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Abstract. Denote by Km the mirror image of a planar convex body
K in a straight line m. It is easy to show that K∗

m = conv(K ∪ Km)
is the smallest (by inclusion) convex body whose axis of symmetry is
m and which contains K. The ratio axs(K) of the area of K to the
minimum area of K∗

m is a measure of axial symmetry of K. A question
is how to find a line m in order to guarantee that K∗

m be of the smallest
possible area. A related task is to estimate axs(K) for the family of
all convex bodies K. We give solutions for the classes of triangles,
right-angled triangles and acute triangles. In particular, we prove that
axs(T ) > 1

2

√
2 for every triangle T , and that this estimate cannot be

improved in general.
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1. Introduction

Denote by E2 the Euclidean plane, and let K ⊂ E2 be a convex body, i.e., a
compact, convex set with interior points. The mirror image of K in a straight line
m is denoted by Km. We call m the mirror line and put K∗

m = conv(K ∪Km). It
is easy to show that K∗

m is the smallest (by inclusion) convex body containing K
whose axis of symmetry is m. We omit proofs of the following claims.

Claim 1. Let K ⊂ E2 be a convex body. If the position of a straight line m
changes continuously, then area(K∗

m) changes continuously.

Claim 2. Let K ⊂ E2 be a convex body and let m and n be two parallel straight
lines such that only m passes through K. Then area(K∗

m) < area(K∗
n).

By the above claims and by compactness arguments we conclude that the infimum
of the area of K∗

m over all straight lines m is attained. So using the term minimum
instead of infimum is correct here (the same remark concerns many other places
of the paper where we consider compact families of straight lines m). If area(K∗

m)
attains the minimum value for a line m, we call it a best mirror line of K. The
number

axs(K) =
area(K)

min
m

area(K∗
m)

is the measure of axial symmetry of K, mainly studied in this paper.
We conjecture that axs(K) > 1

2

√
2 for every convex body K ⊂ E2 and that

this value cannot be improved. In [10] it is shown that for every K we have
axs(K) ≥ 16

31
. The papers [1] and [2] refer to the related question of finding

an axially symmetric set of possibly small area containing K; the approach is
algorithmic. Miscellaneous measures of axial symmetry are discussed in [1–7], [9]
and [11]. We also refer to the well known survey article [8], concerning mostly the
measures of central symmetry of convex bodies. Moreover, Part 4.2 of the survey
article [9] considers measures of symmetry of convex bodies, and in particular
their measures of axial symmetry.

Denote by T an arbitrary triangle. In Sections 2–6 we find the minima of the
area of T ∗m when m belongs to an arbitrary pencil of parallel lines and to pencils
of lines which give the angles of T . It allows us to find the best mirror line (or
lines) for T , and we obtain a formula for the minimum area of T ∗m. In Section
7 we present a formula for axs(T ). Next we prove that axs(T ) > 1

2

√
2 for every

triangle T and that axs(T ) ≥ 1
2

3
√

4 for acute and right-angled triangles T . We
show that both the estimates cannot be improved.

Let T = abc be a triangle and let |bc| ≤ |ac| ≤ |ab|. We put A = ∠bac,
B = ∠cba, and C = ∠acb. The measures of A, B, and C are denoted by α, β,
and γ, respectively. For every other angle the same symbol denotes the angle
and its measure, and instead of “measure of angle” we simply say “angle” as well.
Clearly, α ≤ β ≤ γ. In order to shorten considerations, right-angled triangles are
treated as obtuse triangles.
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By A (respectively, B and C) we mean the pencil of straight lines through a
(respectively, through b and through c) and through a different point of T (over
all such points).

Let D be any of the angles from amongst the angles A, B, C of T . Denote by
bi(D) the straight line containing the bisectrix of D and by per(D) the straight
line through the vertex of the angle D perpendicular to the opposite side of T .

2. Translating the mirror line m in order to minimize area(T ∗m)

Proposition 1. Consider a triangle T and the pencil of all straight lines m
parallel to a fixed straight line. The family of the straight lines from this pencil
for which area(T ∗m) is minimal forms a strip. A straight line from A∪B ∪ C is in
this strip.

Proof. Having in mind Claim 2, we consider only the lines m from our pencil
which have nonempty intersection with T . It is easy to show that there is exactly
one line l ∈ A ∪ B ∪ C in the pencil. Let us assume that l ∈ C. If l ∈ A or l ∈ B,
the considerations are similar (what is more, Case 1 is then impossible).

If p is a point, then by pm denote the mirror image of p in the line m.
For the need of further Subcases 1.2 and 2.2 denote by a′ the intersection of

the straight line through a perpendicular to m with the line containing bc, and
for the need of the remaining subcases, by b′ the intersection of the line through
b perpendicular to m with the line containing ac. Let a′′ be the midpoint of aa′,
and b′′ of bb′.

Figure 1. Figure 2.

Below by the angle between ca (respectively, between cb) and l we mean the angle
∠acd (respectively, ∠dcb), where d is the intersection point of l with ab.
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Case 1. The straight line through c perpendicular to m intersects the segment ab.

Subcase 1.1. The angle between ca and l is smaller than that between cb and l.

In this subcase denote by S the strip of all straight lines between the following
two straight lines from our pencil: the line n through a and the line k through b′′.

Observe that for m ∈ S we have T ∗m = aambbm (see Figure 1) and that
|aam| + |bbm| is constant here. So area(T ∗m) is constant here. In particular, it
equals area(T ∗l ).

Ifm 6∈ S, thenm and l are on the opposite sides of k and thus T ∗m = aamcmbbmc
(see Figure 2). Imagine T ∗m as the union of two trapezia: the first with bases aam

and ccm, and the second with bases ccm and bmb. Hence area(T ∗m) = 1
2
(|aam| +

|ccm|)h1+
1
2
(|ccm|+|bmb|)h2, where h1 and h2 are heights of the first and the second

trapezium, respectively. If the distance of m from S increases, |aam| + |ccm|
increases and |ccm| + |bmb| is constant. This and the fact that h1 and h2 are
constant imply that area(T ∗m) increases. So area(T ∗l ) < area(T ∗m).

Subcase 1.2. The angle between ca and l is at least the angle between cb and l.
Clearly, the first angle must be greater than the second. We repeat the con-

siderations of Subcase 1.1 taking this time in the part of S the pencil of straight
lines between the following two lines parallel to l: the line through b and the line
k through a′′.

Case 2. The line through c perpendicular to m does not intersect ab.

Subcase 2.1. The angle between ca and l is smaller than the angle between cb
and l.

By S we mean the pencil of lines between l and the parallel line k through b′′.

First assume that m and l are weakly on one side of k (see Figure 3). Since bm does
not belong to the interior of T , we conclude that T ∗m is the hexagon aambcmcbm
when m ∈ S and the hexagon aambccmbm in the opposite case. The hexagon T ∗m
is the union of two trapezia: the first with bases aam and bbm, and the second
with bases bmb and cmc.

Consequently, area(T ∗m) = 1
2
(|aam| + |bbm|)h1 + 1

2
(|bbm| + |ccm|)h2, where h1 is

the height of the first trapezium and h2 is the height of the second. Observe that
|bbm|+ |ccm| and |aam|+ |bbm| are constant for m ∈ S. Moreover, if the distance of
m from S increases,then |aam|+ |bbm| does not change and |bbm|+ |ccm| increases.
Thus from the fact that h1 and h2 are constant we obtain that area(T ∗m) is constant
for m ∈ S (since l ∈ S, it is equal to area(T ∗l )) and larger if m 6∈ S.

Now assume that m and l are strictly on the opposite sides of k (so m 6∈ S).
Then T ∗m = aamcmc (see Figure 4). Clearly, |aam| and |ccm| grow as the distance
of m from S grows. Since the height of T ∗m does not change, we see that area(T ∗m)
grows. This, the preceding paragraph, and k ∈ S give area(T ∗l ) = area(T ∗k ) <
area(T ∗m) for every m 6∈ S.

Subcase 2.2. The angle between ca and the straight line l is at least the angle
between cb and l and simultaneously at most π

2
− α.

Now the strip S is the pencil of straight lines between l and the parallel straight
line k through a′′. If k = l (that is, if l is the bisectrix of C), then only l belongs to



M. Lassak, M. Nowicka: Minimum-area Axially Symmetric Convex Bodies . . . 545

Figure 3. Figure 4.

S. For this special situation the proof is left to the reader (hint: look to Figures
5 and 6 with k = l). Since now assume that k 6= l (that is, l is not the bisectrix
of C).

First assume that m and l are weakly on one side of k (observe that this side
is the one which does not contain a). Hence T ∗m is the trapezium aamcmc if m 6∈ S
(see Figure 5), and aamccm if m ∈ S. Thus area(T ∗m) = 1

2
(|aam| + |ccm|)h, where

h stands for the height of this trapezium. Observe that |aam|+ |ccm| is constant
for m ∈ S and that it grows when the distance of m from S grows. Moreover, h is
constant. Thus area(T ∗m) is constant for m ∈ S, and it grows when the distance of
m from S grows. So from l ∈ S we obtain that area(T ∗l ) ≤ area(T ∗m) with equality
if and only if m ∈ S.

Now assume that m and l are strictly on the opposite sides of k (so m 6∈ S).
Clearly, T ∗m = aambccmbm is the union of the trapezia aambbm and bmbccm (see
Figure 6). Thus area(T ∗m) = 1

2
(|aam| + |bbm|)h1 + 1

2
(|bbm| + |ccm|)h2, where h1

denotes the height of the first trapezium and h2 denotes the height of the second.
If the distance ofm from S increases, |aam|+|bbm| does not change and |bbm|+|ccm|
increases. Hence the first trapezium has constant area, and the area of the second

Figure 5. Figure 6.
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one grows. Consequently, area(T ∗m) grows and thus area(T ∗l ) < area(T ∗m).

Subcase 2.3. The angle between the side ca and the straight line l is over π
2
− α.

We repeat the considerations of Subcase 2.1 exchanging always the letters a and
b (so, for instance, exchanging also the symbols am and bm). �

Corollary 1. For every triangle T we have min
m

area(T ∗m) = min
m∈A∪B∪C

area(T ∗m).

Remark 1. Let P be a convex n-gon. An algorithm for finding a mirror line
m parallel to a given line which minimizes area(P ∗

m) is presented in [2]. It asks
to choose a line m from amongst a finite number of specific straight lines which
minimizes area(P ∗

m). Our proof of Proposition 1 shows all such best straight lines
for a triangle T . What is more, without evaluating area(T ∗m). But as far as we
see, our approach works only for n = 3.

3. Minimizing area(T ∗m) for m from the pencil A

Proposition 2. For every triangle T we have min
m∈A

area(T ∗m) = sin(α+β)
sin β

· area(T ).

This minimum is attained only for m = bi(A).

Proof. In the proof, besides the last paragraph, for simplicity we assume that
|ab| = 1. Let m ∈ A. The angle between ab and m (smaller than π

2
) is denoted

by ψ.

Case 1. (for all T ): ψ ∈ [0, α
2
].

Of course, T ∗m is the pentagon acmbbmc (see Figure 7). Clearly, T ∗m = acmb ∪
abbm ∪ abmc. Since bm is symmetric to b with respect to m, we have ∠babm =
2ψ. This and |ab| = |abm| = 1 imply that area(abbm) = 1

2
sin 2ψ. Obviously,

∠bmac = ∠bac − ∠babm. Hence ∠bmac = α − 2ψ. From this, from |abm| = 1
and from |ac| = sin β

sin(α+β)
it follows that area(abmc) = 1

2
sin β

sin(α+β)
sin(α − 2ψ). By

axial symmetry, area(acmb) has the same value. These facts lead imply that
area(T ∗m) equals f1(ψ) = 1

2
sin 2ψ + sin β

sin(α+β)
sin(α− 2ψ). The second derivative of

this function is f ′′1 (ψ) = −2 sin 2ψ − 4 sin β
sin(α+β)

sin(α − 2ψ). Since 2ψ and α − 2ψ

belong to [0, π], we get f ′′1 (ψ) < 0. So f1(ψ) is concave in the interval [0, α
2
].

Case 2. (for all T ): ψ ∈ [α
2
, π

2
− β] for acute T , and ψ ∈ [α

2
, α] for obtuse T .

We easily conclude that T ∗m = abbm (see Figure 8). Hence ∠babm = 2ψ. So
area(T ∗m) = 1

2
sin 2ψ. The function f2(ψ) = 1

2
sin 2ψ is concave in each of the

intervals [α
2
, π

2
− β] and [α

2
, α] because its second derivative f ′′2 (ψ) = −2 sin 2ψ is

negative in both.

Case 3. (only for acute T ): ψ ∈ [π
2
− β, α].

In this case T ∗m is the pentagon abcmcbm (see Figure 9). Observe that T ∗m =
abcm ∪ acmc ∪ acbm. Of course, ∠babm = 2ψ. This and ∠cabm = ∠babm − ∠bac
imply that ∠cabm = 2ψ − α. Since the triangles acbm and abcm are symmetric
with respect to m, we see that ∠cabm = ∠bacm = 2ψ − α. This, ∠cmac =
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Figure 7. Figure 8. Figure 9.

∠bac − ∠bacm and ∠bac = α imply that ∠cmac = 2α − 2ψ. Clearly, |ab| = 1
and |ac| = sin β

sin(α+β)
. The above considerations show that area(T ∗m) is given by

the function f3(ψ) = 1
2
( sin β

sin(α+β)
)2 sin(2α − 2ψ) + sin β

sin(α+β)
sin(2ψ − α). We have

f ′′3 (ψ) = −2( sin β
sin(α+β)

)2 sin(2α − 2ψ) − 4 sin β
sin(α+β)

sin(2ψ − α). By the assumption
of Case 3 we get 0 ≤ 2α − 2ψ ≤ π and 0 ≤ 2ψ − α ≤ π. By both inequalities,
and also since 2α − 2ψ and 2ψ − α cannot be simultaneously 0 or π, we have
f ′′3 (ψ) < 0. So the function f3(ψ) is concave in the interval [π

2
− β, α]. This

finishes the considerations of Case 3.

The functions f1(ψ), f2(ψ) (and f3(ψ) for acute T ) are concave in the considered
intervals. So the smallest value of each of them is attained at an end-point, or
at both, of the corresponding interval. Since the three (for acute T ) and two
(for obtuse T ) intervals are neighboring, min

m∈A
area(T ∗m) is attained at at least one

end-point of these intervals.
From Cases 1–3 and from the above explanation we see that in order to find

the smallest value of area(T ∗m) for acute T and m ∈ A we choose the smallest from
the numbers f1(0) = sin α sin β

sin(α+β)
, f1(

α
2
) = f2(

α
2
) = 1

2
sinα, f2(

π
2
− β) = f3(

π
2
− β) =

1
2
sin(π− 2β) and f3(α) = sin α sin β

sin(α+β)
. Clearly, sin α sin β

sin(α+β)
= 2 · area(T ). The remaining

two values 1
2
sinα and 1

2
sin(π− 2β) are smaller. Which of them is smaller? From

α + β + γ = π and β ≤ γ we get α + 2β ≤ π. So α ≤ π − 2β. Moreover,
since T is acute, α + β > π

2
, and thus β > π

4
, which implies π − 2β < π

2
. Hence

1
2
sinα ≤ 1

2
sin(π− 2β). We see that 1

2
sinα is the smallest possible area of T ∗m. It

is attained for ψ = α
2
, i.e. for m = bi(A) (if 1

2
sinα = 1

2
sin(π − 2β), then β = γ,

and thus bi(A) and per(A) are the best mirror lines which coincide).
In order to find the smallest value of area(T ∗m) for obtuse T over all m ∈ A we

choose the smallest from the numbers f1(0) = sin α sin β
sin(α+β)

, f1(
α
2
) = f2(

α
2
) = 1

2
sinα

and f2(α) = 1
2
sin 2α. It is 1

2
sinα. Here is why. The inequality 1

2
sinα < 1

2
sin 2α

follows from 0 < α ≤ π
4
. Since sin α sin β

sin(α+β)
is the double area of T , the value 1

2
sinα

is smaller.
We see that for both types of triangles, namely acute and obtuse ones, with

|ab| = 1 the line bi(A) in the part of m minimizes area(T ∗m), which is area(T ∗bi(A)) =
1
2
sinα.

In the general situation when |ab| is arbitrary, the area of T ∗m is |ab|2 times
larger than for a homothetic image with |ab| = 1. Since area(T ) = 1

2
sin α sin β
sin(α+β)

|ab|2,
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we obtain |ab|2 = 2 sin(α+β)
sin α sin β

· area(T ). So for arbitrary |ab| we have area(T ∗bi(A)) =
1
2
sinα · 2 sin(α+β)

sin α sin β
· area(T ) = sin(α+β)

sin β
· area(T ). Clearly, it minimizes area(T ∗m) in

the general situation, again with m = bi(A) as the only best mirror line in A. �

4. The minimum of area(T ∗m) for m ∈ B is at least the minimum for
m ∈ A

Proposition 3. For every triangle T we have min
m∈A

area(T ∗m) ≤ min
m∈B

area(T ∗m).

Proof. Having in mind Proposition 2, it is sufficient to prove that area(T ∗bi(A)) ≤
area(T ∗m) for every m ∈ B. The angle between ab and m (smaller than π

2
) is

denoted by ψ. Without loss of generality we may assume that |ab| = 1.

Case 1. When ψ ∈ [0, α
2
].

Clearly, T ∗m is the pentagon acmbcam, and thus T ∗m = acmb∪abam∪ambc. Observe
that ∠amba = 2ψ. The last fact and |ba| = |bam| = 1 imply that area(abam) =
1
2
sin 2ψ. By |bam| = 1 and |bc| = sin α

sin(α+β)
, from ∠cbam = ∠cba−∠amba = β − 2ψ

we get area(ambc) = 1
2

sin α
sin(α+β)

sin(β − 2ψ). Since triangles ambc and acmb are

symmetric with respect to m, area(ambc) = area(acmb). The above facts show
that area(T ∗m) is given by the function f1(ψ) = 1

2
sin 2ψ + sin α

sin(α+β)
sin(β − 2ψ).

From 0 ≤ 2ψ ≤ π and 0 ≤ β − 2ψ ≤ π we get that f ′′1 (ψ) = −2 sin 2ψ −
4 sin α

sin(α+β)
sin(β−2ψ) is negative in the interval [0, α

2
]. So f1(ψ) is concave here and

the smallest value of f1(ψ) is attained at least at one end-point of the interval [0, α
2
].

We have f1(0) = sin α sin β
sin(α+β)

, f1(
α
2
) = 1

2
sinα + sin α

sin(α+β)
sin(β − α). Clearly sin α sin β

sin(α+β)

is the double area of T and area(T ∗bi(A)) = 1
2
sinα is smaller. Moreover, from

0 ≤ sin α
sin(α+β)

sin(β−α) we get 1
2
sinα ≤ 1

2
sinα+ sin α

sin(α+β)
sin(β−α). Consequently,

area(T ∗bi(A)) ≤ area(T ∗m) for every m ∈ B and every ψ ∈ [0, α
2
].

Case 2. When ψ ∈ [α
2
, β].

In this case T ∗m contains the triangle abam. From Case 1 we know that area(abam)
= 1

2
sin 2ψ. Since ψ ∈ [α

2
, β], we obtain that α ≤ 2ψ ≤ 2β. From α + β + γ = π

and β ≤ γ we get 2β ≤ π − α. The last fact implies that α ≤ 2ψ ≤ π − α.
Hence 1

2
sinα ≤ 1

2
sin 2ψ ≤ 1

2
sin(π − α). Thus area(T ∗bi(A)) ≤ area(abam). Since

abam ⊂ T ∗m, we obtain the inequality area(T ∗bi(A)) ≤ area(T ∗m) for every m ∈ B and

every ψ ∈ [α
2
, β].

5. Minimizing area(T ∗m) for m from the pencil C

Proposition 4. Let T be a triangle. We have min
m∈C

area(T ∗m) = 2 cos α sin β
sin(α+β)

· area(T )

for 3α + β < π and min
m∈C

area(T ∗m) = sin β
sin α

· area(T ) for 3α + β > π. The first

minimum is attained only for m = per(C), and the second only for m = bi(C).
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If 3α + β = π, then min
m∈C

area(T ∗m) is given by both formulas and holds only for

m = per(C) and m = bi(C).

Proof. Besides the last paragraph, for simplicity assume that |ab| = 1. Let
m ∈ C. By ψ denote the angle ∠acd, where d is the intersection point of m with
ab. Clearly, γ = π − α− β.

Case 1. (only for obtuse T ): ψ ∈ [0, γ − π
2
].

In that case T ∗m = aambbm. Of course, the angle between ab and ambm (that is,
∠bdbm) is twice the angle ∠bdc. From ∠bdc+∠cbd+∠dcb = π and from ∠cbd = β
and ∠dcb = γ−ψ we obtain that ∠bdc = α+ψ. Consequently, ∠bdbm = 2(α+ψ).
This and |ab| = |ambm| = 1 imply that area(T ∗m) = 1

2
sin(2α + 2ψ). The function

f1(ψ) = 1
2
sin(2α + 2ψ) is concave in the interval [0, γ − π

2
] because f ′′1 (ψ) =

−2 sin(2α+ 2ψ) is negative here.

Case 2. (for all T ): ψ ∈ [0, γ
2
] for acute T , and ψ ∈ [γ − π

2
, γ

2
] for obtuse T .

In this case T ∗m is the pentagon cbmaamb. We have T ∗m = camb∪cbma∪caam. From
∠acam = 2ψ and |ca| = |cam| = sin β

sin γ
we get that area(caam) = 1

2
( sin β

sin γ
)2 sin 2ψ.

Clearly, ∠amcb = ∠acb − ∠acam = γ − 2ψ. This, |cam| = sin β
sin γ

and |bc| =
sin α
sin γ

imply that area(camb) = 1
2

sin α
sin γ

sin β
sin γ

sin(γ − 2ψ). Of course, triangles camb

and cbma are symmetric with respect to m. Hence area(camb) = area(cbma).
All this leads to the conclusion that area(T ∗m) is given by the function f2(ψ) =
1
2
( sin β

sin γ
)2 sin 2ψ + sin α

sin γ
sin β
sin γ

sin(γ − 2ψ). Here is the second derivative: f ′′2 (ψ) =

−2( sin β
sin γ

)2 sin 2ψ − 4 sin α
sin γ

sin β
sin γ

sin(γ − 2ψ). From the assumptions of Case 2 we

obtain that 0 ≤ 2ψ ≤ π and 0 ≤ γ − 2ψ ≤ π. Thus for every ψ ∈ [0, γ
2
] we have

f ′′2 (ψ) < 0. Consequently, the function f2(ψ) is concave in the interval [0, γ
2
] (and,

in particular, in the interval [γ − π
2
, γ

2
] for obtuse triangles T ).

Case 3. (for all T ): ψ ∈ [γ
2
, π

2
− α].

Observe that T ∗m = caam and that ∠acam = 2ψ. So area(T ∗m) equals f3(ψ) =
1
2
( sin β

sin γ
)2 sin 2ψ. By 0 ≤ 2ψ ≤ π we see that f ′′3 (ψ) = −2( sin β

sin γ
)2 sin 2ψ is negative

in our interval. Thus the function f3(ψ) is concave in the interval [γ
2
, π

2
− α].

Case 4. (for all T ): ψ ∈ [π
2
− α, γ] for acute T , and ψ ∈ [π

2
− α, π

2
] for obtuse T .

Since T ∗m is the pentagon cabmbam (see Figure 10), we have T ∗m = cbam ∪ cabm ∪
cbmb.

Figure 10.

From ∠acam = 2ψ and ∠bcam = ∠acam − ∠acb we obtain ∠bcam = 2ψ − γ. The
symmetry of triangles cbam and cabm with respect to m implies that ∠bcam =
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∠acbm = 2ψ−γ. This, ∠bmcb = ∠acb−∠acbm and ∠acb = γ give ∠bmcb = 2γ−2ψ.
From these facts, from |cb| = sin α

sin γ
and |ca| = sin β

sin γ
we obtain that area(T ∗m) equals

f4(ψ) = 1
2
( sin α

sin γ
)2 sin(2γ−2ψ)+ sin α

sin γ
sin β
sin γ

sin(2ψ−γ). Since 2γ−2ψ and 2ψ−γ are

between 0 and π, we see that the second derivative f ′′4 (ψ) = −2( sin α
sin γ

)2 sin(2γ −
2ψ) − 4 sin α

sin γ
sin β
sin γ

sin(2ψ − γ) is negative for acute and obtuse T . Hence f4(ψ) is

concave in the intervals [π
2
− α, γ] and [π

2
− α, π

2
].

Case 5. (only for obtuse T ): ψ ∈ [π
2
, γ].

We easily conclude that T ∗m is the quadrangle abmbam. Similarly like in Case 1
we show that the angle between ab and ambm is 2(γ − ψ + β). The last fact and
|ab| = |ambm| = 1 imply that area(T ∗m) is given by the function f5(ψ) = 1

2
sin(2γ−

2ψ+ 2β). Of course, f ′′5 (ψ) = −2 sin(2γ− 2ψ+ 2β). Since 0 ≤ 2γ− 2ψ+ 2β ≤ π,
we have f ′′5 (ψ) < 0. Hence f5(ψ) is concave in the interval [π

2
, γ]. This finishes

our considerations of Case 5.
The functions fi(ψ) for i = 2, 3, 4 (for acute T ) and for i = 1, . . . , 5 (for

obtuse T ) are concave in the intervals considered in corresponding cases. So the
smallest value of each of them is attained at an end-point (or at both) of the
corresponding interval. Since the three (for acute T ) and five (for obtuse T )
intervals are neighboring, the smallest value of area(T ∗m) is attained at least at
one end-point of at least one of the intervals.

Our proposition is true if β = α (see Remark 2 below). So assume that β 6= α.
In order to find the smallest value of area(T ∗m) for acute T when m ∈ C, we

look at Cases 2–4. We choose the smallest from the numbers f2(0) = sin α sin β
sin(α+β)

,

f2(
γ
2
) = f3(

γ
2
) = 1

2
sin2 β

sin(α+β)
, f3(

π
2
− α) = f4(

π
2
− α) = 1

2
sin2 β sin 2α
sin2(α+β)

and f4(γ) =
sin α sin β
sin(α+β)

. Clearly, sin α sin β
sin(α+β)

is the double area of T . Hence 1
2

sin2 β sin 2α
sin2(α+β)

is smaller.

It remains to compare 1
2

sin2 β
sin(α+β)

and 1
2

sin2 β sin 2α
sin2(α+β)

. If 1
2

sin2 β
sin(α+β)

= 1
2

sin2 β sin 2α
sin2(α+β)

, then

3α + β = π. We have 1
2

sin2 β sin 2α
sin2(α+β)

< 1
2

sin2 β
sin(α+β)

if and only if 3α + β < π. So if

3α + β < π, the area of T ∗m is minimum for ψ = π
2
− α, i.e., for m = per(C), and

it is 1
2

sin2 β sin 2α
sin2(α+β)

. We also conclude that if 3α+ β > π, the area of T ∗m is minimum

for ψ = γ
2
, this is for m = bi(C). It is 1

2
sin2 β

sin(α+β)
. If 3α + β = π, then we have two

minima: for ψ = π
2
−α (i.e., for m = per(C)) and for ψ = γ

2
(i.e., for m = bi(C)).

In order to find the smallest value of area(T ∗m) for obtuse T when m ∈ C,
we look at all Cases 1–5, and thus we choose the smallest from the numbers
f1(0) = 1

2
sin 2α, f1(γ − π

2
) = f2(γ − π

2
) = 1

2
sin 2β, f2(

γ
2
) = f3(

γ
2
) = 1

2
sin2 β

sin(α+β)
,

f3(
π
2
−α) = f4(

π
2
−α) = 1

2
sin2 β sin 2α
sin2(α+β)

, f4(
π
2
) = f5(

π
2
) = 1

2
sin 2α and f5(γ) = 1

2
sin 2β.

Since 1
2
sin 2α and 1

2
sin 2β are at least the double area of T , we obtain that

1
2

sin2 β sin 2α
sin2(α+β)

is smaller. From α + β ≤ π
2

and from α < β we get 2α < α + β ≤ π
2

and thus 1
2

sin2 β sin 2α
sin2(α+β)

< 1
2

sin2 β
sin(α+β)

. From the above considerations we conclude that

the smallest from the four considered numbers is 1
2

sin2 β sin 2α
sin2(α+β)

. This means that the

minimum area of T ∗m is attained for m = per(C).
In the general situation when |ab| is arbitrary, we proceed as in the last
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paragraph of the proof of Proposition 2. So now min
m∈C

area(T ∗m) = area(T ∗bi(C)) =

1
2

sin2 β
sin(α+β)

·2 sin(α+β)
sin α sin β

·area(T ) = sin β
sin α

·area(T ) provided 3α+β > π, and min
m∈C

area(T ∗m)

= area(T ∗per(C)) = 1
2

sin2 β sin 2α
sin2(α+β)

· 2 sin(α+β)
sin α sin β

· area(T ) = 2 cos α sin β
sin(α+β)

· area(T ) provided

3α+β < π. The last part of Proposition 4 results from the preceding paragraph. �

Remark 2. If β = α, then per(C) and bi(C) coincide and thus both formulas for
min
m∈C

area(T ∗m) from Proposition 4 give the same greatest value.

6. A formula for the minimum of area(T ∗m) over all mirror lines m

Corollary 1 and Propositions 2–4 imply the following proposition.

Proposition 5. We have min
m

area(T ∗m) = min{ sin(α+β)
sin β

, 2 cos α sin β
sin(α+β)

, sin β
sin α

} · area(T )

for any triangle T such that α ≤ β ≤ γ. This minimum equals sin(α+β)
sin β

· area(T )

if and only if bi(A) is a best mirror line, equals 2 cos α sin β
sin(α+β)

· area(T ) if and only if

per(C) is a best mirror line, and equals sin β
sin α

· area(T ) if and only if bi(C) is a best
mirror line.

Propositions 2–5 and the proof of Proposition 1 imply the following remark.

Remark 3. If per(C) is a best mirror line, all parallel mirror lines between per(C)
and the parallel line passing through the midpoint of ab are also best mirror lines.
Besides this exceptional case, we never have parallel best mirror lines.

7. Estimates of the measure of axial symmetry of triangles

From the definition of axs(K) and from Proposition 5 we immediately get Theo-
rem 1.

Theorem 1. We have axs(T ) = max{ sin β
sin(α+β)

, sin(α+β)
2 cos α sin β

, sin α
sin β

} for any triangle T

with measures α ≤ β ≤ γ of angles. Here axs(T ) = sin β
sin(α+β)

if and only if bi(A) is

a best mirror line, axs(T ) = sin(α+β)
2 cos α sin β

if and only if per(C) is a best mirror line,

and axs(T ) = sin α
sin β

if and only if bi(C) is a best mirror line.

How to recognize the triangles for which each of the three formulas f = sin β
sin(α+β)

,

g = sin(α+β)
2 cos α sin β

and h = sin α
sin β

from Theorem 1 gives the maximum? We omit an ele-

mentary calculation which shows that f = g if and only if β = arctan sin α√
2 cos α−cos α

,

that f = h if and only if α = 1
2
arccos(cos β − 2 sin2 β) − 1

2
β, and that g = h

if and only if β = π − 3α or β = α. These equivalences permit to draw Fig-
ure 11 showing the domain of all pairs (β, α) (every pair represents all trian-
gles with angles α ≤ β ≤ γ). This domain is divided into three regions Rbi(A),
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Figure 11.

Rper(C) and Rbi(C) whose points represent triangles for which the mirror lines
bi(A), per(C) and bi(C), respectively, are the best, and for which the three suc-
cessive formulas from Theorem 1 give the maximum value. Moreover, by Re-
mark 2, if β = α then per(C) and bi(C) coincide, and thus the last two formu-
las give the same greatest value 1. In Figure 11 we see only the pieces of the
curves f = g, f = h and g = h which separate our regions. It is easy to check
that the three curves meet at the point (β0, α0) representing each triangle with
angles α0 = arcsin x ≈ 0.73009, where x ≈ 0.66694 is a root of the equation
4− 4x2 = (3− 4x2)4 and β0 = π − 3α0 ≈ 0.95131.

The segment α = π
2
−β (not marked in Figure 11) connecting the points (π

4
, π

4
)

and (π
2
, 0) consists of points representing right-angled triangles and divides the

“regions” of acute and obtuse triangles. The region Rbi(C) in which axs(T ) = sin α
sin β

is a subset of the “region” of acute triangles. This and Theorem 1 give the
following corollary.

Corollary 2. If T is an arbitrary obtuse (in particular, right-angled) triangle,

then axs(T ) = max{ sin β
sin(α+β)

, sin(α+β)
2 cos α sin β

}.

Theorem 2. For every triangle T we have axs(T ) > 1
2

√
2. This estimate cannot

be improved: the infimum of axs(T ) over all triangles T equals 1
2

√
2.

Proof. The inequality sin(α+β)
2 cos α sin β

≤ sin β
sin(α+β)

is equivalent to sin2 β
sin2(α+β)

≥ 1
2 cos α

and

thus to sin β
sin(α+β)

≥ 1√
2 cos α

. On the other hand, sin(α+β)
2 cos α sin β

≥ sin β
sin(α+β)

is equiv-

alent to sin2(α+β)

4 cos2 α sin2 β
≥ 1

2 cos α
, and consequently it is equivalent to sin(α+β)

2 cos α sin β
≥

1√
2 cos α

. From Theorem 1 and from the above equivalences we obtain axs(T ) =

max{ sin β
sin(α+β)

, sin(α+β)
2 cos α sin β

, sin α
sin β

} ≥ max{ sin β
sin(α+β)

, sin(α+β)
2 cos α sin β

} ≥ 1√
2 cos α

> 1
2

√
2.
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Consider the family of triangles for which sin β
sin(α+β)

= sin(α+β)
2 cos α sin β

(i.e., f = g; a

piece of this curve is shown in Figure 11). Their common value is 1√
2 cos α

, which

follows from the first two sentences of this proof. It tends to 1
2

√
2 when α tends

to 0. So by Corollary 2 the estimate axs(T ) > 1
2

√
2 cannot be improved for our

family, and hence in general. �

Remark 4. In order to show the second part of Theorem 2 we can also use other
families of triangles with α close to 0, for instance, the family with β

α
=
√

2 + 1,

or with sin β
sin α

=
√

2 + 1, or with tan β
tan α

=
√

2 + 1 (this ratio equals |ad|/|db|, where
d is the projection of c on ab).

Theorem 3. For every acute triangle T we have axs(T ) > 1
2

3
√

4, and this estimate

cannot be improved. For every right-angled triangle T we have axs(T ) ≥ 1
2

3
√

4 with

equality only for right-angled triangles with β = arcsin 3
√

1/2 (≈ 0.91687).

Proof. Apply Theorem 1. Since 0 < α ≤ π
3

and π
2
< α + β < π for acute T ,

the derivatives of sin β
sin(α+β)

, sin(α+β)
2 cos α sin β

and sin α
sin β

with respect to α are positive. So
these three functions are increasing with respect to α. Thus, if β is constant and
we decrease α to π

2
− β (which gives a right-angled triangle), we get sin β

sin(α+β)
>

sin β, sin(α+β)
2 cos α sin β

> 1
2 sin2β

and sin α
sin β

> cot β. It is easy to see that the minimum of

max{sin β, 1
2 sin2β

, cot β} is 1
2

3
√

4; it is attained for the root β = arcsin 3
√

1/2 of the

equation sin β = 1
2 sin2β

. So axs(T ) > 1
2

3
√

4 for acute triangles and axs(T ) ≥ 1
2

3
√

4
for right-angled triangles. The last estimate cannot be improved for right-angled
triangles with β = arcsin 3

√
1/2. Acute triangles arbitrarily close to them show

that also the preceding estimate cannot be improved. �
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