Squaring the Circle via Affine Congruence by Dissection with Smooth Pieces

Christian Richter*

Mathematisches Institut, Friedrich-Schiller-Universität D-07737 Jena, Germany e-mail:richterc@minet.uni-jena.de

Abstract. For every $k \ge 2$, we construct a dissection of a square into finitely many topological discs, each having a piecewise k times differentiable boundary, such that images of these pieces under appropriate maps of the group \mathbf{Aff}_+ of orientation preserving affine transformations of the plane form a dissection of a circular disc. The dissections consist of six pieces in the case k = 2 and of 14 pieces for every $k \ge 3$.

MSC 2000: 52B45

Keywords: squaring the circle, congruence by dissection, topological disc with piecewise smooth boundary, affine transformation

1. Introduction and results

Motivated by Tarski's set theoretical circle squaring problem (see [6]), Dubins, Hirsch, and Karush have shown that a circular disc cannot be dissected into finitely many topological discs such that images of these pieces under suitable Euclidean motions form a dissection of a square (see [1]). In contrast with that, positive results are possible if the group of Euclidean motions is replaced by appropriate other groups of affine transformations. In [2] one can find first observations of that kind including a circle squaring result based on the group of homotheties. We recall the corresponding definitions.

0138-4821/93 \$ 2.50 © 2007 Heldermann Verlag

^{*}This research was supported by DFG grant RI 1087/3. The paper was written during an extended stay of the author at the Mathematical Institute of the University Paris VI.

A topological disc $D \subseteq \mathbb{R}^2$ is the image of the closed unit disc of the Euclidean plane under a homeomorphism of the plane onto itself. We denote the set of all topological discs by \mathcal{D}^0 . Let \mathcal{D}^r be the family of all $D \in \mathcal{D}^0$ whose boundary is rectifiable in the sense that its one-dimensional Hausdorff measure is finite. The class \mathcal{D}^c contains all $D \in \mathcal{D}^0$ whose boundary splits into finitely many subarcs each being a subset of the boundary of some convex topological disc. Moreover, \mathcal{D}^k , $k \in \{1, 2, \ldots\}$, is to denote the class of all $D \in \mathcal{D}^0$ whose boundaries are finite unions of k times continuously differentiable closed subarcs. Similarly, \mathcal{D}^∞ includes all discs whose boundaries split into a finite number of infinitely differentiable arcs. (In the end-points of an arc one has to consider one-sided differentiability.) Note that $\mathcal{D}^\infty \neq \bigcap_{k\in\mathbb{N}} \mathcal{D}^k$. Indeed, the convex hull of the graph of $f : [-1,0] \to \mathbb{R}$, $f(x) = \sum_{i=1}^{\infty} \frac{1}{i!} (\max\{x+2^{-i},0\})^i$, belongs to $\bigcap_{k\in\mathbb{N}} \mathcal{D}^k \setminus \mathcal{D}^\infty$, since the restrictions $f|_{[-1,-2^{-1}]}, f|_{[-2^{-1},-2^{-2}]}, \ldots, f|_{[-2^{-(k-1)},-2^{-k}]}$, and $f|_{[-2^{-k},0]}$ are k times continuously differentiable, but f is not k times differentiable at the points $-2^{-1}, -2^{-2}, \ldots, -2^{-k}$.

A disc $D \in \mathcal{D}^0$ is said to be dissected into the pieces $D_1, \ldots, D_n \in \mathcal{D}^0$ if $D = D_1 \cup \cdots \cup D_n$ and $\operatorname{int}(D_i) \cap \operatorname{int}(D_j) = \emptyset$ for $1 \le i < j \le n$.

Given a group **G** of affine transformations of \mathbb{R}^2 , two discs $D, E \in \mathcal{D}^0$ are called *congruent by dissection with respect to* **G** if there exist an integer $n \ge 1$ and dissections of D and E into subdiscs $D_1, \ldots, D_n \in \mathcal{D}^0$ and $E_1, \ldots, E_n \in \mathcal{D}^0$, respectively, such that D_i and E_i are congruent with respect to **G**, $1 \le i \le n$ (that is; $E_i = \gamma_i(D_i)$ with some $\gamma_i \in \mathbf{G}$).

The paper [3] is devoted to the question if (or under what conditions) two discs of a class $\mathcal{D} \in {\mathcal{D}^0, \mathcal{D}^r, \mathcal{D}^1, \mathcal{D}^2}$ admit a congruence by dissection with respect to one of the groups **Isom** (isometries), **Aff**₁ (equiaffine maps), **Hot** (homotheties), **Sim** (similarities), **Aff**₊ (affine transformations preserving the orientation), or **Aff** (general affine transformations) such that all pieces of dissection belong to \mathcal{D} .

The main results of [4, 5] comprise the following: Given a subgroup \mathbf{G} of \mathbf{Aff} , any two discs from \mathcal{D}^0 are congruent by dissection with respect to \mathbf{G} if and only if \mathbf{G} contains a contraction and every orbit $\mathbf{G}(\mathbf{r}), \mathbf{r} \in \mathbb{R}^2$, is dense in \mathbb{R}^2 . In this case any two discs from \mathcal{D}^0 admit a congruence by dissection realized by only three pieces of dissection from \mathcal{D}^0 . The number three is minimal in general, in particular for the circle squaring problem. The same are true if \mathcal{D}^0 is replaced by \mathcal{D}^r .

The situation is more difficult if one considers dissections into discs with piecewise continuously differentiable boundaries (see [3]): A congruence by dissection of a circular disc and a square with respect to **Sim** cannot be realized with pieces of dissection exclusively from \mathcal{D}^1 . But for any two discs from \mathcal{D}^1 there exists a congruence by dissection with respect to **Aff**₊ whose pieces of dissection are from \mathcal{D}^1 . Although the last general statement becomes false if \mathcal{D}^1 is replaced by \mathcal{D}^2 , there exists a solution of the circle squaring problem with respect to **Aff**₊ based on pieces of dissection from \mathcal{D}^2 , more specifically even from $\mathcal{D}^2 \cap \mathcal{D}^c$. This is shown in [2]. However, there one uses a large number of pieces (about 100). In the present paper we improve this result in two directions.

Figure 1. Proof of Lemma 1

Theorem 1. There is a congruence by dissection of a square S and a circular disc C with respect to the group \mathbf{Aff}_+ realized by only six pieces of dissection from $\mathcal{D}^2 \cap \mathcal{D}^c$.

Theorem 2. For every $k \geq 3$, there is a congruence by dissection of a square S and a circular disc C with respect to the group \mathbf{Aff}_+ realized by 14 pieces of dissection from \mathcal{D}^k .

It is shown in [4] that any congruence by dissection of a square and a circular disc with respect to **Aff** requires at least three pieces of dissection, even if the pieces are allowed to be arbitrary topological discs. We do not know if the number six given in Theorem 1 is optimal if the dissections are restricted to pieces from $\mathcal{D}^2 \cap \mathcal{D}^c$. In contrast with that, we expect that a refined analysis of the following proof of Theorem 2 would allow a reduction of the number 14 to 13.

The question for an affine congruence by dissection of a square and a circular disc with pieces exclusively from $\bigcap_{k\in\mathbb{N}} \mathcal{D}^k$ or even from \mathcal{D}^∞ remains open. We conjecture that such realizations do not exist.

2. Proof of Theorem 1

Lemma 1. Let 0 < b < a < 1 and let $\alpha : \mathbb{R}^2 \to \mathbb{R}^2, \alpha(x, y) = (ax, by)$. Then there exists an arc Γ between (a, b) and (1, 1) with the following properties:

- (i) Γ is the image of $\Theta = \left\{ (\cos(\varphi), \sin(\varphi)) : 0 \le \varphi \le \frac{2\pi}{3} \right\}$ under a map from \mathbf{Aff}_+ .
- (ii) Γ is the graph of a strictly increasing convex function f : [a, 1] → [b, 1] whose slope in the point (1, 1) is less than ^{a(1-b)}/_{b(1-a)}.
- (iii) $\Gamma \cup \alpha(\Gamma)$ is a twice continuously differentiable arc.

Proof. Let t be a straight line through (a, b) such that (1, 1) and (a^2, b^2) belong to the same open half plane generated by t (see Figure 1).

The lines t and $\alpha^{-1}(t)$ have an intersection point in the interior of the triangle $\triangle((a, b), (1, b), (1, 1))$. We find $\gamma_t \in \mathbf{Aff}_+$ such that $\gamma_t(1, 0) = (a, b), \gamma_t\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right) = (1, 1)$, and $\gamma_t(1, \sqrt{3})$ is the intersection point of t and $\alpha^{-1}(t)$. Then $\gamma_t(\Theta)$ is an arc between (a, b) and (1, 1) that certainly satisfies (i) and the first part of (ii). The

slope of $\gamma_t(\Theta)$ in (1,1) agrees with that of the tangent $\alpha^{-1}(t)$. Since the slope of t is strictly less than that of the straight line t_+ through (a,b) and (1,1), the slope of $\alpha^{-1}(t)$ is less then that of $\alpha^{-1}(t_+)$. Passing through (1,1) and (a^{-1}, b^{-1}) , $\alpha^{-1}(t_+)$ has a slope of $\frac{b^{-1}-1}{a^{-1}-1} = \frac{a(1-b)}{b(1-a)}$. This gives the second part of (ii).

The arcs $\gamma_t(\Theta)$ and $\alpha \gamma_t(\Theta)$ have the end-point (a, b) in common. Since $\alpha^{-1}(t)$ is the tangent of $\gamma_t(\Theta)$ at (1, 1), $t = \alpha \alpha^{-1}(t)$ is the tangent of $\alpha \gamma_t(\Theta)$ at the point $(a, b) = \alpha(1, 1)$. So $\gamma_t(\Theta)$ and $\alpha \gamma_t(\Theta)$ have the same tangent t in the common end-point; that is, the arc $\gamma_t(\Theta) \cup \alpha \gamma_t(\Theta)$ is continuously differentiable.

The arc $\gamma_t(\Theta)$ would satisfy condition (iii) if the curvatures $\kappa_0(t)$ of $\gamma_t(\Theta)$ and $\kappa_1(t)$ of $\alpha\gamma_t(\Theta)$ at the point (a, b) would agree. This is not the case in general. If t approaches the extremal position t_+ then $\kappa_0(t)$ tends to zero. If t is sufficiently close to t_+ , there exists a neighbourhood U_t of (a, b) such that the elliptic disc E containing $\gamma_t(\Theta)$ in its boundary covers the part $U_t \cap \alpha(E)$ of the disc $\alpha(E)$ associated with $\alpha\gamma_t(\Theta)$. Hence $\kappa_0(t) \leq \kappa_1(t)$ if t is close to t_+ . Similarly, $\kappa_0(t) \geq \kappa_1(t)$ if t approaches the other extremal position t_- , which is the straight line through (a, b) and (a^2, b^2) . By the Intermediate Value Theorem there is a position t_0 of the tangent t such that $\kappa_0(t_0) = \kappa_1(t_0)$. Hence the arc $\Gamma = \gamma_{t_0}(\Theta)$ satisfies (iii).

Corollary 1. Let a, b, α , and Γ be as in Lemma 1 and suppose that $b < a^2$. Then $\Delta = \{(0,0)\} \cup \bigcup_{i=0}^{\infty} \alpha^i(\Gamma)$ is a twice continuously differentiable arc between (0,0) and (1,1) that is the graph of a strictly increasing convex function $g: [0,1] \to [0,1]$ and is contained in the triangle $\Delta((0,0), (1,1), (\frac{a-b}{a-ab}, 0))$.

Proof. The arcs $\alpha^i(\Gamma)$, $i = 0, 1, 2, \ldots$, are graphs of the increasing convex functions $g_i(x) = b^i f(a^{-i}x) : [a^{i+1}, a^i] \to [b^{i+1}, b^i]$ with $g_i(a^{i+1}) = b^{i+1}$ and $g_i(a^i) = b^i$. Since $\lim_{i\to\infty} [a^{i+1}, a^i] \times [b^{i+1}, b^i] = \{(0,0)\}$ in the Hausdorff distance, $\Delta = \{(0,0)\} \cup \bigcup_{i=0}^{\infty} \alpha^i(\Gamma)$ is the graph of a strictly increasing continuous function $g: [0,1] \to [0,1]$ with g(0) = 0 and g(1) = 1. By claim (iii) of the lemma, $\alpha^{i+1}(\Gamma) \cup \alpha^i(\Gamma)$ is a twice continuously differentiable arc for all $i \ge 0$. So Δ is twice continuously differentiable in all points apart from (0,0). This proves in particular the convexity of g, because all functions g_i are convex.

By (i) and (ii), there is a bound r > 0 such that $|f'(x)| \le r$ and $|f''(x)| \le r$ for all $x \in [a, 1]$. Hence $|g'_i(x)| = \frac{b^i}{a^i} |f'(a^{-i}x)| \le \left(\frac{b}{a}\right)^i r$ and $|g''_i(x)| = \frac{b^i}{a^{2i}} |f''(a^{-i}x)| \le \left(\frac{b}{a^2}\right)^i r$ for $i \ge 0$, $x \in [a^{i+1}, a^i]$. The assumptions b < a and $b < a^2$ yield $\lim_{i\to\infty} \left(\frac{b}{a}\right)^i = \lim_{i\to\infty} \left(\frac{b}{a^2}\right)^i = 0$ and give $\lim_{x\downarrow 0} g'(x) = \lim_{x\downarrow 0} g''(x) = 0$ and g'(0) = g''(0) = 0. Hence Δ is twice continuously differentiable in (0, 0), too.

Since Δ is the graph of an increasing differentiable convex function, it is contained in the triangle whose vertices are the end-points (0,0) and (1,1) of Δ and the intersection point of the tangents t_0 and t_1 of Δ in (0,0) and (1,1), respectively. We replace t_1 by the straight line t_1^* through (1,1) of the slope $\frac{a(1-b)}{b(1-a)}$. By (ii), the slope of t_1^* exceeds that of t_1 . Therefore the replacement of t_1 by t_1^* leads to a triangle covering the previous one. The third vertex of the enlarged triangle is $(\frac{a-b}{a-ab}, 0)$, because the slope of t_0 is g'(0) = 0. This yields $\Delta \subseteq \Delta((0,0), (1,1), (\frac{a-b}{a-ab}, 0))$. **Lemma 2.** Let $b = \frac{-1+\sqrt{5}}{2}$ and let $a, c \in \mathbb{R}$ be such that the numbers

$$p = \frac{2a + (1 - \sqrt{5})a^2 + (3 - \sqrt{5})(c - 1)}{2c} \quad and \quad q = \frac{(6 - 2\sqrt{5})a^2 + (1 - \sqrt{5})a^3 + (7 - 3\sqrt{5})(c - 1)}{2a^2 + (1 - \sqrt{5})a^3 c + (3 - \sqrt{5})(c - 1)}$$

are well-defined and coincide. Then there exists an affine map $\beta : \mathbb{R}^2 \to \mathbb{R}^2$ satisfying $\beta(\mathfrak{a}_i) = \mathfrak{b}_i, i = 1, 2, 3, 4$, where

$$\begin{aligned} & \mathfrak{a}_1 = (1-c,1), & \mathfrak{a}_2 = (1,1), & \mathfrak{a}_3 = (a^2,b^2), & \mathfrak{a}_4 = (a,b), \\ & \mathfrak{b}_1 = \left(\frac{a^2 - b^2(1-c)}{1-b^2}, 0\right), & \mathfrak{b}_2 = (a^3c,0), & \mathfrak{b}_3 = (a^2,b^2), & \mathfrak{b}_4 = (a^3,b^3). \end{aligned}$$

Proof. The vectors $\overrightarrow{\mathfrak{a}_1\mathfrak{a}_2} = (c,0)$ and $\overrightarrow{\mathfrak{a}_1\mathfrak{a}_3} = (a^2 + c - 1, b^2 - 1)$ are linearly independent, for $c \neq 0$ and $b^2 - 1 \neq 0$. Hence there is an affine map $\beta : \mathbb{R}^2 \to \mathbb{R}^2$ such that $\beta(\mathfrak{a}_i) = \mathfrak{b}_i$, i = 1, 2, 3. The relations $\overrightarrow{\mathfrak{a}_1\mathfrak{a}_4} = p \, \overrightarrow{\mathfrak{a}_1\mathfrak{a}_2} + b \, \overrightarrow{\mathfrak{a}_1\mathfrak{a}_3}$, $\overrightarrow{\mathfrak{b}_1\mathfrak{b}_4} = q \, \overrightarrow{\mathfrak{b}_1\mathfrak{b}_2} + b \, \overrightarrow{\mathfrak{b}_1\mathfrak{b}_3}$, and p = q yield $\beta(\mathfrak{a}_4) = \mathfrak{b}_4$. (The numbers p and q as well as the following particular value of c were found by the aid of the computer algebra system Maple 9.01.)

An example of numbers a, b, c satisfying all assumptions of the lemmas and the corollary are

$$a = \frac{4}{5} = 0.8, \quad b = \frac{-1+\sqrt{5}}{2} = 0.61803..., \text{ and}$$

 $c = \frac{1}{6400} \left(4809 - 1281\sqrt{5} + \sqrt{17699286 - 5344658\sqrt{5}} \right) = 0.67846...$

We fix these values for the further constructions and illustrations. (Other choices of a and c are possible.)

Since $0 < \frac{a-b}{a-ab} < c$, the triangle $\Delta((0,0), (1,1), (\frac{a-b}{a-ab}, 0))$ is a subset of the parallelogram P with the vertices (0,0), (c,0), (1,1), and (1-c,1). Hence, by the corollary, the arc $\Delta = \{(0,0)\} \cup \bigcup_{i=0}^{\infty} \alpha^{i}(\Gamma)$ is contained in P (see Figure 2).

Figure 2. Dissections of the parallelogram P and the triangle T

We obtain a dissection

$$P = P_1 \cup P_2 \cup P_3 \cup P_4 \cup P_5 \cup P_6$$

of P into the discs $P_i = \operatorname{conv}(\alpha^{i-1}(\Gamma))$, i = 1, 2, 3, the disc P_4 bounded by Δ and the polygonal arc (0, 0), (c, 0), (1, 1), the disc P_5 bounded by $\{(0, 0)\} \cup \bigcup_{i=3}^{\infty} \alpha^i(\Gamma)$ and the polygonal arc $(0, 0), (1 - c, 1), (a^2, b^2), (a^3, b^3)$, and the quadrangle P_6 with the vertices (1 - c, 1), (1, 1), (a, b), and (a^2, b^2) .

the vertices (1 - c, 1), (1, 1), (a, b), and (a^2, b^2) . The triangle $T = \Delta((0, 0), (1 - c, 1), (\frac{a^2 - b^2(1 - c)}{1 - b^2}, 0))$ splits into P_5 , into $\alpha^3(P_4)$, which is the disc bounded by $\{(0, 0)\} \cup \bigcup_{i=3}^{\infty} \alpha^i(\Gamma) = \alpha^3(\Delta)$ and the polygonal arc $\overline{(0, 0), (a^3c, 0), (a^3, b^3)} = \alpha^3(\overline{(0, 0), (c, 0), (1, 1)})$, and into the quadrangle with the vertices $(\frac{a^2 - b^2(1 - c)}{1 - b^2}, 0), (a^3c, 0), (a^3, b^3)$, and (a^2, b^2) (see the dotted lines in Figure 2). By Lemma 2, there is an affine map β such that the last quadrangle can be written as $\beta(P_6)$. The particular choice of a and c yields $\beta \in \mathbf{Aff}_+$. Thus we have the dissection

 $T = \alpha^3(P_4) \cup P_5 \cup \beta(P_6)$ with $\alpha, \beta \in \mathbf{Aff}_+$.

We come to the claim of the theorem (see Figure 3).

Figure 3. The constructed congruence by dissection

The square S can be represented as $S = \gamma(P)$ with $\gamma \in \mathbf{Aff}_+$. This gives the dissection

$$S = \gamma(P_1) \cup \gamma(P_2) \cup \gamma(P_3) \cup \gamma(P_4) \cup \gamma(P_5) \cup \gamma(P_6) \quad \text{with} \quad \gamma \in \mathbf{Aff}_+.$$

The circular disc C is dissected into an equilateral triangle, that can be expressed as $\delta(T)$ with $\delta \in \mathbf{Aff}_+$, and into three discs C_i , i = 1, 2, 3, each of which being the convex hull of a circular arc covering an angle of size $\frac{2\pi}{3}$. By Lemma 1 (i), the discs $P_i = \operatorname{conv}(\alpha^{i-1}(\Gamma))$ and the discs C_i , i = 1, 2, 3, are congruent with respect to \mathbf{Aff}_+ . We pick $\eta_i \in \mathbf{Aff}_+$ such that $C_i = \eta_i(P_i)$, i = 1, 2, 3. Using this and the above representation of T we obtain the dissection of $C = C_1 \cup C_2 \cup C_3 \cup \delta(T)$ into

$$C = \eta_1(P_1) \cup \eta_2(P_2) \cup \eta_3(P_3) \cup \delta\alpha^3(P_4) \cup \delta(P_5) \cup \delta\beta(P_6) \quad \text{with} \quad \alpha, \beta, \delta, \eta_i \in \mathbf{Aff}_+.$$

The boundaries of the pieces P_i , i = 1, ..., 6, split into finitely many line segments, elliptic arcs, and affine images of Δ . The corollary shows that Δ is twice continuously differentiable and convex, as well as the line segments and the elliptic arcs are. This proves Theorem 1.

3. Proof of Theorem 2

Lemma 3. For every $k \ge 1$, there exist numbers $0 < a < a_1 < a_2 < a_3 < a_4 < 1$ and $0 < b < a^k$ and a strictly increasing and infinitely differentiable function $f:[a,1] \rightarrow [b,1]$ with the following properties:

- (i) f(a) = b, f(1) = 1, af'(a) = bf'(1), $f^{(l)}(a) = f^{(l)}(1) = 0$ for all $l \ge 2$.
- (ii) The graph Γ_0 of $f|_{[a_3,a_4]}$ and the arc $\Theta = \{(\cos(\varphi), \sin(\varphi)) : 0 \le \varphi \le \frac{2\pi}{3}\}$ are congruent with respect to \mathbf{Aff}_+ .
- (iii) The arc Γ_0 and the line segment $\Lambda_0 = \overline{(a_3, f(a_3))(a_4, f(a_4))}$ bound a disc D_0 situated below Λ_0 .
- (iv) The graph Γ_+ of $f|_{[a_4,1]}$ and the line segment $\Lambda_+ = \overline{(a_4, f(a_4))(1, f(1))}$ bound a disc D_+ situated above Λ_+ .
- (v) The graph Γ_{-} of $f|_{[a_2,a_3]}$ and the line segment $\Lambda_{-} = \overline{(a_2, f(a_2))(a_3, f(a_3))}$ bound a disc D_{-} situated above Λ_{-} .
- (vi) The graph $\overline{\Gamma}_{-}$ of $f|_{[a_1,a_2]}$ and the line segment $\overline{\Lambda}_{-} = \overline{(a_1, f(a_1))(a_2, f(a_2))}$ bound a disc \overline{D}_{-} situated below $\overline{\Lambda}_{-}$ and congruent with D_{-} with respect to \mathbf{Aff}_{+} .
- (vii) The graph $\overline{\Gamma}_+$ of $f|_{[a,a_1]}$ and the line segment $\overline{\Lambda}_+ = \overline{(a, f(a))(a_1, f(a_1))}$ bound a disc \overline{D}_+ situated below $\overline{\Lambda}_+$ and congruent with D_+ with respect to \mathbf{Aff}_+ .
- (viii) The segments $\Lambda_+, \Lambda_0, \Lambda_-$, and $\overline{\Lambda}_-$ are subsets of the tangent of f at the point (1, 1).
- (ix) The segment $\overline{\Lambda}_+$ is a subset of the tangent of f at the point (a, b).

Proof. The graph of $h_0: \left[-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}\right] \to \mathbb{R}$, $h(x) = \frac{1}{2} - \sqrt{1 - x^2}$, can be described as $\Sigma_0 = \left\{ \left(\cos(\varphi), \sin(\varphi) + \frac{1}{2}\right) : \frac{7\pi}{6} \le \varphi \le \frac{11\pi}{6} \right\}$ and therefore is congruent with Θ (see Figure 4).

Figure 4. The arc Σ

Let $h_+ : \left[\frac{\sqrt{3}}{2}, 2\right] \to \mathbb{R}$ be a function with $h_+\left(\frac{\sqrt{3}}{2}\right) = h_+(2) = 0$, $h_+\left(\left(\frac{\sqrt{3}}{2}, 2\right)\right) \subseteq (0, \infty)$, $h'_+\left(\left[\frac{\sqrt{3}}{2}, 2\right]\right) \subseteq \left(-\frac{\sqrt{3}}{5}, \infty\right)$, and $h_+^{(l)}(2) = 0$, $l \ge 1$, such that h_0 and h_+ together form an infinitely differentiable function on $\left[-\frac{\sqrt{3}}{2}, 2\right]$. A reflection of the graph Σ_+ of h_+ with respect to the vertical axis yields the graph Σ_- of a function h_- on $\left[-2, -\frac{\sqrt{3}}{2}\right]$ such that h_-, h_0 , and h_+ together are an infinitely differentiable function.

Let Σ^*_+ and Σ^*_- be the images of Σ_+ and Σ_- under the rotation

$$(x,y) \mapsto \left(-\frac{1}{2}x - \frac{\sqrt{3}}{2}y + \frac{\sqrt{3}}{4}, \frac{\sqrt{3}}{2}x - \frac{1}{2}y + \frac{3}{4}\right)$$

(with center $(0, \frac{1}{2})$ and angle $\frac{2\pi}{3}$) and its inverse

$$(x,y) \mapsto \left(-\frac{1}{2}x + \frac{\sqrt{3}}{2}y - \frac{\sqrt{3}}{4}, -\frac{\sqrt{3}}{2}x - \frac{1}{2}y + \frac{3}{4}\right),$$

respectively. Then $\Sigma_+^* \cup \Sigma_-^*$ is infinitely differentiable, because its differential behaviour at $(0, \frac{3}{2})$ coincides with that of the unit circle centered at $(0, \frac{1}{2})$. Next we apply the map $(x, y) \mapsto (\sqrt{3}x, \frac{\sqrt{3}}{3}y)$ to obtain $\Sigma_+^{**} \cup \Sigma_-^{**}$. Then we use

$$(x,y) \mapsto \left(\frac{\sqrt{3}}{2}x + \frac{1}{2}y - 4 + \frac{\sqrt{3}}{4}, -\frac{1}{2}x + \frac{\sqrt{3}}{2}y - \frac{3}{4}\right)$$

(a rotation mapping the right-hand end-point of Σ_{-}^{**} onto (-2, 0) and $(0, \frac{\sqrt{3}}{2})$ onto $(-4 + \frac{\sqrt{3}}{2}, 0)$) and arrive at $\overline{\Sigma}_{+} \cup \overline{\Sigma}_{-}$.

The resulting arc $\Sigma = \Sigma_0 \cup \Sigma_+ \cup \Sigma_- \cup \overline{\Sigma}_+ \cup \overline{\Sigma}_-$ is infinitely differentiable, because all derivatives of the subarcs Σ_- and $\overline{\Sigma}_-$ at the common point (-2, 0)vanish. Note that Σ is the graph of a function h. This is obvious for $\Sigma_0 \cup \Sigma_+ \cup \Sigma_-$. The arc $\overline{\Sigma}_+$ is obtained from Σ_+ by the map

$$(x,y) \mapsto \left(-\frac{1}{2}x - \frac{5\sqrt{3}}{6}y - 4 + \frac{3\sqrt{3}}{4}, \frac{\sqrt{3}}{2}x + \frac{1}{2}y - \frac{3}{4} \right).$$

The slope of $\overline{\Sigma}_+$ in the image of a point $(x, h_+(x)) \in \Sigma_+$ is given by the derivative $\frac{d\left(\frac{\sqrt{3}}{2}x+\frac{1}{2}h_+(x)-\frac{3}{4}\right)}{d\left(-\frac{1}{2}x-\frac{5\sqrt{3}}{6}h_+(x)-4+\frac{3\sqrt{3}}{4}\right)} = \frac{\frac{\sqrt{3}}{2}+\frac{1}{2}h'_+(x)}{-\frac{1}{2}-\frac{5\sqrt{3}}{6}h'_+(x)}$. This derivative has no singularities, because we have chosen $h'_+(x) > -\frac{\sqrt{3}}{5}$. Therefore $\overline{\Sigma}_+$ describes a function. Similarly, $\overline{\Sigma}_-$ is obtained from Σ_+ by

$$(x,y)\mapsto \left(x+\frac{2\sqrt{3}}{3}y-4,-y\right).$$

The derivative $\frac{d(-h_+(x))}{d(x+\frac{2\sqrt{3}}{3}h_+(x)-4)} = \frac{-h'_+(x)}{1+\frac{2\sqrt{3}}{3}h'_+(x)}$ is not singular, for $h'_+(x) > -\frac{\sqrt{3}}{2}$.

Now we pick a map $\rho \in \mathbf{Aff}_+$ transforming Σ into the graph of strictly increasing and infinitely differentiable function $h_{\rho}: [0,1] \to [0,1]$ with $h_{\rho}(0) = 0$, $h_{\rho}(1) = 1$, and $0 < h'_{\rho}(0) < h'_{\rho}(1)$. (One fixes a straight line l_0 through the left-hand end-point $\left(-5 + \frac{3\sqrt{3}}{4}, -\frac{3}{4} + \sqrt{3}\right)$ of Σ whose slope is less than $\min_x h'(x)$ and a straight line l_1 through the right-hand end-point (2,0) of Σ with a slope larger than $\max_x h'(x)$. Then one defines ρ by $\rho\left(-5 + \frac{3\sqrt{3}}{4}, -\frac{3}{4} + \sqrt{3}\right) = (0,0)$,

 $\varrho(2,0) = (1,1)$, and $\varrho(l_0 \cap l_1) = \{(1,0)\}$. The result is illustrated in the left-hand part of Figure 5. The dotted lines are the tangents at (0,0) and (1,1).

Figure 5. End of the proof of Lemma 3

Finally, we fix 0 < b < a < 1 such that $ah'_{\varrho}(0) = bh'_{\varrho}(1)$ and $b < a^k$. Application of the map $\sigma(x, y) = ((1-a)x+a, (1-b)y+b)$ to $\varrho(\Sigma)$ yields the graph $\sigma\varrho(\Sigma)$ of the strictly increasing and infinitely differentiable function $f : [a, 1] \to [b, 1], f(x) =$ $(1-b)h_{\varrho}(\frac{x-a}{1-a})+b$. We obtain $f(a) = (1-b)h_{\varrho}(0)+b = b, f(1) = (1-b)h_{\varrho}(1)+b = 1$, and $af'(a) = a\frac{1-b}{1-a}h'_{\varrho}(0) = b\frac{1-b}{1-a}h'_{\varrho}(1) = bf'(1)$. The derivatives $f^{(l)}(a)$ and $f^{(l)}(1)$ vanish for all $l \ge 2$, because in certain neighbourhoods of (a, b) and (1, 1) the graph of f is an affine image of the graph of h_+ close to (2, 0) and all derivatives $h^{(l)}_+(2)$ are zero.

The other claims of the lemma follow easily. The right-hand part of Figure 5 shows the final situation. (The illustration is highly simplified in order to improve the visibility of the curved arcs.) \Box

Corollary 2. Let $\alpha : \mathbb{R}^2 \to \mathbb{R}^2$, $\alpha(x, y) = (ax, by)$, and let Γ be the graph of f, a, b, f being chosen as in Lemma 3. Then $\Delta = \{(0, 0)\} \cup \bigcup_{i=0}^{\infty} \alpha^i(\Gamma)$ is the graph of $a \ k$ times continuously differentiable function $g : [0, 1] \to [0, 1]$.

Proof. The arcs $\alpha^i(\Gamma)$ describe the functions $g_i(x) = b^i f(a^{-i}x) : [a^{i+1}, a^i] \rightarrow [b^{i+1}, b^i]$. Consecutive functions fit continuously together, because $g_{i+1}(a^{i+1}) = b^{i+1} = g_i(a^{i+1})$. Hence Δ is the graph of a continuous function $g : [0, 1] \rightarrow [0, 1]$. The functions g_i are infinitely differentiable, because f is. Property (i) yields in particular

$$\begin{aligned} g_i'(a^{i+1}) &= \frac{b^i}{a^i} f'(a) = \frac{b^{i+1}}{a^{i+1}} f'(1) = g_{i+1}'(a^{i+1}) & \text{and} \\ g_i^{(l)}(a^{i+1}) &= \frac{b^i}{a^{li}} f^{(l)}(a) = 0 = \frac{b^{i+1}}{a^{l(i+1)}} f^{(l)}(1) = g_{i+1}^{(l)}(a^{i+1}) & \text{for } l \ge 2. \end{aligned}$$

Thus g is infinitely differentiable on (0, 1].

Since f is infinitely differentiable, there exists a bound r such that $|f^{(l)}(x)| < r$ for $x \in [a, 1], l \in \{1, \ldots, k\}$. Consequently, $|g_i^{(l)}(x)| = \left(\frac{b}{a^l}\right)^i |f^{(l)}(a^{-i}x)| < \left(\frac{b}{a^l}\right)^i r$ for $x \in [a^{i+1}, a^i], l \in \{1, \ldots, k\}$, and in turn $g^{(l)}(0) = \lim_{x \downarrow 0} g^{(l)}(x) = 0, l \in \{1, \ldots, k\}$, because $0 < b < a^k \le a^l$. This is the claimed smoothness at 0. \Box

Figure 6. The dissections of a square and a circular disc

We come to the proof of Theorem 2. Given $k \geq 3$, we apply Lemma 3 and Corollary 2. Then the square S, say $S = [0, 1]^2$ without loss of generality, admits the following dissection

$$S = S_1 \cup \dots \cup S_{14}$$

(see Figure 6):

 $S_i = \alpha^{i-1}(D_0)$ for i = 1, 2, 3, $S_i = \alpha^{i-4}(\overline{D}_-)$ for i = 4, 5, 6, and $S_i = \alpha^{i-7}(\overline{D}_+)$ for i = 7, 8, 9. The boundary of S_{10} consists of the polygonal arc $\overline{(0,0)(1,0)(1,1)}$ and Δ .

 $S_{11} \text{ is bounded by } \{(0,0)\} \cup \bigcup_{i=3}^{\infty} \alpha^{i}(\Gamma) = \alpha^{3}(\Delta), \overline{(a^{3},b^{3})\alpha^{2}(a_{1},f(a_{1}))\alpha^{2}(a_{2},f(a_{2}))}, \alpha^{2}(\Gamma_{-}), \overline{\alpha^{2}(a_{3},f(a_{3}))\alpha^{2}(a_{4},f(a_{4}))}, \alpha^{2}(\Gamma_{+}), \text{ and } \overline{(a^{2},b^{2})\alpha(a_{1},f(a_{1}))(0,1)(0,0)}.$ The boundary of the disc S_{12} splits into the arcs

 $\frac{\overline{(a,b)(a_1,f(a_1))(0,1)\alpha(a_1,f(a_1))\alpha(a_2,f(a_2))}, \alpha(\Gamma_-), \overline{\alpha(a_3,f(a_3))\alpha(a_4,f(a_4))}, \text{ and } \alpha(\Gamma_+). S_{13} \text{ is the triangle } \Delta((0,1)(a_1,f(a_1))(\frac{1}{2},1)). \text{ The disc } S_{14} \text{ is bounded by } (1,1)(\frac{1}{2},1)(a_1,f(a_1))(a_2,f(a_2)), \Gamma_-, \overline{(a_3,f(a_3))(a_4,f(a_4))}, \text{ and } \Gamma_+.$

Let (c, 0) be the intersection point of the horizontal axis with the straight line through (0, 1) and $\alpha(a_1, f(a_1))$. The triangle $T = \Delta((0, 0)(c, 0)(0, 1))$ is dissected

432

into

$$T = \alpha^3(S_{10}) \cup S_{11} \cup \alpha^2(D_+) \cup \alpha^2(D_-) \cup P$$
(1)

where P is the non-convex pentagon with the vertices $(a^3, 0)$, (c, 0), $\alpha(a_1, f(a_1))$, $\alpha^2(a_1, f(a_1))$, and $(a^3, b^3) = \alpha^2(a, b)$ (see the dotted lines in Figure 6). The triangles conv (S_{12}) and conv (S_{14}) admit the dissections

$$\operatorname{conv}(S_{12}) = S_{12} \cup \alpha(D_+) \cup \alpha(D_-), \quad \operatorname{conv}(S_{14}) = S_{14} \cup D_+ \cup D_-.$$
 (2)

We split P into three triangles $\eta_{12}(\operatorname{conv}(S_{12}))$, $\eta_{13}(S_{13})$, and $\eta_{14}(\operatorname{conv}(S_{14}))$ with $\eta_{12}, \eta_{13}, \eta_{14} \in \mathbf{Aff}_+$. Using (2) we can refine the dissection (1) to

$$T = \alpha^3(S_{10}) \cup S_{11} \cup \alpha^2(D_+) \cup \alpha^2(D_-) \cup \eta_{12}(S_{12}) \cup \eta_{12}\alpha(D_+) \cup \\ \cup \eta_{12}\alpha(D_-) \cup \eta_{13}(S_{13}) \cup \eta_{14}(S_{14}) \cup \eta_{14}(D_+) \cup \eta_{14}(D_-).$$

By Lemma 3 (vi) and (vii), the discs $S_i = \alpha^{i-4}(\overline{D}_-)$, i = 4, 5, 6, and $S_i = \alpha^{i-7}(\overline{D}_+)$, i = 7, 8, 9, can be written as $S_4 = \eta_4^{-1}\alpha^2(D_-)$, $S_5 = \eta_5^{-1}\eta_{12}\alpha(D_-)$, $S_6 = \eta_6^{-1}\eta_{14}(D_-)$, $S_7 = \eta_7^{-1}\alpha^2(D_+)$, $S_8 = \eta_8^{-1}\eta_{12}\alpha(D_+)$, and $S_9 = \eta_9^{-1}\eta_{14}(D_+)$ with appropriate $\eta_4, \ldots, \eta_9 \in \mathbf{Aff}_+$. This yields

$$T = \bigcup_{i=4}^{9} \eta_i(S_i) \cup \alpha^3(S_{10}) \cup S_{11} \cup \bigcup_{i=12}^{14} \eta_i(S_i).$$
(3)

As in the proof of Theorem 1, we dissect the circular disc C into an inscribed equilateral triangle, that we express as $\delta(T)$ with $\delta \in \mathbf{Aff}_+$, and into three discs C_i , i = 1, 2, 3, each of which being the convex hull of a circular arc covering an angle of size $\frac{2\pi}{3}$. By Lemma 3 (ii), the discs C_i and the discs $S_i = \alpha^{i-1}(D_0) =$ $\alpha^{i-1}(\operatorname{conv}(\Gamma_0)), i = 1, 2, 3$, are congruent with respect to \mathbf{Aff}_+ . We pick $\eta_i \in \mathbf{Aff}_+$ such that $C_i = \eta_i(S_i), i = 1, 2, 3$. Using this and (3) we obtain the final dissection of $C = C_1 \cup C_2 \cup C_3 \cup \delta(T)$ into

$$C = \bigcup_{i=1}^{3} \eta_i(S_i) \cup \bigcup_{i=4}^{9} \delta \eta_i(S_i) \cup \delta \alpha^3(S_{10}) \cup \delta(S_{11}) \cup \bigcup_{i=12}^{14} \delta \eta_i(S_i),$$

where $\alpha, \delta, \eta_i \in \mathbf{Aff}_+$. Corollary 2 implies that all pieces S_i belong to \mathcal{D}^k . This completes the proof.

We would like to remind that the arc Δ is infinitely differentiable in all points apart from (0,0) (see the proof of Corollary 2). So the discs $S_1, \ldots, S_9, S_{12}, S_{13}, S_{14}$ belong to \mathcal{D}^{∞} and S_{10}, S_{11} are "not far" from \mathcal{D}^{∞} .

We finally remark that the congruence by dissection of S and C uses a piecewise congruence of the quadrangle $\operatorname{conv}(S_{12}) \cup S_{13} \cup \operatorname{conv}(S_{14})$ with the pentagon $P \subseteq S$ (dotted in Figure 6). This is essentially realized by the three triangles $\operatorname{conv}(S_{12})$, S_{13} , $\operatorname{conv}(S_{14})$ and by their images $\eta_{12}(\operatorname{conv}(S_{12}))$, $\eta_{13}(S_{13})$, $\eta_{14}(\operatorname{conv}(S_{14}))$, respectively. By a good use of the freedom in the construction of Δ , one could probably obtain a situation where a congruence by dissection of the quadrangle and the pentagon can be realized by the aid of two pieces. This should be the key to a congruence by dissection of S and C based on 13 pieces only.

References

- [1] Dubins, L.; Hirsch, M. W.; Karush, J.: Scissor congruence. Isr. J. Math. 1 (1963), 239–247.
 Zbl 0171.43002
- [2] Hertel, E.; Richter, C.: Squaring the circle by dissection. Beitr. Algebra Geom. 44 (2003), 47–55.
 Zbl 1040.52006
- [3] Richter, C.: Congruence by dissection of topological discs An elementary approach to Tarski's circle squaring problem. Discrete Comput. Geom. 28 (2002), 427–442.
 Zbl 1019.52009
- [4] Richter, C.: The minimal number of pieces realizing affine congruence by dissection of topological discs. Period. Math. Hung. 46 (2003), 203–213.

Zbl 1049.52014

- [5] Richter, C.: Affine congruence by dissection of discs appropriate groups and optimal dissections. J. Geom. 84 (2005), 117–132.
 Zbl pre05024128
- [6] Tarski, A.: Problème 38, Fund. Math. 7 (1925), 381.

Received March 20, 2006