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Abstract. Warped product manifolds provide excellent setting to
model space-time near black holes or bodies with large gravitational
force (cf. [1], [2], [14]). Recently, results are published exploring the
existence (or non-existence) of warped product submanifolds in Kaehle-
rian and contact settings (cf. [6], [17], [20]). To continue the sequel, we
have considered warped product submanifolds of nearly Kaehler man-
ifolds with one of the factors a holomorphic submanifold. Such sub-
manifolds are generic submanifolds in the sense of B. Y. Chen [5] and
provide a generalization of CR and semi-slant submanifolds. It is shown
that nearly Kaehler manifolds do not admit non-trivial warped product
generic submanifolds, thereby generalizing the results of Chen [6] and
Sahin [20]. However, non-trivial generic warped products (obtained by
reversing the two factors of warped product generic submanifolds) exist
in nearly Kaehler manifolds (cf. [21]). Some interesting results on the
geometry of these submanifolds are obtained in the paper.
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1. Introduction

In [2], R. L. Bishop and B. O’Neill introduced the notion of warped product
manifolds by homothetically warping the product metric of a product manifold
B × F on the fibers p × F for each p ∈ B. This generalized product metric
appears in differential geometric studies in a natural way. For example, a surface of
revolution is a warped product manifold. With regard to the physical applications
of these manifolds, one may realize that the space time around a massive star or
a black hole can be modeled on a warped product manifold for instance, the
relativistic model of Schwarzschild.

The study of differential geometry of warped product manifolds are intensified
after the impulse given by B. Y. Chen’s work on warped product CR-submanifolds
of Kaehler manifolds (cf., [6], [7]). B. Sahin [20], extending the study of Chen
proved that there do not exist warped product semi-slant submanifolds in Kaehler
manifolds. In view of the physical applications of these manifolds, the question of
existence or non-existence of warped product submanifolds assumes significance in
general. In the present paper, we have addressed the same problem in the setting
of nearly Kaehler manifolds for a larger class of warped product submanifolds and
thus generalize the results of Chen [6] and Sahin [20]. To be more precise, we inves-
tigated warped product submanifolds of nearly Kaehler manifolds with one of the
factors a holomorphic submanifold. Besides the fact, that a nearly Kaehler struc-
ture on an almost Hermitian manifold provides an interesting geometric study,
our study is also relevant due to the fact that one of the most important nearly
Kaehler manifolds, namely S6 fails to admit CR-product submanifolds. However,
it does admit CR-warped product submanifolds (cf., [21]). Some important ge-
ometric properties of these warped product submanifolds follow from our study.
In particular an inequality for the squared norm of the second fundamental form
of generic warped product submanifolds in nearly Kaehler manifolds is obtained
which generalizes the similar inequality for CR-warped product submanifolds in
the Kaehler setting (cf. [6]).

2. Preliminaries

Let (M̄, J, g) be a nearly Kaehler manifold with an almost complex structure J
and Hermitian metric g and a Levi-Civita connection ∇̄ such that

g(JU, JV ) = g(U, V ), (2.1)

(∇̄UJ)U = 0 (2.2)

for all vector fields U and V on M̄ . Let M be a submanifold of M̄. Then the
induced Riemannian metric on M is denoted by the same symbol g and the
induced connection on M is denoted by the symbol ∇. If TM̄ and TM denote
the tangent bundle on M̄ and M respectively and T⊥M , the normal bundle on
M , then the Gauss and Weingarten formulae are respectively given by

∇̄UV = ∇UV + h(U, V ), (2.3)

∇̄Uξ = −AξU +∇⊥Uξ, (2.4)
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for U, V ∈ TM and ξ ∈ T⊥M where ∇⊥ denotes the connection on the normal
bundle T⊥M . h and Aξ are the second fundamental forms and the shape operator
of the immersions of M into M̄ corresponding to the normal vector field ξ. They
are related as

g(AξU, V ) = g(h(U, V ), ξ). (2.5)

The mean curvature vector H of M is given by

H =
1

n

n∑
i=1

h(ei, ei),

where n is the dimension of M and {e1, e2, . . . , en} is a local orthonormal frame of
vector fields on M . The squared norm of the second fundamental form is defined
as

‖h‖2 =
n∑

i, j=1

g(h(ei, ej), h(ei, ej)). (2.6)

A submanifold M of M̄ is said to be a totally geodesic submanifold if h(U, V ) = 0
for each U, V ∈ TM and a submanifold is said to be totally umbilical submanifold
if h(U, V ) = g(U, V )H.

For any U ∈ TM and ξ ∈ T⊥M we write

JU = PU + FU, (2.7)

Jξ = tξ + fξ, (2.8)

where PU and tξ are the tangential components of JU and Jξ respectively and
FU and fξ are the normal components of JU and Jξ respectively.

The covariant differentiation of the tensors P, F, t and f are defined respec-
tively as

(∇̄UP )V = ∇UPV − P∇UV, (2.9)

(∇̄UF )V = ∇⊥UFV − F∇UV, (2.10)

(∇̄U t)ξ = ∇U tξ − t∇⊥Uξ, (2.11)

(∇̄Uf)ξ = ∇⊥Ufξ − f∇⊥Uξ. (2.12)

Furthermore, for any U, V ∈ TM, let us decompose (∇̄UJ)V into tangential and
normal parts as

(∇̄UJ)V = PUV +QUV. (2.13)

By making use of equations (2.3)–(2.10), we may obtain that

PUV = (∇̄UP )V − AFV U − th(U, V ), (2.14)

QUV = (∇̄UF )V + h(U, PV )− fh(U, V ). (2.15)

Similarly for ξ ∈ T⊥M, denoting by PUξ and QUξ respectively the tangential and
normal parts of (∇̄UJ)ξ, we find that

PUξ = (∇̄U t)ξ + PAξU − AfξU, (2.16)
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QUξ = (∇̄Uf)ξ + h(tξ, U) + FAξU. (2.17)

The following properties of P and Q are used in our subsequent sections and can
be verified through a straightforward computation

(p1) (i) PU+V W = PUW + PV W,

(ii) QU+V W = QUW +QV W,

(p2) (i) PU(V + W ) = PUV + PUW,

(ii) QU(V + W ) = QUV +QUW,

(p3) (i) g(PUV, W ) = − g(V,PUW ),

(ii) g(QUV, ξ) = − g(V,PUξ),

(p4) PUJV +QUJV = − J(PUV +QUV ).

On a submanifold M of a nearly Kaehler manifold, by equations (2.2) and (2.13)

(a) PUV + PV U = 0, (b) QUV +QV U = 0 (2.18)

for any U, V ∈ TM .

3. Some basic results

Let M̄ be an almost Hermitian manifold with an almost complex structure J and
Hermitian metric g and M, a submanifold of M̄ . For each x ∈ M, let Dx = TxM∩
JTxM be the maximal holomorphic subspace of the tangent space TxM at x ∈ M .
If D : x → Dx defines a smooth distribution on M , then M is called a generic
submanifold of M̄ [5]. A generic submanifold M of an almost Hermitian manifold
is said to be a CR-submanifold if the orthogonal complementary distribution D0

of D in TM is totally real i.e., JD0
x ⊆ T⊥x M for each x ∈ M . On a generic

submanifold of an almost Hermitian manifold M̄ , the tangent bundle TM and
the normal bundle T⊥M are decomposed as

(a) TM = D ⊕D0, (b) T⊥M = FD0 ⊕ µ, (3.1)

where µ is the orthogonal complementary distribution to FD0 and is invariant
under J . Moreover, following are some easy observations

(a) FD = {0}, (b) PD = D,

(c) PD0 ⊆ D0 and (d) t(T⊥M) = D0.

 (3.2)

In terms of P, F, t and f we have

(e) P 2 + tF = −I, f 2 + Ft = −I,

(f) FP + fF = 0, tf + Pt = 0.

 (3.3)

An immersed submanifold M of an almost Hermitian manifold M̄ is said to be a
slant submanifold if the Wirtinger angle θ(X) ∈ [0, π/2] between JX and TxM
has the same value θ for any x ∈ M and X ∈ TxM , X 6= 0 (cf. [3]). Holomorphic
and totally real submanifolds are slant submanifolds with Wirtinger angle 0 and
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π/2 respectively. A slant submanifold is called proper slant if it is neither holo-
morphic nor totally real. More generally, a distribution Dθ on M̄ is called a slant
distribution if the angle θ(X) between JX and Dθ

x has the same value θ for each
x ∈ M̄ and X ∈ Dθ

x, X 6= 0.

If M is a slant submanifold of an almost Hermitian manifold M̄ , then we have
(cf. [3])

P 2 = − cos2(θ)I, (3.4)

where θ is the Wirtinger angle of M in M̄ . Hence, we have

g(PU, PV ) = cos2(θ)g(U, V ), (3.5)

g(FU, FV ) = sin2(θ)g(U, V ), (3.6)

for U, V tangent to M .

A natural generalization of CR-submanifolds in terms of slant distribution was
given by N. Papaghiuc [19]. These submanifolds are known as semi-slant sub-
manifolds. He defined these submanifolds as

Definition 3.1. A submanifold M of an almost Hermitian manifold is called a
semi-slant submanifold if it is endowed with two orthogonal complementary dis-
tributions D and Dθ such that D is holomorphic and Dθ is slant.

It is straight forward to see that CR-submanifolds and slant submanifolds are
semi-slant submanifolds with θ = π/2 and D = {0} respectively, whereas a generic
submanifold M is a semi-slant submanifold if the complementary distribution D0

of D on M is a slant distribution.

On using some of the formulas developed in the last section, we obtain the fol-
lowing criteria for the integrability of the distributions involved in the setting of
generic submanifold of a nearly Kaehler manifold.

Theorem 3.1. Let M be a generic submanifold of a nearly Kaehler manifold M̄.
Then the holomorphic distribution D on M is integrable if and only if

h(X, PY ) = h(PX, Y ) and QXY = 0

for any X, Y ∈ D.

Proof. By equations (2.3), (2.15) and (2.18)(b), we have

g(F [X, Y ], ξ) = g(h(X, PY )− h(PX, Y ) + 2QY X, ξ)

for any X,Y ∈ TM and ξ ∈ T⊥M. Hence, D is integrable if and only if

2QXY = h(X, PY )− h(PX, Y ). (3.7)

It is known that the Nijenhuis tensor S of J on M̄ satisfies

S(U, V ) = 4J(∇̄UJ)V
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for each U, V ∈ TM̄. Moreover, as (∇̄UJ)JV = −J(∇̄UJ)V , we get

S⊥(X, Y ) = −4QXJY (3.8)

where S⊥(X,Y ) denotes the normal part of S(X,Y ). Now as

S(U, V ) = [JU, JV ]− [U, V ]− J [U, JV ]− J [JU, V ].

By equation (2.7), we have

S⊥(X, Y ) = F ([X, PY ] + [PX, Y ])

and therefore by equation (3.5)

F ([X,PY ] + [PX, Y ]) = −4QXJY. (3.9)

The assertion is proved by virtue of (3.7), (3.8) and (3.9).

A generic submanifold M is called a generic product if the distributions D and D0

are parallel on M . In this case M is foliated by the leaves of these distributions,
forcing M to be locally a Riemannian product of their leaves. In particular if
M is a CR-submanifold with parallel distributions then it is called a CR-product.
B. Y. Chen [4] proved that a CR-submanifold of a Kaehler manifold is a CR-
product if and only if ∇̄P = 0 or equivalently AJD0D = 0.

In general, if M1 and M2 are Riemannian manifolds with Riemannian metric
g1 and g2 respectively then the product manifold (M1 ×M2, g) is a Riemannian
manifold with the Riemannian metric g defined as

g(U, V ) = g1(dπ1U, dπ1V ) + g2(dπ2U, dπ2V )

where πi(i = 1, 2) are the projection maps of M onto M1 and M2 respectively and
dπi(i = 1, 2) are their differentials.

As a generalization of the product manifold and in particular of a generic
product submanifold, one can consider warped product of manifolds which are
defined as

Definition 3.2. Let (B, gB) and (F, gF ) be two Riemannian manifolds with Rie-
mannian metrics gB and gF respectively and f , a positive differentiable function
on B. The warped product of B and F is the Riemannian manifold

B ×f F = (B × F, g),

where
g = gB + f 2gF . (3.10)

More explicitly if U is tangent to M = B ×f F at (p, q) then

‖U‖2 = ‖dπ1U‖2 + f 2(p)‖dπ2U‖2,
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where the function f is known as the warping function.
Bishop and O’Neill [2] obtained the following basic results for warped product

manifolds

Theorem 3.2. [2] Let M = B×f F be a warped product manifold. If X, Y ∈ TB
and V, W ∈ TF then

(i) ∇XY ∈ TB,

(ii) ∇XV = ∇V X = (Xf
f

)V,

(iii) nor(∇V W ) = −g(V,W )
f

∇f

where nor(∇V W ) is the component of ∇V W in TB and ∇f is the gradient of f ,
defined by g(∇f, U) = Uf , for all U ∈ TM .

Corollary 3.1. On a warped product manifold M = M1 ×f M2

(i) M1 is totally geodesic in M ,

(ii) M2 is totally umbilical in M .

Throughout, we denote by NT and N⊥ a holomorphic and a totally real subman-
ifold respectively of an almost Hermitian manifold M̄ .

B. Y. Chen [5] studied CR-submanifolds of a Kaehler manifold which are
warped product of the form N⊥ ×f NT and NT ×f N⊥, known as warped prod-
uct CR-submanifolds and CR-warped product submanifolds respectively. He
proved that warped product CR-submanifolds are simply CR-products whereas
CR-warped product submanifolds in a Kaehler manifold are non-trivial. He fur-
ther worked out a characterization for a CR-submanifold of a Kaehler manifold
to be locally a CR-warped product submanifold.

A warped product manifold is said to be trivial if its warping function f is
constant. More generally, a trivial warped product manifold M = N1 ×f N2 is a

Riemannian product N1 ×N f
2 where N f

2 is the manifold with Riemannian metric
f 2g2 which is homothetic to the original metric g2 of N2. For example, a trivial
CR-warped product is a CR-product.

B. Sahin [20] extended the study of warped product CR-submanifolds and CR-
warped product submanifolds of Kaehler manifolds by introducing warped product
submanifolds Nθ×f NT and NT ×f Nθ where Nθ denotes a slant submanifold with
Wirtinger angle θ. He obtained the following theorems.

Theorem 3.3. [20] Let M̄ be a Kaehler manifold. Then there do not exist warped
product submanifolds M = Nθ×fNT in M̄ such that Nθ is proper slant submanifold
and NT is a holomorphic submanifold of M̄ .

Theorem 3.4. [20] Let M̄ be a Kaehler manifold. Then there do not exist
warped product submanifolds M = NT ×f Nθ in M̄ such that NT is a holomorphic
submanifold and Nθ, a proper slant submanifold of M̄ .

Note. Theorem 3.3 is valid for all θ ∈ [0, π/2] whereas there are many examples
of CR-warped product submanifolds NT ×f N⊥ in Kaehler manifolds which are
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not CR-products strengthening the fact that Theorem 3.4 is valid for the case of
proper semi-slant warped product submanifolds(cf. [6]).

As a step forward, we study warped product submanifolds of nearly Kaehler
manifolds with one of the factors a holomorphic submanifold, namely N×f NT and
NT ×f N in a nearly Kaehler manifold M̄ where N is an arbitrary submanifold
and NT a holomorphic submanifold of M̄ . In the sequel we call these warped
products as warped product generic submanifolds and generic warped product
submanifolds respectively. The trivial case of these warped products is a generic
product.

4. Warped product generic submanifolds of nearly Kaehler manifolds

Let M̄ be a nearly Kaehler manifold and M = N ×f NT be a warped product
generic submanifold of M̄ . Then by Theorem 3.2,

∇XZ = ∇ZX = (Z ln f)X (4.1)

for any X ∈ TNT and Z ∈ TN . Thus, for any Y ∈ TNT

Z ln fg(X, Y ) = g(∇JXZ, JY )

= −g(Z, ∇̄JXJY )

= −g(Z,PJXY )− g(Z, J∇̄JXY ).

On making use of the equations (2.18) (a), (p4), (2.3), (2.7), (4.1) and the Theorem
3.1, the right hand side of the above equation takes the form

g(PZ,PY X)− (PZ ln f)g(JX, Y ) + g(h(JX, Y ), FZ).

Thus, we have

g(PZ,PY X) = (Z ln f)g(X, Y ) + (PZ ln f)g(JX, Y )− g(h(JX, Y ), FZ).

Taking account of skew symmetry of P in X and Y and applying Theorem 3.1,
the above equation yields

g(h(JX, Y ), FZ) = (Z ln f)g(X, Y ). (4.2)

Now by equations (2.13), (2.18) and property (p4),

g(∇̄JXJX, JZ) = g(∇̄JXX, Z)

= g(∇JXX, Z).

Clearly the right hand side is zero by virtue of formula (4.1). Thus,

g(∇̄JXJX, JZ) = 0. (4.3)
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On the other hand by Gauss formula, we may write

g(h(JX, JX), FZ) = g(∇̄JXJX,FZ),

= g(∇̄JXJX, JZ)− g(∇JXJX, PZ).

On applying equations (4.1) and (4.3), the above equation yields

g(h(JX, JX), FZ) = (PZ ln f)‖X‖2. (4.4)

It follows from equation (4.2) and (4.4) that

PZ ln f = 0.

Hence, we have proved

Theorem 4.1. Let M̄ be a nearly Kaehler manifold and M = N ×f NT a warped
product submanifold of M̄ with N and NT a Riemannian and a holomorphic sub-
manifolds respectively of M̄ . Then M is trivial i.e., a generic product submanifold
of M̄ .

As a consequence of the above theorem, it follows that there does not exist a
warped product semi-slant submanifold of nearly Kaehler manifolds. In other
words, Theorem 4.1 generalizes Theorem 3.3.

5. Generic warped product submanifolds of a nearly Kaehler manifold

To complete the study, we now investigate generic warped product submanifolds
NT ×f N and in particular semi-slant warped product submanifolds NT ×f Nθ of
a nearly Kaehler manifold M̄ .

Let M = NT ×f N be a generic warped product submanifold of a nearly
Kaehler manifold M̄ . Then by Theorem 3.2,

∇XZ = ∇ZX = (X ln f)Z (5.1)

whereas by formula (2.9) and Theorem 3.2,

(∇̄ZP )W = g(Z,W )P (∇ ln f)− g(Z, PW )∇ ln f (5.2)

for each X ∈ TNT and Z, W ∈ TN . We begin the section exhibiting some
important relations of the second fundamental form h(U, V ) and PUV .

Lemma 5.1. On a generic warped product submanifold M = NT ×f N of a nearly
Kaehler manifold M̄ , we have

(i) g(PXY, Z) = g(h(X, Y ), FZ) = 0

(ii) g(PXZ, PZ) = g(h(X, Z), FPZ)− g(h(X, PZ), FZ)

(iii) g(h(PX, Z), FZ) = (X ln f)‖Z‖2
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for each X, Y ∈ TNT and Z ∈ TN.

Proof. As NT is totally geodesic in M , (∇̄XP )Y ∈ TNT and therefore by formula
(2.14)

g(PXY, Z) = −g(th(X, Y ), Z)

= g(h(X, Y ), FZ).

The right hand side of the above equation is symmetric in X and Y whereas the
left hand side is skew symmetric in X and Y . Hence (i) holds.

By formulae (2.14) and (5.1),

PXPZ = −AFPZX − th(X, PZ).

Taking product with Z, the above equation on making use of equation (2.5) and
property (p3) yields,

g(PXZ, PZ) = g(h(X, Z), FPZ)− g(h(X, PZ), FZ).

This verifies statement (ii).

Now, by formula (2.14) and equation (2.18)(a),

0 = (∇̄XP )Z + (∇̄ZP )X − 2th(X,Z)− AFZX. (5.3)

As by formulae (2.9) and (5.1), (∇̄XP )Z = 0, equation (5.3), on taking account
of this fact and formula (5.1), yields

(∇̄ZP )X = (PX ln f)Z − (X ln f)PZ = 2th(X, Z) + AFZX. (5.4)

Taking product with Z in (5.4) and replacing X by PX, statement (iii) follows
completing the proof of the lemma.

Theorem 5.1. A generic submanifold M with involutive distributions D and D0

in a nearly Kaehler manifold M is locally a generic warped product if and only if
∇ZPZ ∈ D0and there exists a C∞-function α on M with Zα = 0 for all Z ∈ D0

such that

AFZX = −[(JXα)Z +
1

3
(Xα)PZ] (5.5)

for each X in D and Z in D0.

Proof. If M is a generic warped product submanifold NT ×f N0 of a nearly
Kaehler manifold M , then by (5.1), ∇ZPZ ∈ TN0. Further, by (2.9) and (5.1)
(∇XP )Z = 0 for each X ∈ TNT and Z ∈ TN0. Thus, (2.14) gives

PXZ = −AFZX − th(X, Z). (5.6)

On the other hand by (2.9), (2.14) and (5.1),

PZX = (PX ln f)Z − (X ln f)PZ − th(X, Z). (5.7)
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As M is nearly Kaehler, adding (5.6) and (5.7) gives

AFZX = (PX ln f)Z − (X ln f)PZ − 2th(X, Z).

Therefore, for any W ∈ TN0,

−3g(AFZX, W ) = 3(PX ln f) g(Z,W ) + (X ln f) g(PZ,W ),

or,

g(AFZX, W ) = −[(PX ln f) g(Z,W ) +
X ln F

3
g(PZ,W )]. (5.8)

(5.5) is proved in view of (5.8) and Lemma (5.1)(i).

Conversely, let M be a generic submanifold of M satisfying the hypothesis of the
Theorem. Then for any X,Y ∈ D and Z ∈ D0,

g(h(X, Y ), FZ) = g(AFZX, Y ) = 0.

That means h(X, Y ) ∈ µ. Since D is involutive it follows from (2.15) that

h(X, PY ) = F∇XY + fh(X, Y ).

Now, as F (TM) and µ are orthogonal complementary sub bundles of the normal
bundle T⊥(M), the last equation yields that F∇XY = 0 which means ∇XY ∈ D.
Hence each leaf of D is totally geodesic in M . Further, let N0 be a leaf of D0 and
h0be the second fundamental form of the immersion of N0 in M , then for any
X, Y ∈ D and Z,W ∈ D0,

g(h0(Z,W ), JX) = g(∇ZW, JX) = g(PZW −∇ZPW + AFW Z,X). (5.9)

Interchanging Z and W , the above relation takes the form

g(h0(Z,W ), JX) = g(PW Z −∇W PZ + AFZW, X). (5.10)

As ∇ZPZ ∈ D0 and M is nearly Kaehler, on adding (5.9) and (5.10) we obtain
that

2g(h0(Z,W ), JX) = g(AFW X, Z) + g(AFZX, W ).

On using (5.5), the above equation yields,

g(h0(Z,W ), X) = −(JXα) g(Z,W )

i.e.,
h0(Z,W ) = −g(Z,W )∇α.

That shows that the leaves of D0 are totally umbilical in M with mean curvature
vector ∇α. Moreover, the condition Zα = 0 for all Z ∈ D0, implies that the
mean curvature vector is parallel. That is, the leaves of D0 are extrinsic spheres
in M . Hence, by virtue of a result in [13] which states that “If the tangent bundle
of a Riemannian manifold M splits into an orthogonal sum TM = E1 ⊕ E0 of
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a non-trivial vector sub bundles such that E1 is auto-parallel and its orthogonal
complement E0 is spherical, then the manifold M is locally isometric to the warped
product N1 ×f N0”, we conclude that M is locally a generic warped product
submanifold of M with warping function eα. This proves the theorem.

Let N = Nθ be a slant submanifold of a nearly Kaehler manifold M̄ with Wirtinger
angle θ. Then the generic warped product submanifold M = NT ×f N reduces
to a semi-slant warped product submanifold. In what follows we study these
submanifolds in M̄ with the assumption that the Wirtinger angle θ 6= π/2. When
θ = π/2, the submanifold M is a CR-warped product submanifold which are
studied in the setting of Kaehler manifolds by B. Y. Chen [6] and in the setting
of nearly Kaehler manifolds by V. A. Khan et al. [15].

Lemma 5.2. On a proper semi-slant warped product submanifold M = NT ×f Nθ

of a nearly Kaehler manifold M̄ ,

g(h(X, PZ), FZ) = −g(h(X, Z), FPZ) = −1

3
cos2(θ)(X ln f)‖Z‖2 (5.11)

Proof. Taking product with PZ in equation (5.4) and making use of formula (3.5),
we obtain

2g(h(X,Z), FPZ)− g(h(X, PZ), FZ) = cos2(θ)(X ln f)‖Z‖2. (5.12)

As θ 6= π/2, replacing Z by PZ in the above equation and taking account of
equation (3.4), we deduce that

2g(h(X, PZ), FZ)− g(h(X, Z), FPZ) = − cos2(θ)(X ln f)‖Z‖2. (5.13)

Adding equations (5.12) and (5.13), we get

g(h(X, Z), FPZ) = −g(h(X, PZ), FZ). (5.14)

Using the relation (5.14) in (5.12), we obtain (5.11). That completes the proof.

Corollary 5.1. Let M be a proper semi-slant warped product submanifold of a
nearly Kaehler manifold M̄ . Then

g(PXZ, PZ) =
2

3
cos2(θ)(X ln f)‖Z‖2. (5.15)

Proof. The assertion follows on using (5.11) in relation (ii) of Lemma 5.1.

Theorem 5.2. A proper semi-slant warped product submanifold M = NT ×f Nθ

of a nearly Kaehler manifold M̄ is trivial if and only if the following equivalent
conditions hold

(i) g(h(X, Z), FPZ) = g(h(X, PZ), FZ)

(ii) g(PXZ, PZ) = 0
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for each X ∈ TNT and Z ∈ TNθ.

Proof. The two conditions are equivalent due to relation (ii) of Lemma 5.1. More-
over as θ 6= π/2, the assertion follows from formula (5.15).

Corollary 5.2. There exist no semi-slant warped product submanifolds NT ×f Nθ

of a nearly Kaehler manifold such that h(X, Z) ∈ µ for X ∈ TNT and Z ∈ TNθ.

Corollary 5.3. There exist no mixed totally geodesic semi-slant warped product
submanifolds in a nearly Kaehler manifold.

Let us denote by D and Dθ the tangent bundles on NT and Nθ respectively and let
{X1, . . . , Xp, Xp+1 = JX1, . . . , X2p = JXp} and {Z1, . . . , Zq} be local orthonormal
frames of vector fields on NT and Nθ respectively with 2p and q being their real
dimensions. Then by (2.6),

‖h‖2 =

2p∑
i, j=1

g(h(Xi, Xj), h(Xi, Xj)) +

2p∑
i, j=1

q∑
r=1

g(h(Xi, Zr), h(Xi, Zr))

+

q∑
r, s=1

g(h(Zr, Zs), h(Zr, Zs)). (5.16)

Now, on a semi-slant warped product submanifold of a nearly Kaehler manifold,
we prove

Theorem 5.3. Let M = NT×fNθ be a semi-slant warped product submanifold of a
nearly Kaehler manifold M̄ with NT and Nθ holomorphic and slant submanifolds
respectively of M̄ . Then the squared norm of the second fundamental form h
satisfies

‖h‖2 ≥ 2q csc2(θ){1 +
cos4(θ)

9
}‖∇ ln f‖2 (5.17)

where ∇ ln f is the gradient of ln f and q is the dimension of Nθ.

Proof. In view of the decomposition (3.1), we may write

h(U, V ) = hFDθ(U, V ) + hµ(U, V ) (5.18)

for each U, V ∈ TM , where hFDθ(U, V ) ∈ FDθ and hµ(U, V ) ∈ µ with

hFDθ(U, V ) =

q∑
r=1

hr(U, V )FZr (5.19)

where,
hr(U, V ) = csc2(θ)g(h(U, V ), FZr) (5.20)

for each U, V ∈ TM .
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Making use of formula (iii) of Lemma 5.1, formulae (5.19) and (3.6), we obtain

g(hFDθ(PXi, Zr), hFDθ(PXi, Zr)) = hr(PXi, Zr)(Xi ln f)

+ sin2(θ)
∑
s 6=r

(hs(PXi, Zr))
2

for each i = 1, . . . , 2p and r = 1, . . . , q. The above equation, on applying the
formula (5.20) and formula (iii) of Lemma 5.1 takes the form

g(hFDθ(PXi, Zr), hFDθ(PXi, Zr)) = csc2(θ)(Xi ln f)2

+ sin2(θ)
∑
s 6=r

(hs(PXi, Zr))
2.

Summing over i = 1, . . . , 2p and r = 1, . . . , q, the last equation gives

2p∑
i=1

q∑
r=1

g(hFDθ(PXi, Zr), hFDθ(PXi, Zr)) = 2q csc2(θ)‖∇ ln f‖2

+ sin2(θ)

2p∑
i=1

q∑
r,s=1, r 6=s

(hs(PXi, Zr))
2. (5.21)

Let us choose the orthonormal frame of vector fields on Dθ as {Z1, . . . , Zq/2,
PZ1, PZ2, . . . , PZq/2 = Zq}. Then the second term in the right hand side of
the last equation, on using (5.20) is written as

csc2(θ)

2p∑
i=1

[ q/2∑
r=1

{(g(h(PXi, Zr), FPZr))
2 + (g(h(PXi, PZr), FZr))

2}

+

q/2∑
r=1

q/2∑
s=1, s 6=r

{(g(h(PXi, Zr), FZs))
2 + (g(h(PXi, PZr), FPZs))

2}
]
.

On applying formula (5.11), the first two terms in the above expression reduce to

csc2(θ)

2p∑
i=1

[ q/2∑
r=1

4

9
cos4(θ)(PXi ln f)2‖Zr‖2

]
=

2q

9
cos4(θ) csc2(θ)‖∇ ln f‖2.

Taking account of the above into (5.21), we obtain

2p∑
i=1

q∑
r=1

g(hFDθ(PXi, Zr), hFDθ(PXi, Zr))

≥ 2q csc2(θ){1 +
1

9
cos4(θ)}‖∇ ln f‖2. (5.22)
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The inequality (5.17) follows from (5.16) and (5.22).
The equality in (5.17) holds if (i) h(D, D) = 0, (ii) h(Dθ, Dθ) = 0 and (iii)

h(Xi, PZr) is normal to FPZs and h(Xi, Zr) is normal to FZs for each i =
1, . . . , 2p and r = 1, . . . , q/2, where s 6= r.

The inequality (5.17) provides a generalization to the inequality obtained in
the setting of CR-warped products in Kaehler manifolds (cf. [6, Theorem 5.1]).
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