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1. Introduction

Projective Klingenberg and Hjelmslev planes are natural generalizations of ordi-
nary projective planes. After having been studied intensively in the eighties (see
e.g. [7] and [15]) those ring geometries were somewhat forgotten, until they made
their comeback in the theory of linear codes over finite rings (see [6] and [11]).
This revival was one motivation for us to study embeddings of Klingenberg planes.
Only one result, proved by Artmann [1], about the embedding of a class of Desar-
guesian Klingenberg planes was known. On the other hand embeddings of other
point-line geometries such as generalized polygons were studied thoroughly (for
a survey see [13] and [14]). Embeddings have helped in understanding the corre-
sponding geometries, and have also directly and indirectly influenced the coding
theory that emerged from the geometries. As an example we mention the codes
arising from quadrics embedded in projective space, and the codes arising from
geometric hyperplanes of hexagons (and the latter arise from embeddings!), see
[4]. Hence, studying embeddings of Hjelmslev planes is certainly a worthwhile
job.

Another motivating reason for writing this paper comes from a characteriza-
tion theorem of Cronheim [3]. He proved that the only finite uniform Desarguesian
projective Hjelmslev planes are the planes over rings of twisted dual numbers over
a Galois field and the planes over Witt rings of length two over a Galois field. He
also gives a characterization of both classes in terms of the automorphism group.
We prove that the planes over the twisted dual numbers are the only ones that
can be embedded in a 5-dimensional projective space, giving a new geometric
characterization of this class of planes, and hence of the corresponding class of
rings.

The paper is organized as follows. In Section 2 we give some basic definitions
about Klingenberg and Hjelmslev planes needed in our main theorem. Section 3
gives an explicit description of the classical embedding of the plane PH(2, D(K, σ))
over the ring of twisted dual numbers over a skewfield. Our description is more
explicit (using coordinates) and more general than the result of Artmann (the
latter is only valid for the non-twisted case). New embeddings are contained in this
description for proper PK-planes which are not PH-planes. Section 4 formulates
the main theorem: the classification of all (full) embeddings of PK-planes in
PG(5, K). As a consequence we obtain in the finite case a characterization of the
PH-planes over the rings of twisted dual numbers over a Galois field. Finally, in
Section 5, the main theorem is proved in a series of lemmas.

2. Definitions and preliminaries

Definition 2.1. A projective Klingenberg plane (PK-plane) S = (P ,L,∈,∼) is a
point-line incidence structure with neighbor relation ∼ = (∼P ,∼L) satisfying the
following three axioms :

(PK1) There exists an epimorphism φ from S onto a projective plane S such
that φ(p) = φ(q) if and only if p ∼P q for all p, q ∈ P and φ(L) = φ(M)
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if and only if L ∼L M for all L, M ∈ L.

(PK2) Two non-neighboring points are incident with exactly one common line.

(PK3) Two non-neighboring lines are incident with exactly one common point.

Any ordinary projective plane is a PK-plane with the epimorphism φ the identity
map and with the neighbor relations ∼P and ∼L the trivial equality relations. A
PK-plane is called proper, if it is not a projective plane.

Definition 2.2. A projective Hjelmslev plane (PH-plane) H is a projective Klin-
genberg plane with two additional axioms concerning the behaviour of neighboring
elements. More precisely H is a PH-plane if:

(PH1) H is a PK-plane.

(PH2) Two neighboring points are incident with at least two distinct common
lines.

(PH3) Two neighboring lines are incident with at least two distinct common
points.

Projective Klingenberg and Hjelmslev planes were introduced by Wilhelm Klin-
genberg in [9] and [10].

Next we pay attention to finite PK- and PH-planes. Let S be a finite PK-plane.
Then there exists a unique pair (s, t) of non-zero integers such that for any flag
(p, L) of S there are exactly t points on L neighboring with p and exactly s points
on L not neighboring with p. The pair (s, t) is called the order of S.

In a finite PK-plane of order (s, t) the following holds : |P| = s2 + st + t2,
|L| = s2 + st + t2, any line is incident with s + t points, any point is incident with
s + t lines, any point has t2 neighbors, any line has t2 neighbors, t|s and r = s

t

is the order of the projective plane S and s ≤ t2 or t = 1 (see [5] and [8]). The
PK-planes of order (s, 1) are the ordinary projective planes of order s.

The first examples of projective Klingenberg and Hjelmslev planes given by
Klingenberg in [9] are constructed in an algebraic manner and they are now called
Desarguesian PK- (viz. PH-planes). We recall here briefly this construction.

For a local ring R with unique maximal ideal J the incidence structure (P ,L, I)
is defined as follows.

The points are the triples (x, y, z) ∈ R × R × R up to a right scalar which is
a unit in R and with (x, y, z) 6∈ J × J × J . The lines are the triples [u, v, w] ∈
R×R×R up to a left scalar which is a unit in R and with [u, v, w] 6∈ J × J × J .
The point represented by (x, y, z) is incident with the line represented by [u, v, w]
if and only if u · x + v · y + w · z = 0. Finally, two points, represented by (x, y, z)
and (x′, y′, z′) are neighbors if and only if (x′, y′, z′) − (x, y, z)λ ∈ J × J × J for
some λ ∈ R \ J and similarly for lines.

The projective ring plane S defined in this way is a PK-plane (with the epi-
morphism from S onto a projective plane S induced by the natural mapping from
the local ring R onto its residue skewfield R = R/J) and S is denoted by PK(2,R).
If R is finite, the plane PK(2,R) has order (s, t) with s = |R| and t = |J |.
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Two additional properties of the local ring make the plane PK(2, R) a pro-
jective Hjelmslev plane. Indeed, if R is a left and right chain ring and if every
nonunit is a left and right zero divisor in R, then neighboring points (lines) are
incident with at least two lines (points). A local ring which is a left and right
chain ring and whose maximal ideal consists of two sided zero divisors is called a
Hjelmslev ring or H-ring. In the finite case the maximal ideal always consists of
two sided zero divisors. Hence, a finite chain ring is always a H-ring.

An important class of H-rings are the so-called twisted dual numbers over a skew-
field.

Let K be a skewfield and σ an automorphism of K. Then the ring of σ-dual
numbers over K is defined as the set K × K with addition (a + bt) + (c + dt) =
(a + c) + (b + d)t and multiplication (a + bt) · (c + dt) = ac + (ad + bcσ)t.

It is easy to see that this is an H-ring with unique maximal ideal J = Kt
satisfying J2 = (0) and we use the notation D(K, σ) for this ring of twisted dual
numbers. If K is the finite field GF(q), the rings are denoted D(q, σ).

For σ the identity automorphism one obtains the well-known ring of dual
numbers D(K) over K.

If σ is in the above definition an endomorphism, but not an automorphism,
then we obtain a left chain ring that is not a right chain ring. With abuse
of notation, we will denote the corresponding projective Klingenberg plane by
PH(2, D(K, σ)), although it is not a Hjelmslev plane.

3. The classical embedding of PH(2, D(K, σ))

In [1] B. Artmann shows that the PH-plane PH(2, K[t]/tn) over the ring of polyno-
mials with coefficients in the field K modulo tn can be embedded in the (3n− 1)-
dimensional projective space over K. As a special case he obtains an embedding
of the projective Hjelmslev plane PH(2, K[t]/t2) ∼= PH(2, D(K)) over the ring of
dual numbers over the field K in the projective space PG(5,K).

For an explicit description of this embedding, we make use of an adaptation
of the embedding given by Thas in [12] for the more general case of projective
planes over full matrix rings Mn(GF(q)). From that embedding one easily derives
an embedding for finite PH-planes over non-twisted dual numbers D(q) = {a +
bt | a, b ∈ GF(q)} as this ring can be identified with the subring{(

a b
0 a

)
| a, b ∈ GF(q)

}
of the full matrix ring M2(GF(q)).

In fact, it is easy to see that the construction also works in the infinite case,
and so we present it in full generality for general dual numbers D(K) over a field
or even a skewfield K.

The embedding α goes as follows. Any point of PH(2, D(K)) represented by
(x0 + x1t, y0 + y1t, z0 + z1t) is mapped by α to the line of PG(5, K) through the
points represented by (x0, 0, y0, 0, z0, 0) and (x1, x0, y1, y0, z1, z0). These two 6-
tuples represent indeed two distinct points of PG(5, K) since (x0, y0, z0) 6= (0, 0, 0)
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and it is easy to see that the line α(p) is independent of the choice of the rep-
resentative triple for p. The representatives of neighboring points can always be
chosen as (x0 + x1t, y0 + y1t, z0 + z1t) and (x0 + x′1t, y0 + y′1t, z0 + z′1t). Hence if
p and q are neighboring, then the corresponding lines pα and qα have the point
(x0, 0, y0, 0, z0, 0) in common.

Now we look at the lines. Any line of PH(2, K) represented by [u0 + u1t, v0 +
v1t, w0 + w1t] is mapped to the 3-space of PG(5, K) which is the intersection of
the two hyperplanes [0, u0, 0, v0, 0, w0] and [u0, u1, v0, v1, w0, w1]. Again the two 6-
tuples represent two distinct hyperplanes of PG(5, K) since (u0, v0, w0) 6= (0, 0, 0)
and the 3-space Lα is independent of the choice of the representative triple for
L. The 3-spaces corresponding to neighboring lines (with chosen representatives
[u0 + u1t, v0 + v1t, w0 + w1t] and [u0 + u′1t, v0 + v′1t, w0 + w′

1t]) are contained in the
same hyperplane [0, u0, 0, v0, 0, w0].

The incidence relation in the PH-plane corresponds with the natural incidence
in PG(5, K).

The embedding described above is called the classical embedding of PH(2, D(K))
in PG(5, K).

We can generalize this embedding to the case of twisted dual numbers D(K, σ)
by defining the image of a point represented by (x0 + x1t, y0 + y1t, z0 + z1t) as the
line through the points represented by (x0, 0, y0, 0, z0, 0) and (x1, x

σ
0 , y1, y

σ
0 , z1, z

σ
0 )

and the image of a line represented by [u0 + u1t, v0 + v1t, w0 + w1t] as the 3-space
which is the intersection of the hyperplanes represented by [0, uσ

0 , 0, v
σ
0 , 0, wσ

0 ] and
[u0, u1, v0, v1, w0, w1]. Here, σ can be non-bijective.

We also call this embedding the classical embedding of PH(2, D(K, σ)) in
PG(5, K).

We mention that the same kind of embedding for the projective line over
D(K, σ) can be found as Example 5.4 in [2].

4. Main result

In the preceding section we saw how the PH-plane over the (twisted) dual numbers
over the skewfield K can be classically embedded in PG(5, K). In this section we
characterize this embedding under some natural hypotheses.

Definition 4.1. Consider a projective Klingenberg plane S with point set P and
line set L possessing a proper epimorphism φ onto a projective plane S. Let K
be a skewfield and let PG(5, K) be the 5-dimensional projective space over K with
line set Π and set of solids Σ (a solid is a 3-dimensional subspace). Let α be a
map from P to Π and from L to Σ satisfying the following properties.

(PE1) For x ∈ P and L ∈ L, we have x ∈ L if and only of xα ∈ Lα.

(PE2) For x, y ∈ P, we have that x ∼ y if and only if xα meets yα nontrivially;
for L, M ∈ L, we have that L ∼ M if and only if Lα and Mα are contained
in a hyperplane.

Then we call α an embedding.



488 D. Keppens, H. Van Maldeghem: Embeddings of Projective Klingenberg . . .

By Lemma 5.5 below, there is a natural embedding of S into a plane π of PG(5, K).
If this embedding is full, i.e. if all points and lines of π are images of points and
lines of S, then we call α full. In the next section, we will prove the following
theorem.

Theorem 4.2. If S is a projective Klingenberg plane with a natural proper epi-
morphism onto a projective plane S and if S is fully embedded in PG(5, K), for
some skewfield K, then either

(i) S is a projective Hjelmslev (or Klingenberg for non-bijective σ) plane
PH(2, D(K, σ)) over a ring of twisted dual numbers and the embedding is the
classical one, or

(ii) S is a subgeometry of a projective plane (and in this case two distinct lines
always meet in at most one point, and, dually, every two distinct points are
joined by at most one line).

This has the following consequence in the finite case.

Corollary 4.3. If S is a finite projective Klingenberg plane of order (qt, t), for
some natural numbers q, t, and if S is embedded in PG(5, q), then S is a projec-
tive Hjelmslev plane PH(2, D(q, σ)) over a ring of twisted dual numbers and the
embedding is the classical one.

5. Proof of the main result

We prove the theorem in a series of lemmas. Throughout we assume that S is a
projective Klingenberg plane with point set P and line set L, and with a natural
proper epimorphism φ onto a projective plane S. We assume that S is embedded
in PG(5, K), for some skewfield K.

Lemma 5.1. Let x1, x2, x3 be three distinct points of S with x1 ∼ x2 ∼ x3. Then
xα

1 , xα
2 and xα

3 all contain the same point z.

Proof. Since there are at least 3 lines through xφ
1 in S, and since the lines of S

through both x1 and x2, and through both x1 and x3, determine at most two line
neighborhood classes, we can select a line L ∈ L incident with x1 and not incident
with either x2 or x3. Let x4 ∈ P be such that x1 ∼ x4 and x4 is incident with L.
Let π be the plane determined by xα

1 and xα
4 . Note that π ⊆ Lα. Since neither

x2 nor x3 are incident with L, none of xα
2 , xα

3 is contained in π. But since both
xα

2 , xα
3 must meet both xα

1 and xα
4 , we deduce that xα

1 , xα
2 , xα

3 , xα
4 all meet in the

same point z. �

Lemma 5.1 easily implies that all lines of PG(5, K) that are the image under α of
points of the same point neighborhood N , meet in a unique point, that we may
denote as Nα. Dually, every line of a fixed line neighborhood M maps under α
to a solid contained in a fixed hyperplane Mα.
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Lemma 5.2. If N1, N2, N3 are three distinct point neighborhoods of S, then Nφ
1 ,

Nφ
2 , Nφ

3 are collinear if and only if Nα
1 , Nα

2 , Nα
3 are collinear. Hence all images

under α of the point neighborhoods are contained in a same plane π and there is
a natural monomorphism ϕp : S → π.

Proof. Suppose first that Nφ
1 , Nφ

2 , Nφ
3 are collinear, and assume, by way of contra-

diction, that Nα
1 , Nα

2 , Nα
3 are not collinear, say they span the plane π. Then for

every line L of S contained in the neighborhood M of lines that meet N1, N2, N3

nontrivially, we see that π ⊆ Lα ⊆ Mα. This implies that, whenever a point
x ∈ N1 is incident with at least two elements of M (and every such point is!),
then it is incident with all members of M , a contradiction.

In order to show the converse, we first claim that it suffices to prove that
not all Nα, with N running through the set of point neighborhoods, are incident
with a common line of PG(5, K). Indeed, suppose this is true, and suppose that
N1, N2, N3 are three point neighborhoods with Nα

1 , Nα
2 , Nα

3 on a common line K
of PG(5, K), but with Nφ

1 , Nφ
2 , Nφ

3 not collinear. Let N be an arbitrary point
neighborhood. Then choose any point neighborhood N ′ 6= N and the line joining
Nφ and N ′φ meets the union of the three lines determined by Nφ

1 , Nφ
2 , Nφ

3 in at
least two different points N∗φ and N∗∗φ. By the previous paragraph, both N∗α

and N∗∗α are incident with K, and hence, again by the previous paragraph, so is
Nα, which shows our claim. So suppose by way of contradiction that all Nα are
incident with a common line K. Then clearly, for every line L ∈ L, the image
Lα contains K. Let x ∈ P be arbitrary and let L1, L2 ∈ L both be incident
with x and such that L1 6∼ L2. Then Lα

1 and Lα
2 span PG(5, K) and hence their

intersection is precisely K. This means that xα = K, contradicting injectivity of
α on P . �

We now prove two easy properties of the plane π.

Lemma 5.3. Let π be the plane defined in Lemma 5.2. Then for every point
x ∈ P, the line xα meets π in a unique point.

Proof. Let x be any point of S, and suppose that it belongs to the point neigh-
borhood class N . Then Nα belongs to the intersection of π and xα. Hence we
only must show that xα is not contained in π. Suppose, by way of contradiction,
it is. Choose two points y, z of S not in N such that the lines xy and xz are
not neighboring. Since y and z do not belong to N , the lines yα and zα do not
meet xα. Hence these lines meet π in unique points and it follows that both (xy)α

and (xz)α contain the plane π, contradicting the fact that xy and xz are not
neighboring. �

Lemma 5.4. Let π be the plane defined in Lemma 5.2. Then for every line L ∈ L,
the solid Lα meets π in a line.

Proof. Clearly Lα contains a line of π. Suppose, by way of contradiction, that π
is contained in Lα. Select a point x ∈ P on L, and a line L′ ∈ L not neighboring
L, but incident with x. The solid L′α contains a line of π, and it contains xα (and
these two lines are distinct by Lemma 5.3). Hence Lα and L′α share a plane, a
contradiction. �
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Let π be a plane of PG(5, K). With the dual of π, we mean the projective plane
obtained from π by considering as points all solids through π, and as lines all
hyperplanes through π.

Dually to Lemma 5.2 one proves that the hyperplanes Mα, with M running
through all line neighborhood classes, are lines of a dual plane π′ of PG(5, K), and
we denote the corresponding natural monomorphism by ϕl. Note also that, for
any line neighborhood class M , the hyperplane Mα is generated by all lines xα,
with x running through the points of S incident with a member of M .

So with every point neighborhood class N of S corresponds a point Nα in
the plane π, and also a solid through the plane π′ (which is the intersection of
all hyperplanes Mα, with M running through the set of line neighborhood classes
such that Mφ is incident with Nφ). We denote that solid by Nα∗. Likewise, for
a line neighborhood class M , there is a line Mα∗ of PG(5, K) spanned by the
points Nα, with N running through the point neighborhood classes such that Nφ

is incident with Mφ.
Note that Mα∗ ⊆ Mα, for M a line neighborhood, and Nα ⊆ Nα∗, for N any

point neighborhood.
The condition on the embedding of being “full” now precisely means that the

monomorphism ϕp is an isomorphism. However, for the time being, we do not
assume this extra condition yet.

Next we prove that both planes π and π′ either are disjoint, or coincide.
A digon is a pair of distinct lines, each one incident with a pair of distinct

points.

Lemma 5.5. The planes π and π′ either are disjoint, or coincide. Also, as soon
as S contains a digon, the planes are disjoint.

Proof. We first show that, if S contains two lines L, L′ that meet in at least two
points x, x′, then π and π′ are not disjoint. Suppose, by way of contradiction, that
they are disjoint.

Let R be the intersection in PG(5, K) of Lα and π. By Lemma 5.4, R is a line,
which is clearly also contained in L′α (as L and L′ are neighboring). Since x, x′

are incident with L, L′ in S, we also have that xα and x′α are contained in Lα and
L′α; hence the plane Lα ∩L′α contains the line R and the points z := xα ∩ π′ and
z′ := x′α ∩ π′ (the latter are indeed points by the dual of Lemma 5.4). If z 6= z′,
then the line R, contained in π, meets the line zz′ in a point of π′, contradicting
our hypothesis. Hence z = z′. But since xα and x′α also share a point in π, this
easily implies xα = x′α, and hence x = x′.

Now we assume that π and π′ are different, but not disjoint. Notice that π′

is the intersection of any three hyperplanes Mα
i , i = 1, 2, 3, where M1, M2, M3 are

three line neighborhood classes with non-concurrent epimorphic images under φ.
But we can choose Mi, i = 1, 2, 3, in such a way that none of Mα∗

1 , Mα∗
2 , Mα∗

3

contains the intersection π ∩ π′. Since Mα
i contains both π′ and Mα∗

i , it then
follows that Mα

i contains π and the proof is complete. �

We now first treat the case π 6= π′.
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Lemma 5.6. If π 6= π′, then S is a subgeometry of PG(2, K).

Proof. By Lemma 5.5, we know that π and π′ are disjoint. Hence, for any point
neighborhood N , the solid Nα∗ is generated by Nα and π′. It follows easily that,
for each point x ∈ P , the line xα meets π′ in a unique point, which we denote
by xβ, and for each line L ∈ L, the solid Lα meets π′ in a unique line, which we
denote by Lβ. Also the mapping β thus defined is clearly injective and preserves
incidence and non-incidence. Hence β is a monomorphism and the result follows.

�

From now on, we assume that the embedding is full, and we classify the case
π = π′.

Lemma 5.7. Suppose π = π′. If α is full, and if N is a point neighborhood class
of S, then the set {xα : x ∈ N} runs through all lines of PG(5, K) that are incident
with Nα and are contained in Nα∗, except for the lines in π.

Proof. Let N be a point neighborhood class. Let x ∈ N be arbitrary. The solid
Nα∗ contains π and xα. Let K 6= xα be an arbitrary line through Nα in Nα∗.
Let M be the unique line neighborhood class of S with the property that Mα∗

is contained in the plane generated by K and xα. Let L ∈ M be such that x is
incident with L, and let y ∈ N be such that y is not incident with L. The plane
generated by yα and K meets π in a unique line M ′α∗. Let L′ ∈ M ′ be such that
y is incident with L′. Note that M 6= M ′ since both Lα and L′α contain the line
K, and since, if M ′ = M , they would also both contain Mα∗, they would both
meet the solid xα∗ in the same set, implying that y would belong to both lines
L, L′, a contradiction. Hence L and L′ meet in a unique point z, and so Lα and
L′α meet in the unique line zα. But they both contain K, so K = zα. �

Lemma 5.8. If π = π′, then the projective Klingenberg plane S is isomorphic to
PH(2, D(K, σ)), for some endomorphism σ and the embedding α is classical.

Proof. We introduce coordinates X0, X1, X2, . . . , X5 in PG(5, K). We choose for π
the plane with equation X1 = X3 = X5 = 0. Consider the plane π′ with equation
X0 = X2 = X4 = 0. Let N be any point neighborhood class and let Nα∗ be the
corresponding solid. Since it contains π as a consequence of Lemma 5.5, it meets
π′ in a unique point uN outside π and by Lemma 5.7, the line of PG(5, K) through
uN and Nα is the image xα of a point x ∈ N . Since solids of the form Lα, L ∈ L,
meet π′ in a line, it is now easy to see that the mapping β : π → π′ : Nα 7→ uN

is an injective collineation. We can choose the coordinates such that β maps
(1, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 1, 0) and (1, 0, 1, 0, 1, 0), respectively, to
(0, 1, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 1) and (0, 1, 0, 1, 0, 1), respectively. It
follows with elementary linear algebra (a version of the Fundamental Theorem
of Projective Geometry) that there exists an endomorphism σ of K such that
β maps (x0, 0, y0, 0, z0, 0) to (0, xσ

0 , 0, y
σ
0 , 0, zσ

0 ). It now follows easily that the
points of S are mapped under α onto lines generated by points (x0, 0, y0, 0, z0, 0)
and (x1, x

σ
0 , y1, y

σ
0 , z1, z

σ
0 ). All these lines are precisely the lines of the standard
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embedding of PH(2, D(K, σ)). Since the solids of PG(5, K) corresponding to lines
of S are determined by the lines of PG(5, K) corresponding to points of S, the
embedding is completely determined and standard. The lemma is proved. �

In the finite case, the embedding is automatically full under the conditions of
Corollary 4.3. Moreover, it is clear that finite proper Klingenberg planes always
contain digons. Indeed, if not, then consider a line L of a finite Klingenberg
plane of order (qt, t) without digons. Through each point of L, there are t lines
neighboring L. Since there are no digons, all these lines are different and we
obtain a set of (q + 1)t(t− 1) + 1 lines of the same line neighborhood class. This
contradicts (q + 1)t(t− 1) + 1 > t2. Consequently Corollary 4.3 follows.

Remark 5.9. By Lemma 5.7 it follows that all point neighborhoods are affine
planes. A PH-plane with this property is called uniform. Cronheim [3] has proved
that the only finite uniform Desarguesian projective Hjelmslev planes are either
planes over a ring of twisted dual numbers over a Galois field or planes over a Witt
ring of length two over a Galois field. Corollary 4.3 now gives a characterization of
the first class. These are the only uniform planes that are embeddable in PG(5, q).

Remark 5.10. The problem in the non-full case is considerably more involved,
and it is even not clear what the examples are. Possibly there might be non-
Desarguesian PK-planes non-fully embedded, as some preliminary work seems to
indicate.
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