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1. Introduction

Let R be a commutative ring with unity and let M be a (unitary) multiplication
R-module. Let I be an ideal of R.

The theta ideal θ(M) and the trace ideal T (M) of M are defined to be∑
x∈M(Rx :M) and

∑
f∈M∗ f(M) respectively. Emphasis in this article is on the

properties and the applications of the ideal θ(M).
It is known (see, [1, Theorem 2.6]) that if M is faithful then θ(M) = T (M).

We prove the converse of this result, that is, if θ(M) = T (M) then M is faithful.
In [1, Lemma 2.1], it has been shown that if I is finitely generated and I ⊆ θ(M)
then IM is finitely generated. We show that if M is faithful and IM is finitely
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generated then I is also finitely generated (see, Lemma 2.6). We further show that
if M is faithful then IM is multiplication if and only if Iθ(M) is a multiplication
ideal of R (see, Lemma 2.15). As a consequence of Lemma 2.15, we show that
if J and J ′ are ideals of R such that JM and J ′M are multiplication then so is
JJ ′M . We also obtain some known results regarding M as corollaries using the
properties of the ideal θ(M).

Let N be a submodule ofM . Then N is said to be dense inM if
∑
f(N) = M ,

where the summation is taken over all f ∈ HomR(N,M). We first show that if
N is dense in M then N is multiplication. We further show that N is dense in
M if and only if θ(N) = θ(M) and annR(N) = annR(M). As a consequence of
these results, we show that if N is dense in M then N is finitely generated if and
only if M is finitely generated. These results give complete characterization of
dense submodules of multiplication modules and improve upon several results in
this direction, for example, Corollary 8 and Theorem 9 of [11].

In [10], some partial result have been obtained about the forcing linearity
number ofM . We show that this number is always zero for multiplication modules.

2. The trace and theta ideals

Throughout this article, rings are assumed to be commutative with unity and
modules are assumed to be unitary.

In this section we study the trace ideal and the theta ideal of a multiplication
module and obtain some results involving them.

Henceforth, let R denote a ring. We recall the following definition:

Definition 2.1. An R-module M is said to be a multiplication R-module if for
each submodule N of M there exists some ideal I of R such that N = IM .

An ideal J of R is said to be a multiplication ideal of R if J is a multiplication
R-module.

Remark 2.2. Let M be an R-module.
(a) Let I ⊆ annR(M) be an ideal. Then M is a multiplication R-module if and

only if M is a multiplication R/I-module. Therefore, in many applications,
one may assume that M is faithful by treating it as an R/ annR(M)-module.

(b) Now assume that M is a multiplication R-module. Then all quotients of
M are multiplication R-modules. Furthermore, if S ⊂ R is a multiplicative
set then S−1M is a multiplication S−1R-module. If N is a submodule of M
then N = (N :M)M .

Notation. For an R-module M let M∗ = HomR(M,R).

Definition 2.3. Let M be an R-module. Then we have

T (M) =
∑

f∈M∗ f(M)

τ(M) = ∩{I | I ⊆ R is an ideal, annR(M) ⊆ I and M = IM}
θ(M) =

∑
x∈M(Rx :M)

D0(M) =
∑

x∈M annR(annR(x))



A. Gaur, A. K. Maloo: The Theta Ideal, Dense Submodules and . . . 591

The ideal T (M) is called the trace ideal of M . The ideals τ(M), θ(M) and D0(M)
are respectively known as τ -ideal, θ-ideal and D0-ideal of M .

The following lemma is a collection of some elementary observations.

Lemma 2.4. Let M be a multiplication R-module and let N be a submodule of
M . Then we have the following:

(a) M = θ(M)M and N = θ(M)N .

(b) If N is finitely generated then there exists some a ∈ θ(M) such that (1 −
a)N = 0.

(c) annR(θ(M)) ⊆ annR(M) ⊆ annR(T (M)).

(d) If M is faithful then so is θ(M).

(e) If I is an ideal of R such that M = IM then T (M) = IT (M).

(f) Let I ⊆ annR(M) be an ideal. Denote M by M ′ while treating M as an
R/I-module. Then θ(M ′) = θ(M)/I.

In [1, Theorem 2.6], it is shown that if M is a faithful multiplication R-module
then T (M) = θ(M). However, if annR(M) contains a nonzero divisor of R then
θ(M) 6= 0 = T (M). Hence, in general, θ(M) does not equal T (M). Naturally,
one faces the following question: For a multiplication module M , what are the
necessary and sufficient conditions for T (M) = θ(M)? We answer this question
in Lemma 2.5.

Lemma 2.5. Let M be a multiplication R-module. Then T (M) = θ(M) if and
only if M is faithful.

Proof. We only need to prove the necessity. Note that by Lemma 2.4, annR(θ(M))
= annR(M). Let a ∈ annR(M). Then there exist f1, . . . , fn∈M∗ and x1, . . . , xn∈
M such that a =

∑n
i=1 fi(xi). Let N =

∑n
i=1Rxi. Then, by Lemma 2.4, there

exists some b ∈ θ(M) such that (1− b)N = 0. In particular, xi = bxi for all i = 1,
. . . , n. Thus a =

∑n
i=1 fi(xi) =

∑n
i=1 fi(bxi) = ba. As aθ(M) = 0, we have a = 0.

�

In [1, Lemma 2.1], it has been shown that if M is a multiplication R-module
and I ⊆ θ(M) is a finitely generated ideal then IM is finitely generated. In the
following result we prove the converse of the same.

Lemma 2.6. Let M be a faithful multiplication R-module and let I be an ideal
of R such that IM is finitely generated. Then I is finitely generated.

Proof. There exist a1, . . . , an ∈ I and x1, . . . , xn ∈ M such that IM =∑n
i=1Raixi. By [1, Lemma 2.1], I ⊆ θ(M). As M is faithful, by [1, Theorem

2.3], I = Iθ(M). Furthermore, by [1, Theorem 2.6], T (M) = θ(M). Hence
I = Iθ(M) = IT (M) = I

∑
f∈M∗ f(M) =

∑
f∈M∗ f(IM) ⊆ (a1, . . . , an). Thus

I = (a1, . . . , an). �

Therefore, Lemma 2.6, together with [1, Lemma 2.1], leads to the following result:
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Theorem 2.7. Let M be a faithful multiplication R-module and let I be an ideal
of R. Then IM is finitely generated if and only if I ⊆ θ(M) and I is finitely
generated.

In the next result we list a property of the ideal θ(M).

Lemma 2.8. Let M be a multiplication R-module and let P be a prime ideal of
R. Then θ(M) ⊆ P if and only if MP = 0 and annR(M) ⊆ P .

Proof. First suppose that MP = 0 and annR(M) ⊆ P . Let x ∈ M . Then
(Rx)P = 0 and therefore, there exists some s ∈ R \ P such that sRx = 0 =
s(Rx :M)M . Thus s(Rx :M) ⊆ annR(M) ⊆ P . Clearly, (Rx :M) ⊆ P . As x is
arbitrary, we have θ(M) ⊆ P .

Conversely, suppose that θ(M) ⊆ P . As M = θ(M)M , we get MP = θ(M)PMP .
By [3, Proposition 4], MP is cyclic and therefore, by Nakayama Lemma, MP = 0.
Furthermore, annR(M) ⊆ θ(M) ⊆ P . �

We now recall a definition.

Definition 2.9. A proper submodule N of an R-module M is said to be a prime
submodule of M if (N :M) is a prime ideal and M/N is a torsion-free module
over the integral domain R/(N :M).

If N is a prime submodule of M then N is also referred as a P -prime sub-
module of M , where P = (N :M).

In, [4, Corollary 2.11], a characterization of prime submodules of a multiplication
module is given. We obtain the same result as a consequence of Lemma 2.8.
Compare the proof given below with that of [4, Corollary 2.11].

Corollary 2.10. Let M be a multiplication R-module and let P be a prime ideal
of R such that annR(M) ⊆ P . Then PM is a prime submodule of M if and only
if M 6= PM .

Proof. First suppose that M 6= PM . Clearly, P ⊆ (PM :M). We claim
that (PM :M) = P . Assume the contrary. Choose some a ∈ (PM :M) \ P .
Then aM ⊆ PM . Therefore, MP = (aM)P = PMP . By [3, Proposition 4], MP

is cyclic and therefore, by Nakayama Lemma, MP = 0. Now, by Lemma 2.8,
θ(M) ⊆ P and hence M = PM , a contradiction. Thus, M/PM is a faithful
multiplication R/P -module and therefore, by lemma [4, Lemma 4.1], a torsion-
free R/P -module. Hence PM is a P -prime submodule of M . Converse is trivial
as every prime submodule is proper. �

As a further application of Lemma 2.8, we give an equivalent condition for an
R-module to be multiplication. Note that it is essentially a reformulation of [4,
Theorem 1.2].

Theorem 2.11. Let M be an R-module. Then the following statements are equiv-
alent:
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(a) M is a multiplication R-module.

(b) For every maximal ideal m of R either Mm = 0 or θ(M) 6⊆ m.

Proof. The implication (a) to (b) follows by Lemma 2.8. We now prove (b)
implies (a). Let m be a maximal ideal of R. Suppose that Mm = 0. Then for
every x ∈ M there exists some a ∈ m such that (1 − a)x = 0. Now suppose
that θ(M) 6⊆ m. Then there exists some x ∈ M such that (Rx :M) 6⊆ m, that is,
m+(Rx :M) = R. Therefore, there exists some a ∈ m such that 1−a ∈ (Rx :M).
Thus (1− a)M ⊆ Rx. Now (a) follows by [4, Theorem 1.2]. �

In [1, Corollary 2.2], it has been shown that ifM is a multiplication R-module then
M is finitely generated if and only if θ(M) = R. The next result is a refinement
of the same.

Corollary 2.12. Let M be an R-module. Then θ(M) = R if and only if M is a
finitely generated multiplication R-module.

Proof. The necessity follows by Theorem 2.11 and by [1, Corollary 2.2], whereas
the sufficiency follows by [1, Corollary 2.2]. �

We have another corollary to Theorem 2.11.

Corollary 2.13. Let M be a multiplication R-module and let N be a submodule
of M . If θ(N) = θ(M) then N is also multiplication.

Proof. Let m be a maximal ideal of R. Assume that Nm 6= 0. Then Mm 6= 0.
Therefore, by Theorem 2.11, θ(N) = θ(M) 6⊆ m. Now, again by Theorem 2.11,
N is multiplication. �

By [1, Theorem 2.3], if M is a faithful multiplication R-module then θ(M) is
an idempotent multiplication ideal of R. In addition, by [1, Theorem 2.6] and by
Lemma 2.4, θ(M) is faithful. Naturally, one asks the following question: Given an
idempotent, faithful, multiplication ideal I of R, does there exist a multiplication
R-module M such that θ(M) = I? We answer this question in the next result.

Lemma 2.14. Let I be an idempotent, faithful, multiplication ideal of R. Then
there exists a faithful multiplication R-module M such that I = θ(M).

Proof. Take M = I. As I is faithful and I = I2, by [1, Theorem 2.6], we have
θ(I) ⊆ I. On the other hand, I = θ(I)I ⊆ θ(I) and hence I = θ(I). �

By [4, Corollary 1.4], if M is a multiplication R-module and I is a multiplication
ideal of R then IM is a multiplication R-module. In the next result we prove a
variant and a converse of the same.

Lemma 2.15. Let M be a faithful multiplication module over R and let I be an
ideal of R. Then IM is a multiplication R-module if and only if Iθ(M) is a
multiplication ideal of R.
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Proof. First assume that IM is a multiplication R-module. Let J ⊆ Iθ(M) be
an ideal. As JM ⊆ Iθ(M)M = IM , there exists some ideal J0 of R such that
JM = J0IM . As M is faithful, by [1, Theorem 2.6], we have θ(M) = T (M)
and by [1, Theorem 2.3], J = Jθ(M). Therefore, J = Jθ(M) = JT (M) =
J

∑
f∈M∗ f(M) =

∑
f∈M∗ f(JM) =

∑
f∈M∗ f(J0IM) = J0Iθ(M). Thus Iθ(M) is

a multiplication ideal of R.

Conversely, assume that Iθ(M) is a multiplication ideal of R. Then IM =
Iθ(M)M is a multiplication R-module, by [4, Corollary 1.4]. Note that for the
converse we do not need faithfulness of M . �

As a consequence of Lemma 2.15, we get the next result.

Corollary 2.16. Let M be a multiplication R-module and let I and J be ideals
of R. If IM and JM are multiplication R-modules then so is IJM .

Proof. Put I0 = annR(M), R′ = R/I0, I
′ = (I + I0)/I0 and J ′ = (J + I0)/I0.

Then M, IM and JM are multiplication R′-modules. We shall write M ′ for M ,
when we treat M as an R′-module. Note that I ′M ′ = IM , J ′M ′ = JM and that
M ′ is a faithful R′-module.

Now, by Lemma 2.15, I ′θ(M ′) is a multiplication ideal of R′. Therefore,
by [4, Corollary 1.4], I ′θ(M ′)J ′M ′ is a multiplication R′-module and hence a
multiplication R-module. Clearly, I ′θ(M ′)J ′M ′ = I ′J ′M ′ = IJM . �

In [5, Lemma 1.5], it is shown that if M is a multiplication R-module and N
is a finitely generated submodule of M then M/IM is a finitely generated R/I-
module, where I = annR(N). In the next result we show that M/IM is also
faithful over R/I. In fact, we do not even assume that N is finitely generated.

Lemma 2.17. Let M be a multiplication R-module and let N be a submodule of
M . Let I = annR(N). Then M/IM is a faithful R/I-module.

Proof. We may assume that N 6= 0. As annR(M) ⊆ I, we may also assume
that M is faithful. Let a ∈ (IM :M). Then aM ⊆ IM . Let f ∈ T (M). Then
af(M) ⊆ If(M). Thus, af(M)N = 0. As f is arbitrary, we get aT (M)N = 0.
Now, by [1, Theorem 2.6], T (M) = θ(M) and by Lemma 2.4, N = θ(M)N .
Therefore, aN = aθ(M)N = aT (M)N = 0. Thus a ∈ I. Hence the assertion. �

Continuing in the same vein we investigate the conditions for a quotient of a
multiplication module to be finitely generated.

Lemma 2.18. Let M be a multiplication R-module and let N be a submodule of
M . Then M/N is finitely generated if and only if (N :RM) + θ(M) = R.

Proof. First suppose that M/N is finitely generated. As M/N = θ(M)(M/N),
there exists some a ∈ θ(M) such that (1−a)(M/N) = 0, that is, 1−a ∈ (N :RM).
Thus (N :RM) + θ(M) = R.

Conversely, suppose that (N :RM)+θ(M) = R. Then there exists some a ∈ θ(M)
such that 1 − a ∈ (N :R M). Let φ : aM −→ M/N be the natural map, that is,
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φ(ax) = ax + N . As (1 − a)M ⊆ N , we have φ(ax) = x + N . Thus φ is onto.
As a ∈ θ(M), by [1, Lemma 2.1], aM is finitely generated and therefore, so is
M/N . �

The following corollary improves on [5, Lemma 1.5]:

Corollary 2.19. Let M be a multiplication R-module and let N be a submodule
of M . Let I = annR(N). Then M/IM is finitely generated if and only if N is
contained in some finitely generated submodule of M .

Proof. By Lemma 2.17, (IM :R M) = I. First assume that M/IM is finitely
generated. Then by Lemma 2.18, I + θ(M) = R. Therefore, there exists some
a ∈ θ(M) such that 1− a ∈ I, that is, (1− a)N = 0. As a consequence, we have
N = aN ⊆ aM . Note that aM is finitely generated by [1, Lemma 2.1].

Conversely, assume that N is contained in a finitely generated submodule K of
M . Then by Lemma 2.4, there exists some a ∈ θ(M) such that (1 − a)K = 0.
Therefore, (1 − a)N = 0, that is, 1 − a ∈ I. Thus I + θ(M) = R. Now, by
Lemma 2.18, M/IM is finitely generated. �

In Corollary 2 of [5, Theorem 1.3], it is shown that if M is a finitely generated
faithful multiplication R-module then M∗ is a (finitely generated faithful) multi-
plication R-module. We now give an example to show that if M is not finitely
generated, then this result is not true, in general.

Example 2.20. Let k be a field and let x1, x2, x3, . . . be indeterminates. Put
A = k[x1, x2, x3, . . . ]. Let I0 denote the ideal of A generated by the set {x2

i −
xi | i ∈ N} ∪ {xixj | i, j ∈ N, i 6= j} and let R = A/I0. Put ei = xi + I0. Let
I = (e1, e2, e3, . . . ). As I is generated by idempotents, I is multiplication. Note
that I is faithful and idempotent. Further note that I is a vector-space over k
with basis {e1, e2, e3, . . . }.

One easily checks that

I∗ = {f : I −→ R | f(ei) = aiei for some unique ais in k, i ≥ 1}.

Therefore, I∗ is isomorphic to k∞ = k × k × k × · · · as a vector-space over k.
Note that if I∗ is generated by a set S as an R-module then I∗ is generated

by S ∪ {eif | f ∈ S, i ≥ 1} as a vector-space over k. As the cardinality of any
basis of k∞ over k is uncountable, I∗ is not finitely generated as an R-module.

We claim that I∗ is not multiplication. Assume the contrary. Let φ ∈ I∗

denote the inclusion of I into R. Note that annR(φ) = 0. Therefore, by Corollary 1
of [5, Lemma 1.5], I∗ is finitely generated, a contradiction.

Note that I∗ = EndR(I). Thus, in general, EndR(M) is not multiplication
for a multiplication R-module M . Note further that if M is finitely generated
multiplication then EndR(M) ∼= R/ annR(M) by [8, Corollary 3.3] and therefore,
a multiplication R-module.

In the next result we look at the trace ideal of the tensor product of multiplication
modules. Note that the tensor product of two multiplication modules is also
multiplication, by [2, Theorem 2.1].
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Lemma 2.21. Let M and N be R-modules. Then we have the following:

(a) T (M)T (N) ⊆ T (M ⊗R N) ⊆ T (M) ∩ T (N).

(b) If M (or N) is faithful and multiplication then T (M ⊗R N) = T (M)T (N).

(c) If both M and N are faithful and multiplication then

T (M ⊗R N) = T (M)T (N) = T (M)T (N)T (M ⊗R N).

Proof. Let f ∈M∗ and g ∈ N∗. Define h : M ⊗R N −→ R by setting h(x⊗ y) =
f(x)g(y). Clearly, h is R-linear. Therefore, f(M)g(N) ⊆ T (M ⊗R N). Thus
T (M)T (N) ⊆ T (M ⊗R N).

Now, let φ ∈ (M ⊗R N)∗. Fix y ∈ N . Define ψy : M −→ R by setting
ψy(x) = φ(x ⊗ y). Then ψy is R-linear and therefore, φ(x ⊗ y) ∈ T (M) for all
(x, y) ∈ M × N . It follows that T (M ⊗R N) ⊆ T (M). Similarly, T (M ⊗R N) ⊆
T (N). This proves (a).

We now prove (b). By [1, Theorem 2.6], T (M) = θ(M). Therefore, by [1, Theorem
2.3] and part (a), T (M ⊗R N) = T (M)T (M ⊗R N). Thus, again by part (a),
T (M)T (N) ⊆ T (M ⊗R N) = T (M)T (M ⊗R N) ⊆ T (M)T (N).

Part (c) is immediate from the fact that T (M)T (N) ⊆ T (M⊗RN) ⊆ T (M)∩T (N)
and [1, Theorem 2.3]. �

Remark 2.22. If M and N are multiplication R-modules then, in general, T (M
⊗R N) 6= T (M)T (N) as can be seen from the following example: Let k be a field
and k[x] be the polynomial ring in indeterminate x. Let R = k[x]/(x2) and let
y denote the natural image of x in R. Let M = R/(y). Then T (M) = (y) and
T (M ⊗R M) = (y) 6= 0 = T (M)T (M).

However, the following result is immediate from Lemma 2.21.

Corollary 2.23. If M and N are faithful multiplication R-modules then so is
M ⊗R N .

Proof. Put L = M ⊗R N and I = annR(L). By [2, Theorem 2.1], L is multi-
plication. We now prove that I = 0. By Lemma 2.4, IT (L) = 0. Therefore, by
Lemma 2.21, IT (M)T (N) = 0. As M and N are faithful, by [1, Theorem 2.6], we
have T (M) = θ(M) and T (N) = θ(N). Again, by Lemma 2.4, θ(M) and θ(N)
are faithful. Therefore, I = 0. �

3. A neat proof

Let M be a multiplication R-module. In [9, Theorem 2.4], the equality of T (M)
and D0(M) is proved. Incorporating this result as a part of the proof, in [1,
Theorem 2.6], it is shown that if M is faithful then T (M) = τ(M) = θ(M) =
D0(M). However, the proof in [9, Theorem 2.4] is bit too complicated and long.
We present here a simple and neat proof of T (M) = D0(M) along with the
relations which hold among T (M), τ(M), θ(M) and D0(M) in general. Obviously,
not much is new in the remaining proofs.
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Theorem 3.1. Let M be a multiplication R-module. Then

(a) T (M) = T (M)τ(M) ⊆ τ(M).

(b) τ(M) = θ(M).

(c) T (M) = D0(M).

(d) If M is faithful then T (M) = τ(M) = θ(M) = D0(M).

Proof. The proof of (a) and (b) is given in the proof of [1, Theorem 2.6]. For the
sake of completeness, we reproduce them here.

By [4, Corollary 1.7], M = τ(M)M . Therefore, we have T (M) =
∑

f∈M∗ f(M) =∑
f∈M∗ f(τ(M)M) = τ(M)T (M) ⊆ τ(M). Hence (a) is proved.

We now prove (b). As θ(M)M =
∑

x∈M(Rx :M)M =
∑

x∈M Rx = M and
annR(M) ⊆ θ(M), we get τ(M) ⊆ θ(M). We now show that θ(M) ⊆ τ(M).
Let x ∈ M . Then Rx = (Rx :M)M = (Rx :M)τ(M)M = τ(M)(Rx :M)M =
τ(M)Rx. Therefore, there exists some a ∈ τ(M) such that (1 − a)Rx = 0 =
(1− a)(Rx :M)M . Hence (1− a)(Rx :M) ⊆ annR(M) ⊆ τ(M). Thus (Rx :M) ⊆
τ(M). As x ∈M is arbitrary, we get θ(M) ⊆ τ(M). Thus, (b) is proved.

We now prove (c). We first show that D0(M) ⊆ T (M). Let x ∈ M and let
a ∈ annR(annR(x)). It suffices to show that a ∈ T (M).

Let φ : Rx −→ R be the map given by φ(bx) = ab. Note that as a ∈
annR(annR(x)), φ is well defined.

As Rx = (Rx :M)M , there exist a1, . . . , an ∈ (Rx :M), x1, . . . , xn ∈ M and
b1, . . . , bn ∈ R such that x =

∑n
i=1 aixi and aixi = bix for all i = 1, . . . , n.

Therefore, (1−
∑n

i=1 bi)x = 0 and hence a(1−
∑n

i=1 bi) = 0.
For i = 1, . . . , n let fi :M −→ R denote the map given by fi(y) = φ(aiy).

Then fi(xi) = abi and therefore,
∑n

i=1 fi(xi) = a. Thus a ∈ T (M).

Conversely, let f ∈M∗ and let y ∈M . Then we have annR(y)f(y) = f(annR(y)y)
= 0. Therefore, f(y) ∈ annR(annR(y)) ⊆ D0(M). Clearly, T (M) ⊆ D0(M). Thus
(c) is proved.

Now assume that M is faithful. To show T (M) = τ(M) = θ(M) = D0(M), it suf-
fices to show that θ(M) ⊆ D0(M). Let z ∈M . Then Rz = (Rz :M)M and there-
fore, annR(z)Rz = 0 = annR(z)(Rz :M)M . As M is faithful, annR(z)(Rz :M) =
0. Hence (Rz :M) ⊆ annR(annR(z)). Thus θ(M) ⊆ D0(M). �

4. Dense submodules of a multiplication module

Recall that a submodule N of an R-module M is said to be dense in M if∑
f(N) = M , where the summation is taken over all f ∈ HomR(N,M).

Remark 4.1. Let M be an R-module and let N be a submodule of M . Let
I ⊆ annR(M) be an ideal. Put R′ = R/I. Then M is an R′-module and N is an
R′ submodule of M . It is immediate that if N is dense in M as an R-submodule
if and only if N is dense in M as an R′-submodule.

We now prove two lemmas.
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Lemma 4.2. Let M be an R-module and let N be a dense submodule of M . Then
we have

(a) annR(N) = annR(M).

(b) T (M) ⊆ T (N).

(c) If M is faithful and multiplication then T (N) = T (M).

Proof. Proof of part (a) is trivial. We now prove (b). Let x ∈M and let f ∈M∗.
As N is dense in M , there exist g1, . . . , gn ∈ HomR(N,M) and x1, . . . , xn ∈ N
such that x =

∑n
i=1 gi(xi). Therefore, f(x) =

∑n
i=1 fogi(xi) ∈ T (N). This proves

(b).
Now assume that M is a faithful multiplication R-module. Then, by [1,

Theorem 2.6], T (M) = θ(M) and by Lemma 2.4, N = θ(M)N . Therefore,
T (N) = θ(M)T (N) ⊆ θ(M) = T (M). Thus (c) is proved. �

Lemma 4.3. Let M be an R-module and let N be a submodule of M such that
T (N) = R. Then N is dense in M .

Proof. As T (N) = R, there exist f1, . . . , fn ∈ N∗ and y1, . . . , yn ∈ N such that∑n
i=1 fi(yi) = 1. Let x ∈ M . For i = 1, . . . , n, define φi :N −→ M by setting

φi(y) = fi(y)x. Clearly,
∑n

i=1 φi(yi) = x and therefore, N is dense in M . �

As a corollary to Lemma 4.3, we obtain [11, Theorem 11].

Corollary 4.4. Let M be an R-module and let N be a finitely generated submod-
ule of M such that N is multiplication. Then N is dense in M if and only if
annR(M) = annR(N).

Proof. The necessity follows by Lemma 4.2. We now prove the sufficiency. In
view of Remark 4.1, we may assume that M is faithful. Then, N is also faithful.
As N is finitely generated and faithful, by [1, Theorem 2.6] and [1, Corollary 2.2],
T (N) = θ(N) = R. Now apply Lemma 4.3. �

In the next result we show that every dense submodule of a multiplication module
is itself multiplication. This generalises several results which have been proved
with some additional condition either on M or on N (see, for example, Corollary 8
and Theorem 9 of [11]).

Theorem 4.5. Let M be a multiplication R-module and let N be a dense sub-
module of M . Then N is multiplication.

Proof. In view of Remark 4.1, we may assume that M is faithful. Then by
Lemma 4.2, N is faithful. Let x ∈ N . Then, by Lemma 2.4, there exists some
a ∈ θ(M) such that (1−a)x = 0. Now, by [1, Lemma 2.1], aM is finitely generated.
Furthermore, as aM is a homomorphic image of M , it is a multiplication R-
module. Note that aN is a dense submodule of aM . Therefore, by [11, Theorem 9],
aN is a finitely generated multiplication R-module. As x = ax ∈ aN , there exists
some ideal I of R such that Rx = aIN . Thus, by [4, Proposition 1.1], N is
multiplication. �
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Theorem 4.6. Let M be a multiplication R-module and let N be a submodule of
M . Then N is dense in M if and only if annR(N) = annR(M) and θ(N) = θ(M).

Proof. In view of Remark 4.1 and Lemma 2.4(f), we may assume that M is
faithful.

First assume that N is dense in M . Then by Theorem 4.5, N is multiplica-
tion. Now, by Lemma 4.2, N is faithful and T (N) = T (M). Therefore, by [1,
Theorem 2.6], θ(N) = T (N) = T (M) = θ(M).

Conversely, assume that N is faithful and θ(N) = θ(M). Then, by Corollary 2.13,
N is multiplication. Furthermore, by [1, Theorem 2.6], T (N) = θ(N) = θ(M).
Let x ∈ M . Then, by Lemma 2.4, there exists some a ∈ θ(M) = T (N) such that
(1 − a)x = 0. Hence there exist f1, . . . , fn ∈ N∗ and y1, . . . , yn ∈ N such that∑n

i=1 fi(yi) = a. For i = 1, . . . , n, define φi :N −→ M by setting φi(y) = fi(y)x.
Clearly,

∑n
i=1 φi(yi) = ax = x and therefore, N is dense in M . �

Remark 4.7. Let M be a multiplication R-module and let N be a submodule
of M . If θ(M) = θ(N) then N need not be dense in M as can be seen from the
following example: Let (R,m) be a Noetherian local ring of depth zero. Assume
further that R is not a field. Choose a ∈ m \ {0} such that am = 0. Put I = Ra.
Then I is a multiplication ideal of R, θ(I) = R = θ(R) and I is not dense in R as
annR(I) = m 6= 0 = annR(R).

Similarly, if annR(N) = annR(M) then N is not necessarily dense in M even
if N is multiplication. For example see, [11, Example 13].

Thus the sufficiency conditions in Theorem 4.6 are strict.

The following result improves on [11, Corollary 8] and [11, Theorem 9].

Corollary 4.8. Let M be a multiplication R-module and let N be a dense sub-
module of M . Then N is a multiplication R-module. Furthermore, N is finitely
generated if and only if M is finitely generated.

Proof. By Theorem 4.5 and Theorem 4.6, N is multiplication and θ(N) = θ(M).
Now apply [1, Corollary 2.2]. �

The next result is an easy consequence of Theorem 4.6 and Corollary 4.8.

Theorem 4.9. Let M be a finitely generated multiplication R-module and let N
be a submodule of M . Then N is dense in M if and only if N is finitely generated
multiplication and annR(N) = annR(M).

Proof. The necessity follows by Corollary 4.8 and Lemma 4.2. We now prove
the sufficiency. As both M and N are finitely generated and multiplication, by
[1, Corollary 2.2], we have θ(N) = R = θ(M). Now, apply Theorem 4.6. �

In the next result, we show that the denseness of a submoduleN of a multiplication
module M can be described in terms of denseness of certain ideal of θ(M) in θ(M).
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Theorem 4.10. Let M be a faithful multiplication R module, N be a submodule
of M and let I = (N : RM)θ(M). Then N is dense in M if and only if I is dense
in θ(M).

Proof. As M is faithful, by Lemma 2.4, θ(M) is faithful. Furthermore, by [1,
Theorem 2.3 and Theorem 2.6], θ(M) is an idempotent multiplication ideal of R,
θ(θ(M)) = θ(M), I = Iθ(M) and θ(M) = T (M). Now, assume that N is a dense
submodule of M . By Theorem 4.5 and Theorem 4.6, N is faithful, multiplication
and θ(N) = θ(M). Moreover, by Lemma 2.15, I is a multiplication ideal of R. As
N is faithful and N = IM it follows that I is faithful. Thus it suffices to prove that
θ(I) = θ(θ(M)) = θ(M). As I = Iθ(M), we have θ(I) ⊆ θ(M). Furthermore,
θ(I)N = θ(I)IM = IM = N and therefore, θ(N) ⊆ θ(I). As θ(N) = θ(M), we
have θ(I) = θ(M).

Conversely, assume that I is dense in θ(M). Then, again by Theorem 4.5 and
Theorem 4.6, I is faithful, multiplication and θ(I) = θ(M). It follows that N =
IM is faithful. Furthermore, by Lemma 2.15, N is multiplication. As N =
θ(M)N , we have θ(N) ⊆ θ(M). Note that N = θ(N)N = Iθ(N)M . Thus I =
Iθ(M) = IT (M) = I

∑
f∈M∗ f(M) =

∑
f∈M∗ f(IM) =

∑
f∈M∗ f(Iθ(N)M) =

Iθ(N)
∑

f∈M∗ f(M) = Iθ(N)T (M) = Iθ(N)θ(M) = Iθ(N). As I is faithful,
by [1, Theorem 2.6], we have θ(I) = T (I). Therefore, by Lemma 2.4, we have,
θ(M) = θ(I) = T (I) = θ(N)T (I) ⊆ θ(N). Now, by Theorem 4.6, N is dense in
M . �

5. Forcing linearity number for a multiplication module

Throughout this section let M denote an R-module. We now recall the following
definition:

Definition 5.1. A map f :M −→ M is said to be R-homogeneous if f(ax) =
af(x) for all a ∈ R and for all x ∈M .

Let MR(M) = {f :M →M | f is R-homogeneous}. Then EndR(M) ⊆ MR(M).
Following [6], we say that a collection F of proper submodules of M forces

linearity on M if the following happens: Let f ∈ MR(M). Then f ∈ EndR(M) if
and only if f is linear on each N ∈ F.

We now define the forcing linearity number fln(M) for M as follows:
(a) If EndR(M) = MR(M), then fln(M) is defined to be 0.

(b) If EndR(M) 6= MR(M) then fln(M) is defined to be a positive integer n
if there exists a collection F of proper submodules of M such that |F| = n
and F forces linearity on M but no collection F′ of proper submodules of M
with |F′| < n forces linearity on M .

(c) If neither of the above conditions holds then fln(M) is defined to be ∞.
In this section we show that the forcing linearity number for a multiplication
module is 0.

We now prove two lemmas.
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Lemma 5.2. If M is cyclic then EndR(M) = MR(M).

Proof. Trivial. �

Lemma 5.3. Let S ⊂ R be a multiplicative set and let f ∈ MR(M). Define

S−1f :S−1M −→ S−1M by setting S−1f(
x

s
) =

f(x)

s
. Then S−1f is well defined

and S−1f ∈ MS−1R(S−1M).

Proof. Let
x

s
,
y

t
∈ S−1M such that

x

s
=

y

t
. Then there exists u ∈ S such

that utx = usy. As f ∈ MR(M), we have utf(x) = f(utx) = f(usy) = usf(y).

Clearly, S−1f(
x

s
) = S−1f(

y

t
). Thus S−1f is well defined.

Now let
a

s
∈ S−1R and

x

t
∈ S−1M . Then

S−1f(
a

s

x

t
) = S−1f(

ax

st
) =

f(ax)

st
=
af(x)

st
=
a

s

f(x)

t
=
a

s
S−1f(

x

t
).

Therefore, S−1f ∈ MS−1R(S−1M). �

We now prove the following theorem:

Theorem 5.4. If M is a multiplication R-module then fln(M) = 0.

Proof. Let f ∈ MR(M) and let P be a prime ideal of R. Let S = R \ P and
let fP = S−1f . Then by Lemma 5.3, fP ∈ MRP

(MP ). As MP is a multiplication
module over the local ring RP , by [3, Proposition 4], MP is a cyclic RP -module
and hence by Lemma 5.2, fP ∈ EndRP

(MP ). Let x, y ∈ M . Put z = f(x + y) −
f(x)− f(y). Clearly,

z

1
= 0 in MP . As P is arbitrary, we have z = 0. Therefore,

f ∈ EndR(M). �

If M is an R-module with fln(M) = 0 then M need not be multiplication even if
M is finitely generated and R is Noetherian (or Noetherian local). This we show
by the following example: Let k be a field and let x, y be indeterminates. Let
R = k[x, y] (or k[[x, y]]) and I = (x, y). One easily checks that if f ∈ MR(M)
then there exists some α ∈ R such that f(a) = αa for all a ∈ I. Thus MR(M) =
EndR(M). As I is not locally principal, by [3, Proposition 4], I can not be
multiplication.

However, if R is Noetherian and M is finitely generated then the following, a
reformulation of [7, Theorem 2.3], does hold:

Theorem 5.5. Let R be Noetherian and let M be finitely generated. Let S be
the set of nonzero divisors of M . Then flm(M) = 0 if and only if S−1M is a
multiplication S−1R-module.
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