta_{i} \in \mathbf{A f f}_{+}$such that $C_{i}=\eta_{i}\left(P_{i}\right), i=1,2,3$. Using this and the above representation of T we obtain the dissection of $C=C_{1} \cup C_{2} \cup C_{3} \cup \delta(T)$ into
$C=\eta_{1}\left(P_{1}\right) \cup \eta_{2}\left(P_{2}\right) \cup \eta_{3}\left(P_{3}\right) \cup \delta \alpha^{3}\left(P_{4}\right) \cup \delta\left(P_{5}\right) \cup \delta \beta\left(P_{6}\right) \quad$ with $\quad \alpha, \beta, \delta, \eta_{i} \in \mathbf{A f f}_{+}$.

The boundaries of the pieces $P_{i}, i=1, \ldots, 6$, split into finitely many line segments, elliptic arcs, and affine images of Δ. The corollary shows that Δ is twice continuously differentiable and convex, as well as the line segments and the elliptic arcs are. This proves Theorem 1.

3. Proof of Theorem 2

Lemma 3. For every $k \geq 1$, there exist numbers $0<a<a_{1}<a_{2}<a_{3}<a_{4}<1$ and $0<b<a^{k}$ and a strictly increasing and infinitely differentiable function $f:[a, 1] \rightarrow[b, 1]$ with the following properties:
(i) $f(a)=b, f(1)=1, a f^{\prime}(a)=b f^{\prime}(1), f^{(l)}(a)=f^{(l)}(1)=0$ for all $l \geq 2$.
(ii) The graph Γ_{0} of $\left.f\right|_{\left[a_{3}, a_{4}\right]}$ and the arc $\Theta=\left\{(\cos (\varphi), \sin (\varphi)): 0 \leq \varphi \leq \frac{2 \pi}{3}\right\}$ are congruent with respect to $\mathbf{A f f}_{+}$.
(iii) The arc Γ_{0} and the line segment $\Lambda_{0}=\overline{\left(a_{3}, f\left(a_{3}\right)\right)\left(a_{4}, f\left(a_{4}\right)\right)}$ bound a disc D_{0} situated below Λ_{0}.
(iv) The graph Γ_{+}of $\left.f\right|_{\left[a_{4}, 1\right]}$ and the line segment $\Lambda_{+}=\overline{\left(a_{4}, f\left(a_{4}\right)\right)(1, f(1))}$ bound a disc D_{+}situated above Λ_{+}.
(v) The graph Γ_{-}of $\left.f\right|_{\left[a_{2}, a_{3}\right]}$ and the line segment $\Lambda_{-}=\overline{\left(a_{2}, f\left(a_{2}\right)\right)\left(a_{3}, f\left(a_{3}\right)\right)}$ bound a disc D_{-}situated above Λ_{-}.
(vi) The graph $\bar{\Gamma}_{-}$of $\left.f\right|_{\left[a_{1}, a_{2}\right]}$ and the line segment $\bar{\Lambda}_{-}=\overline{\left(a_{1}, f\left(a_{1}\right)\right)\left(a_{2}, f\left(a_{2}\right)\right)}$ bound a disc \bar{D}_{-}situated below $\bar{\Lambda}_{-}$and congruent with D_{-}with respect to Aff_{+}.
(vii) The graph $\bar{\Gamma}_{+}$of $\left.f\right|_{\left[a, a_{1}\right]}$ and the line segment $\bar{\Lambda}_{+}=\overline{(a, f(a))\left(a_{1}, f\left(a_{1}\right)\right)}$ bound a disc \bar{D}_{+}situated below $\bar{\Lambda}_{+}$and congruent with D_{+}with respect to $\mathbf{A f f}_{+}$.
(viii) The segments $\Lambda_{+}, \Lambda_{0}, \Lambda_{-}$, and $\bar{\Lambda}_{-}$are subsets of the tangent of f at the point $(1,1)$.
(ix) The segment $\bar{\Lambda}_{+}$is a subset of the tangent of f at the point (a, b).

Proof. The graph of $h_{0}:\left[-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}\right] \rightarrow \mathbb{R}, h(x)=\frac{1}{2}-\sqrt{1-x^{2}}$, can be described as $\Sigma_{0}=\left\{\left(\cos (\varphi), \sin (\varphi)+\frac{1}{2}\right): \frac{7 \pi}{6} \leq \varphi \leq \frac{11 \pi}{6}\right\}$ and therefore is congruent with Θ (see Figure 4).

Figure 4. The $\operatorname{arc} \Sigma$

Let $h_{+}:\left[\frac{\sqrt{3}}{2}, 2\right] \rightarrow \mathbb{R}$ be a function with $h_{+}\left(\frac{\sqrt{3}}{2}\right)=h_{+}(2)=0, h_{+}\left(\left(\frac{\sqrt{3}}{2}, 2\right)\right) \subseteq$ $(0, \infty), h_{+}^{\prime}\left(\left[\frac{\sqrt{3}}{2}, 2\right]\right) \subseteq\left(-\frac{\sqrt{3}}{5}, \infty\right)$, and $h_{+}^{(l)}(2)=0, l \geq 1$, such that h_{0} and h_{+} together form an infinitely differentiable function on $\left[-\frac{\sqrt{3}}{2}, 2\right]$. A reflection of the graph Σ_{+}of h_{+}with respect to the vertical axis yields the graph Σ_{-}of a function h_{-}on $\left[-2,-\frac{\sqrt{3}}{2}\right]$ such that h_{-}, h_{0}, and h_{+}together are an infinitely differentiable function.

Let Σ_{+}^{*} and Σ_{-}^{*} be the images of Σ_{+}and Σ_{-}under the rotation

$$
(x, y) \mapsto\left(-\frac{1}{2} x-\frac{\sqrt{3}}{2} y+\frac{\sqrt{3}}{4}, \frac{\sqrt{3}}{2} x-\frac{1}{2} y+\frac{3}{4}\right)
$$

(with center $\left(0, \frac{1}{2}\right)$ and angle $\frac{2 \pi}{3}$) and its inverse

$$
(x, y) \mapsto\left(-\frac{1}{2} x+\frac{\sqrt{3}}{2} y-\frac{\sqrt{3}}{4},-\frac{\sqrt{3}}{2} x-\frac{1}{2} y+\frac{3}{4}\right)
$$

respectively. Then $\Sigma_{+}^{*} \cup \Sigma_{-}^{*}$ is infinitely differentiable, because its differential behaviour at $\left(0, \frac{3}{2}\right)$ coincides with that of the unit circle centered at $\left(0, \frac{1}{2}\right)$. Next we apply the map $(x, y) \mapsto\left(\sqrt{3} x, \frac{\sqrt{3}}{3} y\right)$ to obtain $\Sigma_{+}^{* *} \cup \Sigma_{-}^{* *}$. Then we use

$$
(x, y) \mapsto\left(\frac{\sqrt{3}}{2} x+\frac{1}{2} y-4+\frac{\sqrt{3}}{4},-\frac{1}{2} x+\frac{\sqrt{3}}{2} y-\frac{3}{4}\right)
$$

(a rotation mapping the right-hand end-point of $\Sigma_{-}^{* *}$ onto $(-2,0)$ and $\left(0, \frac{\sqrt{3}}{2}\right)$ onto $\left.\left(-4+\frac{\sqrt{3}}{2}, 0\right)\right)$ and arrive at $\bar{\Sigma}_{+} \cup \bar{\Sigma}_{-}$.

The resulting arc $\Sigma=\Sigma_{0} \cup \Sigma_{+} \cup \Sigma_{-} \cup \bar{\Sigma}_{+} \cup \bar{\Sigma}_{-}$is infinitely differentiable, because all derivatives of the subarcs Σ_{-}and $\bar{\Sigma}_{-}$at the common point $(-2,0)$ vanish. Note that Σ is the graph of a function h. This is obvious for $\Sigma_{0} \cup \Sigma_{+} \cup \Sigma_{-}$. The arc $\bar{\Sigma}_{+}$is obtained from Σ_{+}by the map

$$
(x, y) \mapsto\left(-\frac{1}{2} x-\frac{5 \sqrt{3}}{6} y-4+\frac{3 \sqrt{3}}{4}, \frac{\sqrt{3}}{2} x+\frac{1}{2} y-\frac{3}{4}\right) .
$$

The slope of $\bar{\Sigma}_{+}$in the image of a point $\left(x, h_{+}(x)\right) \in \Sigma_{+}$is given by the derivative $\frac{d\left(\frac{\sqrt{3}}{2} x+\frac{1}{2} h_{+}(x)-\frac{3}{4}\right)}{d\left(-\frac{1}{2} x-\frac{5 \sqrt{3}}{6} h_{+}(x)-4+\frac{3 \sqrt{3}}{4}\right)}=\frac{\frac{\sqrt{3}}{2}+\frac{1}{2} h_{+}^{\prime}(x)}{-\frac{1}{2}-\frac{5 \sqrt{3}}{6} h_{+}^{\prime}(x)}$. This derivative has no singularities, because we have chosen $h_{+}^{\prime}(x)>-\frac{\sqrt{3}}{5}$. Therefore $\bar{\Sigma}_{+}$describes a function. Similarly, $\bar{\Sigma}_{-}$is obtained from Σ_{+}by

$$
(x, y) \mapsto\left(x+\frac{2 \sqrt{3}}{3} y-4,-y\right) .
$$

The derivative $\frac{d\left(-h_{+}(x)\right)}{d\left(x+\frac{2 \sqrt{3}}{3} h_{+}(x)-4\right)}=\frac{-h_{+}^{\prime}(x)}{1+\frac{\sqrt{3} 3}{3} h_{+}^{\prime}(x)}$ is not singular, for $h_{+}^{\prime}(x)>-\frac{\sqrt{3}}{2}$.
Now we pick a map $\varrho \in \mathbf{A f f}_{+}$transforming Σ into the graph of strictly increasing and infinitely differentiable function $h_{\varrho}:[0,1] \rightarrow[0,1]$ with $h_{\varrho}(0)=0$, $h_{\varrho}(1)=1$, and $0<h_{\varrho}^{\prime}(0)<h_{\varrho}^{\prime}(1)$. (One fixes a straight line l_{0} through the lefthand end-point $\left(-5+\frac{3 \sqrt{3}}{4},-\frac{3}{4}+\sqrt{3}\right)$ of Σ whose slope is less than $\min _{x} h^{\prime}(x)$ and a straight line l_{1} through the right-hand end-point $(2,0)$ of Σ with a slope larger than $\max _{x} h^{\prime}(x)$. Then one defines ϱ by $\varrho\left(-5+\frac{3 \sqrt{3}}{4},-\frac{3}{4}+\sqrt{3}\right)=(0,0)$,
$\varrho(2,0)=(1,1)$, and $\varrho\left(l_{0} \cap l_{1}\right)=\{(1,0)\}$. The result is illustrated in the left-hand part of Figure 5. The dotted lines are the tangents at $(0,0)$ and $(1,1)$.

Figure 5. End of the proof of Lemma 3
Finally, we fix $0<b<a<1$ such that $a h_{\varrho}^{\prime}(0)=b h_{\varrho}^{\prime}(1)$ and $b<a^{k}$. Application of the map $\sigma(x, y)=((1-a) x+a,(1-b) y+b)$ to $\varrho(\Sigma)$ yields the graph $\sigma \varrho(\Sigma)$ of the strictly increasing and infinitely differentiable function $f:[a, 1] \rightarrow[b, 1], f(x)=$ $(1-b) h_{\varrho}\left(\frac{x-a}{1-a}\right)+b$. We obtain $f(a)=(1-b) h_{\varrho}(0)+b=b, f(1)=(1-b) h_{\varrho}(1)+b=1$, and $a f^{\prime}(a)=a \frac{1-b}{1-a} h_{\varrho}^{\prime}(0)=b \frac{1-b}{1-a} h_{\varrho}^{\prime}(1)=b f^{\prime}(1)$. The derivatives $f^{(l)}(a)$ and $f^{(l)}(1)$ vanish for all $l \geq 2$, because in certain neighbourhoods of (a, b) and $(1,1)$ the graph of f is an affine image of the graph of h_{+}close to $(2,0)$ and all derivatives $h_{+}^{(l)}(2)$ are zero.

The other claims of the lemma follow easily. The right-hand part of Figure 5 shows the final situation. (The illustration is highly simplified in order to improve the visibility of the curved arcs.)

Corollary 2. Let $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \alpha(x, y)=(a x, b y)$, and let Γ be the graph of f, a, b, f being chosen as in Lemma 3. Then $\Delta=\{(0,0)\} \cup \bigcup_{i=0}^{\infty} \alpha^{i}(\Gamma)$ is the graph of a k times continuously differentiable function $g:[0,1] \rightarrow[0,1]$.

Proof. The arcs $\alpha^{i}(\Gamma)$ describe the functions $g_{i}(x)=b^{i} f\left(a^{-i} x\right):\left[a^{i+1}, a^{i}\right] \rightarrow$ $\left[b^{i+1}, b^{i}\right]$. Consecutive functions fit continuously together, because $g_{i+1}\left(a^{i+1}\right)=$ $b^{i+1}=g_{i}\left(a^{i+1}\right)$. Hence Δ is the graph of a continuous function $g:[0,1] \rightarrow[0,1]$. The functions g_{i} are infinitely differentiable, because f is. Property (i) yields in particular

$$
\begin{array}{ll}
g_{i}^{\prime}\left(a^{i+1}\right)=\frac{b^{i}}{a^{i}} f^{\prime}(a)=\frac{b^{i+1}}{a^{i+1}} f^{\prime}(1)=g_{i+1}^{\prime}\left(a^{i+1}\right) & \text { and } \\
g_{i}^{(l)}\left(a^{i+1}\right)=\frac{b^{i}}{a^{i}} f^{(l)}(a)=0=\frac{b^{i+1}}{a^{(i+1)}} f^{(l)}(1)=g_{i+1}^{(l)}\left(a^{i+1}\right) & \text { for } l \geq 2 .
\end{array}
$$

Thus g is infinitely differentiable on $(0,1]$.
Since f is infinitely differentiable, there exists a bound r such that $\left|f^{(l)}(x)\right|<r$ for $x \in[a, 1], l \in\{1, \ldots, k\}$. Consequently, $\left|g_{i}^{(l)}(x)\right|=\left(\frac{b}{a^{l}}\right)^{i}\left|f^{(l)}\left(a^{-i} x\right)\right|<\left(\frac{b}{a^{l}}\right)^{i} r$ for $x \in\left[a^{i+1}, a^{i}\right], l \in\{1, \ldots, k\}$, and in turn $g^{(l)}(0)=\lim _{x \downarrow 0} g^{(l)}(x)=0, l \in$ $\{1, \ldots, k\}$, because $0<b<a^{k} \leq a^{l}$. This is the claimed smoothness at 0 .

Figure 6. The dissections of a square and a circular disc

We come to the proof of Theorem 2. Given $k \geq 3$, we apply Lemma 3 and Corollary 2. Then the square S, say $S=[0,1]^{2}$ without loss of generality, admits the following dissection

$$
S=S_{1} \cup \cdots \cup S_{14}
$$

(see Figure 6):
$S_{i}=\alpha^{i-1}\left(D_{0}\right)$ for $i=1,2,3, S_{i}=\alpha^{i-4}\left(\bar{D}_{-}\right)$for $i=4,5,6$, and $S_{i}=\alpha^{i-7}\left(\bar{D}_{+}\right)$
for $i=7,8,9$. The boundary of S_{10} consists of the polygonal arc $\overline{(0,0)(1,0)(1,1)}$ and Δ.
S_{11} is bounded by $\{(0,0)\} \cup \bigcup_{i=3}^{\infty} \alpha^{i}(\Gamma)=\alpha^{3}(\Delta), \overline{\left(a^{3}, b^{3}\right) \alpha^{2}\left(a_{1}, f\left(a_{1}\right)\right) \alpha^{2}\left(a_{2}, f\left(a_{2}\right)\right)}$, $\alpha^{2}\left(\Gamma_{-}\right), \overline{\alpha^{2}\left(a_{3}, f\left(a_{3}\right)\right) \alpha^{2}\left(a_{4}, f\left(a_{4}\right)\right)}, \alpha^{2}\left(\Gamma_{+}\right)$, and $\overline{\left(a^{2}, b^{2}\right) \alpha\left(a_{1}, f\left(a_{1}\right)\right)(0,1)(0,0)}$.
The boundary of the disc S_{12} splits into the arcs $\overline{(a, b)\left(a_{1}, f\left(a_{1}\right)\right)(0,1) \alpha\left(a_{1}, f\left(a_{1}\right)\right) \alpha\left(a_{2}, f\left(a_{2}\right)\right)}, \alpha\left(\Gamma_{-}\right), \overline{\alpha\left(a_{3}, f\left(a_{3}\right)\right) \alpha\left(a_{4}, f\left(a_{4}\right)\right)}$, and $\alpha\left(\Gamma_{+}\right) . S_{13}$ is the triangle $\triangle\left((0,1)\left(a_{1}, f\left(a_{1}\right)\right)\left(\frac{1}{2}, 1\right)\right)$. The disc S_{14} is bounded by $(1,1)\left(\frac{1}{2}, 1\right)\left(a_{1}, f\left(a_{1}\right)\right)\left(a_{2}, f\left(a_{2}\right)\right), \Gamma_{-}, \overline{\left(a_{3}, f\left(a_{3}\right)\right)\left(a_{4}, f\left(a_{4}\right)\right)}$, and Γ_{+}.

Let $(c, 0)$ be the intersection point of the horizontal axis with the straight line through $(0,1)$ and $\alpha\left(a_{1}, f\left(a_{1}\right)\right)$. The triangle $T=\triangle((0,0)(c, 0)(0,1))$ is dissected
into

$$
\begin{equation*}
T=\alpha^{3}\left(S_{10}\right) \cup S_{11} \cup \alpha^{2}\left(D_{+}\right) \cup \alpha^{2}\left(D_{-}\right) \cup P \tag{1}
\end{equation*}
$$

where P is the non-convex pentagon with the vertices $\left(a^{3}, 0\right),(c, 0), \alpha\left(a_{1}, f\left(a_{1}\right)\right)$, $\alpha^{2}\left(a_{1}, f\left(a_{1}\right)\right)$, and $\left(a^{3}, b^{3}\right)=\alpha^{2}(a, b)$ (see the dotted lines in Figure 6). The triangles conv $\left(S_{12}\right)$ and $\operatorname{conv}\left(S_{14}\right)$ admit the dissections

$$
\begin{equation*}
\operatorname{conv}\left(S_{12}\right)=S_{12} \cup \alpha\left(D_{+}\right) \cup \alpha\left(D_{-}\right), \quad \operatorname{conv}\left(S_{14}\right)=S_{14} \cup D_{+} \cup D_{-} \tag{2}
\end{equation*}
$$

We split P into three triangles $\eta_{12}\left(\operatorname{conv}\left(S_{12}\right)\right), \eta_{13}\left(S_{13}\right)$, and $\eta_{14}\left(\operatorname{conv}\left(S_{14}\right)\right)$ with $\eta_{12}, \eta_{13}, \eta_{14} \in \mathbf{A f f}_{+}$. Using (2) we can refine the dissection (1) to

$$
\begin{aligned}
T= & \alpha^{3}\left(S_{10}\right) \cup S_{11} \cup \alpha^{2}\left(D_{+}\right) \cup \alpha^{2}\left(D_{-}\right) \cup \eta_{12}\left(S_{12}\right) \cup \eta_{12} \alpha\left(D_{+}\right) \cup \\
& \cup \eta_{12} \alpha\left(D_{-}\right) \cup \eta_{13}\left(S_{13}\right) \cup \eta_{14}\left(S_{14}\right) \cup \eta_{14}\left(D_{+}\right) \cup \eta_{14}\left(D_{-}\right)
\end{aligned}
$$

By Lemma 3 (vi) and (vii), the discs $S_{i}=\alpha^{i-4}\left(\bar{D}_{-}\right), i=4,5,6$, and $S_{i}=$ $\alpha^{i-7}\left(\bar{D}_{+}\right), i=7,8,9$, can be written as $S_{4}=\eta_{4}^{-1} \alpha^{2}\left(D_{-}\right), S_{5}=\eta_{5}^{-1} \eta_{12} \alpha\left(D_{-}\right)$, $S_{6}=\eta_{6}^{-1} \eta_{14}\left(D_{-}\right), S_{7}=\eta_{7}^{-1} \alpha^{2}\left(D_{+}\right), S_{8}=\eta_{8}^{-1} \eta_{12} \alpha\left(D_{+}\right)$, and $S_{9}=\eta_{9}^{-1} \eta_{14}\left(D_{+}\right)$ with appropriate $\eta_{4}, \ldots, \eta_{9} \in \mathbf{A} \mathrm{ff}_{+}$. This yields

$$
\begin{equation*}
T=\bigcup_{i=4}^{9} \eta_{i}\left(S_{i}\right) \cup \alpha^{3}\left(S_{10}\right) \cup S_{11} \cup \bigcup_{i=12}^{14} \eta_{i}\left(S_{i}\right) \tag{3}
\end{equation*}
$$

As in the proof of Theorem 1, we dissect the circular disc C into an inscribed equilateral triangle, that we express as $\delta(T)$ with $\delta \in \mathbf{A f f}_{+}$, and into three discs $C_{i}, i=1,2,3$, each of which being the convex hull of a circular arc covering an angle of size $\frac{2 \pi}{3}$. By Lemma 3 (ii), the discs C_{i} and the discs $S_{i}=\alpha^{i-1}\left(D_{0}\right)=$ $\alpha^{i-1}\left(\operatorname{conv}\left(\Gamma_{0}\right)\right), i=1,2,3$, are congruent with respect to $\mathbf{A f f}_{+}$. We pick $\eta_{i} \in \mathbf{A f f}$ such that $C_{i}=\eta_{i}\left(S_{i}\right), i=1,2,3$. Using this and (3) we obtain the final dissection of $C=C_{1} \cup C_{2} \cup C_{3} \cup \delta(T)$ into

$$
C=\bigcup_{i=1}^{3} \eta_{i}\left(S_{i}\right) \cup \bigcup_{i=4}^{9} \delta \eta_{i}\left(S_{i}\right) \cup \delta \alpha^{3}\left(S_{10}\right) \cup \delta\left(S_{11}\right) \cup \bigcup_{i=12}^{14} \delta \eta_{i}\left(S_{i}\right)
$$

where $\alpha, \delta, \eta_{i} \in \mathbf{A f f}_{+}$. Corollary 2 implies that all pieces S_{i} belong to \mathcal{D}^{k}. This completes the proof.

We would like to remind that the arc Δ is infinitely differentiable in all points apart from $(0,0)$ (see the proof of Corollary 2). So the discs $S_{1}, \ldots, S_{9}, S_{12}, S_{13}, S_{14}$ belong to \mathcal{D}^{∞} and S_{10}, S_{11} are "not far" from \mathcal{D}^{∞}.

We finally remark that the congruence by dissection of S and C uses a piecewise congruence of the quadrangle $\operatorname{conv}\left(S_{12}\right) \cup S_{13} \cup \operatorname{conv}\left(S_{14}\right)$ with the pentagon $P \subseteq S$ (dotted in Figure 6). This is essentially realized by the three triangles conv $\left(S_{12}\right), S_{13}, \operatorname{conv}\left(S_{14}\right)$ and by their images $\eta_{12}\left(\operatorname{conv}\left(S_{12}\right)\right), \eta_{13}\left(S_{13}\right)$, $\eta_{14}\left(\operatorname{conv}\left(S_{14}\right)\right)$, respectively. By a good use of the freedom in the construction of Δ, one could probably obtain a situation where a congruence by dissection of the quadrangle and the pentagon can be realized by the aid of two pieces. This should be the key to a congruence by dissection of S and C based on 13 pieces only.

References

[1] Dubins, L.; Hirsch, M. W.; Karush, J.: Scissor congruence. Isr. J. Math. 1 (1963), 239-247.

Zbl 0171.43002
[2] Hertel, E.; Richter, C.: Squaring the circle by dissection. Beitr. Algebra Geom. 44 (2003), 47-55.

Zbl 1040.52006
[3] Richter, C.: Congruence by dissection of topological discs - An elementary approach to Tarski's circle squaring problem. Discrete Comput. Geom. 28 (2002), 427-442.

Zbl 1019.52009
[4] Richter, C.: The minimal number of pieces realizing affine congruence by dissection of topological discs. Period. Math. Hung. 46 (2003), 203-213.

Zbl 1049.52014
[5] Richter, C.: Affine congruence by dissection of discs - appropriate groups and optimal dissections. J. Geom. 84 (2005), 117-132.
$\underline{\text { Zbl pre05024128 }}$
[6] Tarski, A.: Problème 38, Fund. Math. 7 (1925), 381.

Received March 20, 2006

[^0]: *This research was supported by DFG grant RI 1087/3. The paper was written during an extended stay of the author at the Mathematical Institute of the University Paris VI.

