On the Poincaré series for a plane divisorial valuation

C. Galindo*

Abstract

We introduce the Poincaré series for a divisorial valuation v and prove that this series is an equivalent algebraic datum to the dual graph of v. We give an explicit computation of the Poincaré series.

1 Introduction

Let (R, m) be a 2-dimensional local regular ring with the maximal ideal m and algebraically closed residue field K. Let F be the quotient field of R. We assume that R contains a coefficient field and we denote by X the scheme $S p e c R$.

Let us consider divisorial valuations v of F, centered in R (valuations in this paper). If the center of v in X is a closed point, one can get a new center by blowing-up X at that point. We continue the sequence of quadratic transformations if the center remains closed and we stop whenever the center becomes a divisor. This sequence is determined by v and we will refer to it as the reduction process of the valuation. Associated to this process there is a dual graph that shows its complexity.

The reduction for valuations has applications in geometric problems. For instance, Spivakovsky ([5] and [6]) gives a description, for a surface, of the sandwiched singularities by blowing-up primary complete ideals for the maximal ideal m of R. These complete ideals are equivalent data to a finite number of valuations.

[^0]Moreover, in the canonical desingularization process of a foliation over X (see [2] and [4]) the so-called dicritical divisors can be found. The dicritical divisors separate the foliation sheaves and play a significant role in the geometry of the foliation. One also has a finite number of valuations associated to this objects (see [3]).

In this paper, we characterize the valuations which have the same dual graph by means of an easy algebraic invariant: The Poincaré series of the graded ring $g r_{v} R$.

2 Preliminaries

Let v be a valuation centered in m, ϕ the value group of v and $\phi^{+}=v(R \backslash\{0\})$ the value semigroup of v. For each $\alpha \in \phi^{+}$, we consider the ideals of $R, P_{\alpha}=\{f \in$ $R \mid v(f) \geq \alpha\}$ and $P_{\alpha^{+}}=\{f \in R \mid v(f)>\alpha\}$. Then we have the following

Definition 1 The algebra associated to v is defined to be the graded K-algebra,

$$
g r_{v} R=\bigoplus_{\alpha \in \phi^{+}} \frac{P_{\alpha}}{P_{\alpha^{+}}}
$$

Remark 1 Let $\Lambda=\left\{Q_{i}\right\}_{i \in I}$ be a sequence of elements of m where I is countable set. Let P_{α}^{\prime} be the ideal generated by the set

$$
\Lambda(\alpha)=\left\{\prod_{j \in I_{0} \subseteq I, I_{0} \text { finite }} Q_{j}^{\gamma_{j}} \mid \gamma_{j} \in \mathbf{N}, \gamma_{j}>0 \text { and } \sum_{j \in I} \gamma_{j} v\left(Q_{j}\right) \geq \alpha\right\} .
$$

The two following conditions are equivalent:
i) Each v-ideal of R, a, namely, an ideal of R which is the contraction of some ideal of the valuation ring R_{v} of v, is generated by the set $\Lambda(v(a))$, where $v(a)$ is the value $\min \{v(x) \mid x \in a\}$.
ii) For each $\alpha \in \phi^{+}, P_{\alpha}^{\prime}=P_{\alpha}$.

Definition 2 Any sequence $\Lambda=\left\{Q_{i}\right\}_{i \in I}$ satisfying the (equivalent) conditions of the remark 1 is called a generating sequence for v.

2.1 The Hamburger-Noether expansion

Let v be a valuation and π the associated blowing-up sequence,

$$
(\pi): X^{(N+1)} \xrightarrow{\pi_{N+1}} X^{(N)} \longrightarrow \cdots \longrightarrow X^{(1)} \xrightarrow{\pi_{1}} X^{(0)}=X=\operatorname{Spec} R .
$$

In the sequel, we denote by P_{i} the center of π_{i+1} and by $\{x, y\}$ a regular system of parameters (rsp) of R. Some generators $\left\{x^{(1)}, y^{(1)}\right\}$ of the maximal ideal of the local ring $R_{1}=\mathcal{O}_{X^{(1)}, P_{1}}$ can be obtained from one of the two following pairs of equalities $x^{(1)}=x$ and $x^{(1)}\left(y^{(1)}+\xi\right)=y, \xi \in K$ or $x^{(1)} y^{(1)}=x$ and $y=y^{(1)}$. Interchanging x and y, if necessary, and writing $a_{01}=\xi$, a rsp of R_{1} will be $\left\{x, y^{(1)}=\left(y-a_{01} x\right) / x\right\}$. Let h_{0} be the maximum of the non negative integers j such that for every $i \leq j$, the rsp of the local ring $R_{i}=\mathcal{O}_{X^{(i)}, P_{i}}$ is obtained through the first type of equality. Then some generators of the maximal ideal of the local ring R_{i} will be, inductively, $\left\{x^{(i)}=\right.$
$\left.x, y^{(i)}=\left(y^{(i-1)}-a_{0 i} x\right) / x\right\}$ for every $i \leq h_{0}$. And if we put $z_{1}=\left(y^{\left(h_{0}-1\right)}-a_{0 h_{0}} x\right) / x$ one has that a rsp of $\mathcal{O}_{X^{\left(h_{0}+1\right)}, P_{h_{0}+1}}$ will be $\left\{x / z_{1}, z_{1}\right\}$.

Following with the same procedure that Campillo uses in [1, Chap. II] for algebroid curves, we find a finite sequence of positive integers $h_{0}, h_{1}, \ldots, h_{s_{g}}$, a finite set of subindices $\left\{s_{0}, s_{1}, \ldots, s_{g}\right\}, s_{0}=0$, positive integers $k_{1}, k_{2}, \ldots \ldots, k_{g}$ with $2 \leq k_{i} \leq h_{s_{i}}$ and a collection of expressions (1), called Hamburger-Noether expansion of the valuation v in the rsp $\{x, y\}$. The data $h_{j}, 0 \leq j \leq s_{g}, s_{i}$ and k_{i}, $0 \leq i \leq g$ are independent of the rsp.

$$
\begin{align*}
& y= a_{01} x+a_{02} x^{2}+\cdots+a_{0 h_{0}} x^{h_{0}}+x^{h_{0}} z_{1} \\
& x= z_{1}^{h_{1}} z_{2} \\
& \vdots \tag{1}\\
& \vdots \\
& z_{s_{1}-2}= z_{s_{1}-1}^{h_{s_{1}-1}} z_{s_{1}} \\
& z_{s_{1}-1}= a_{s_{1} k_{1}} z_{s_{1}}^{k_{1}}+\cdots+a_{s_{1} h_{s_{1}}} z_{s_{1}}^{h_{s_{1}}}+z_{s_{1}}^{h_{s_{1}}} z_{s_{1}+1} \\
& \vdots \vdots \\
& z_{s_{g}-1}= a_{s_{g} k_{g}} z_{s_{g}}^{k_{g}}+\cdots+a_{s_{g} h_{s_{g}}} z_{s_{g}}^{h_{s_{g}}}+z_{s_{g}}^{h_{s_{g}}} u .
\end{align*}
$$

The change of row in the above expansion is related to the change of position of the blowing-up center. u is one of the regular parameters of $\mathcal{O}_{X^{(N)}, P_{N}}$.

2.2 The dual graph

Following the results of Spivakovsky [5], for each valuation v there exists a collection of non-negative integers:

$$
\begin{aligned}
& \quad g \in \mathbf{N} \\
& \quad m_{i} \in \mathbf{N}, \text { for } 1 \leq i \leq g+1, m_{i} \geq 2 \text { for } i \leq g, \text { and, } m_{g+1}=1 \\
& \quad a_{j}^{(i)} \in \mathbf{N}, \text { for } 1 \leq i \leq g, 1 \leq j \leq m_{i}, a_{1}^{(g+1)}>0 \\
& \text { such that, if we denote }
\end{aligned}
$$

$$
\sum(i, m, a)=\sum_{k=1}^{i-1} \sum_{p=1}^{m_{k}} a_{p}^{(k)}+\sum_{p=1}^{m} a_{p}^{(i)}+a
$$

where $1 \leq i \leq g+1,0 \leq m \leq m_{i}-1$ and $1 \leq a \leq a_{m+1}^{(i)}$, the above set of numbers exhausts the set $\{1,2, \ldots, N+1\}$. The dual graph associated to $v, G(v)=\bigcup_{i=1}^{g+1} \Gamma_{i}$ will be the one that appears at the top of the next page.

Moreover, there exist some values $\left\{\bar{\beta}_{i}\right\}_{i=0}^{g+1}$, such that, the set $\left\{\bar{\beta}_{i}\right\}_{i=0}^{g}$ generates the semigroup ϕ^{+}. These values can be obtained from the dual graph and vice-versa (see [5] and [6]).

This dual graph is weighted by a dynamical form. That is to say, $G(v)$ is obtained as a limit graph $G(v)=\lim _{i \rightarrow \infty} G_{i}$ where the weights of the vertices of $G(v)$ and of their homologous ones in some G_{i} 's can be different (see [6, chap. 5]). There exists an equivalent statical form, such that, the weight of each vertex is the "age" of the corresponding divisor. This dual graph can be reconstructed easily from the Hamburger-Noether expansion for v. (See [3]).

Definition 3 Let $C_{i}, 0<i \leq g$, be an analytically irreducible curve of X. We say that C_{i} has $(i-1)$-Puiseux exponents if the total transform of C_{i} in $X_{\sum(i, 0,1)}$ is a divisor with normal crossings and the strict transform meets $L_{\sum(i, 0,1)}$ transversely in one point.

Definition 4 Let \mathcal{C} be the family of analytically irreducible curves, whose strict transforms in $X^{(N)}$ are smooth and meets L_{N} transversely. Let C_{i} be a curve with $(i-1)$-Puiseux exponents. C_{i} is said to have maximal contact with \mathcal{C} if the strict transform of C_{i} in $X^{(N)}$ meets $L_{\sum_{(i, i, 1)}^{(N)}}$ (necessarily transversely) and no other exceptional curves. We denote by $L_{j}^{(N)}$ the strict transform of L_{j} in $X^{(N)}$.

Above discussion does not take into account the case $a_{1}^{(g+1)}=0$. In that case, the curves in \mathcal{C} will be required to be transverse not only to L_{N} but also to $L_{\sum\left(g, m_{g-1}, 0\right)}$.

Proposition 1 a) Any generating sequence for a divisorial valuation contains a subsequence $\left\{Q_{i}\right\}_{0 \leq i \leq g}$ such that each curve $C_{Q_{i}}$ whose equation is given by Q_{i} has ($i-1$)-Puiseux exponents.
b) If $a_{1}^{(g+1)}=0$ then $\left\{Q_{i}\right\}_{0 \leq i \leq g}$ is a minimal generating sequence of v. If $a_{1}^{(g+1)}>$ 0 , every generating sequence, $\left\{Q_{i}\right\}_{0 \leq i \leq g+1}$, contains a subsequence $\left\{Q_{i}\right\}_{0 \leq i \leq g}$ as in a) and the curve $C_{Q_{g+1}}$ belongs to \mathcal{C}.
c) $\left\{\bar{\beta}_{i}=v\left(Q_{i}\right)\right\}_{0 \leq i \leq g}$ is a minimal system of generators for the semigroup ϕ^{+}.
(See [6, chap. 8])
Proposition $2 A$ set $\left\{Q_{i}\right\}_{i \in I}$ where $Q_{i} \in m$, is a generating sequence of $v i f$, and only if, the K-algebra $g r_{v} R$ is generated by the images of Q_{i} in $g r_{v} R$.

Proof. "Only if" is obvious.
Conversely, suppose that $\bar{Q}_{i}=Q_{i}+P_{\bar{\beta}_{i}^{+}}$generates $g r_{v} R$. We are going to prove that if $\alpha \in \phi^{+}$then $P_{\alpha}=P_{\alpha}^{\prime}$. The inclusion $P_{\alpha}^{\prime} \subseteq P_{\alpha}$ is trivial. To prove the opposite inclusion, we remark that if $\alpha, \beta \in \phi^{+}$and $\alpha<\beta$, one has $P_{\beta}^{\prime} \subseteq P_{\alpha}^{\prime}$ and $P_{\beta} \subseteq P_{\alpha}$. Let $f \in P_{\alpha}$ be such that $v(f)=\beta_{0} \geq \alpha$, then $f \in P_{\beta_{0}}$ and $f+P_{\beta_{0}^{+}} \in g r_{v} R$ is a homogeneous element. Since $f+P_{\beta_{0}^{+}}=\sum_{\gamma \in M^{\prime} \subseteq M} A_{\gamma} \Pi \bar{Q}_{i}^{\gamma_{i}}$ for some M^{\prime}, one has $f-\sum_{\gamma \in M^{\prime} \subseteq M} A_{\gamma} \Pi Q_{i}^{\gamma_{i}} \in P_{\beta_{0}^{+}}$, and obviously, $f \in P_{\beta_{0}}^{\prime}+P_{\beta_{0}^{+}}$. We can write
$f+f_{0} \in P_{\beta_{0}^{+}}$, for some $f_{0} \in P_{\beta_{0}}^{\prime}$ and similarly, $f+f_{0} \in P_{\beta_{0}}^{\prime}+P_{\beta_{1}^{+}}$for some $\beta_{1} \in \phi^{+}, \beta_{1}>\beta_{0}$. Iterating this process, there exist $\beta_{0}<\beta_{1}<\cdots<\beta_{i}<\cdots$, with $\beta_{i} \in \phi^{+}$, such that $f \in P_{\beta_{0}}^{\prime}+P_{\beta_{i}^{+}}$for each i , therefore

$$
f \in \bigcap_{i=0}^{\infty}\left(P_{\beta_{0}}^{\prime}+P_{\beta_{i}^{+}}\right) .
$$

Now, we prove that $\bigcap_{i=0}^{\infty}\left(P_{\beta_{0}}^{\prime}+P_{\beta_{i}^{+}}\right)=\bigcap_{i=0}^{\infty}\left(P_{\beta_{0}}^{\prime}+m^{i}\right)$. Since v is a divisorial valuation, v has a minimal generating sequence $\left\{G_{i}\right\}_{i \in I}$ and if $f \in P_{\beta}$ with $\beta \in \phi^{+}$ then,

$$
f=\sum_{\gamma \in M_{0} \subseteq M} A_{\gamma} \prod G_{i}^{\gamma_{i}}
$$

for $M=\left\{\gamma=\left(\gamma_{0}, \ldots, \gamma_{k}\right) \mid k \in \mathbf{N}, \sum_{j=0}^{k} \gamma_{j} \bar{\beta}_{j} \geq \beta\right\}$.
If $\mu_{\beta}=\min \left\{\sum_{j=0}^{k} \gamma_{j} \mid\left(\gamma_{0}, \ldots, \gamma_{k}\right) \in M\right\}$, one has that, $f \in m^{\mu_{\beta}}$, and moreover $\mu_{\beta^{\prime}}>\mu_{\beta}$ if $\beta^{\prime}>\beta$. Thus $\bigcap_{i=0}^{\infty}\left(P_{\beta_{0}}^{\prime}+P_{\beta_{i}^{+}}\right) \subseteq \bigcap_{i=0}^{\infty}\left(P_{\beta_{0}}^{\prime}+m^{i}\right)$. The opposite inclusion is easy, because R is a noetherian domain and P_{β} is a m-primary ideal for all β.

To complete the proof, consider the quotient ring $R / P_{\beta_{0}}^{\prime}$ and set $m+P_{\beta_{0}}^{\prime}=\bar{m}$. One has, in this ring,

$$
\bigcap_{i=0}^{\infty}\left(P_{\beta_{0}}^{\prime}+m^{i}\right)=\bigcap_{i=0}^{\infty} \bar{m}^{i}=\overline{0}=P_{\beta_{0}}^{\prime} .
$$

Then, $\bigcap_{i=0}^{\infty}\left(P_{\beta_{0}}^{\prime}+P_{\beta_{i}^{+}}\right)=P_{\beta_{0}}^{\prime}$ and $f \in P_{\beta_{0}}^{\prime} \subseteq P_{\alpha}^{\prime}$.

3 The Poincaré series

3.1

Let v be a valuation and (1) the Hamburger-Noether expansion of v with respect to a rsp of $R,\{x, y\}$. The set \mathcal{C} of Definition 4 is the set of analytically irreducible curves f of genus g whose Hamburger-Noether expansion is the same as (1), except for the last row, which looks like

$$
z_{s_{g}-1}=a_{s_{g} k_{g}} z_{s_{g}}^{k_{g}}+\cdots+a_{s_{g} h_{s_{g}}} z_{s_{g}}^{h_{s_{g}}}+\cdots
$$

for a suitable (and obvious) basis of the maximal ideal of $R /(f)$.
The curves $C_{i}, 0 \leq i \leq g$, of maximal contact with \mathcal{C}, will have a HamburgerNoether expansion whose first $s_{i}-1$ rows coincide with those of (1) and whose last row will be $z_{s_{i}-1}=a_{s_{i} k_{i}} z_{s_{i}}^{k_{i}}+\cdots$.

If $f \in R, v(f)=\min _{g \in \mathcal{C}}(f, g)$, where (f, g) denotes the intersection multiplicity between the algebroid curves C_{f} and C_{g}, whose equations are given by f and g, respectively (see [6]). It follows that the Hamburger-Noether expansion of v yields the value $v(f)$. Indeed: put $z_{s_{g}}=t$ in the Hamburger-Noether expansion of v, then the curves of \mathcal{C} have a Hamburger-Noether expansion similar to (1) with $u=$
$a_{0} t+a_{1} t^{2}+\cdots ; a_{i} \in K$. Thus, $v(f)=\min \mu_{t}[f(x(t, u), y(t, u))]$, where μ_{t} is the natural discrete valuation of the field $K((t))$ and, $x(t, u)$ and $y(t, u)$ are obtained by reverse substitution in the Hamburger-Noether expansion.

Therefore, if $f(x(t, u), y(t, u))=\sum_{i \geq \beta} A_{i}(u) t^{i}$, and $A_{i}(u)=\sum A_{j i} u^{j}$ we have $v(f)=\beta+\gamma$ if, and only if, $A_{j, \beta+d}=0$ for $j=0,1, \ldots, \gamma-d-1 ; d=0,1, \ldots, \gamma-1$, and, moreover, some value $A_{j, \beta+\gamma-j}, j=0,1, \ldots, g$, does not vanish.

Proposition 3 Let v be a valuation. Then,
a) $g r_{v} R=\bigoplus_{\alpha \in \mathbf{N}} P_{\alpha} / P_{\alpha^{+}}$.
b) $\operatorname{dim}_{K} P_{\alpha} / P_{\alpha^{+}}<\infty$, for all α in \mathbf{N}. (As K-vector space).
c) Assume that the number of elements for a generating sequence of v is $r+1$. Then there exist a K-algebra graduation for the polynomial ring $S=K\left[X_{0}, \ldots, X_{r}\right]$ and a 0 -degree epimorphism $\psi: S \longrightarrow g r_{v} R$ of graded algebras.

The proof is obvious.
Definition 5 Let v be a valuation. We define the Poincaré series of $g r_{v} R$ to be

$$
H_{g r_{v} R}(t)=\sum_{\alpha=0}^{\infty} \operatorname{dim}_{K}\left(P_{\alpha} / P_{\alpha^{+}}\right) t^{\alpha}
$$

Remark 2 Consider the epimorphism $\psi: S \longrightarrow g r_{v} R$ of Proposition 3. If $J=K e r \psi$ then J is a homogeneous S-ideal $J=\bigoplus_{\alpha \in \mathbf{N}} J_{\alpha}$. For each $r \in \mathbf{N}$, such that there exists a generating sequence for v with $r+1$ elements, consider the exact sequence of graded algebras,

$$
0 \longrightarrow J \longrightarrow S \xrightarrow{\psi} g r_{v} R \longrightarrow 0
$$

that allow us to write the Poincaré series of $g r_{v} R$ in relation to the Poincaré series of the graded rings of the K-algebras J and S, as follows

$$
H_{g r_{v} R}(t)=H_{S}(t)-H_{J}(t)
$$

If r_{0} denotes the minimum of the r 's satisfying the above condition, the Poincaré series of S is $H_{S}(t)=1 /\left(\prod_{i=0}^{r_{0}}\left(1-t^{\bar{\beta}_{i}}\right)\right)$.

Theorem 1 Let v be a valuation and $\left\{\bar{\beta}_{i}\right\}_{0 \leq i \leq g+1}$ the values of 2.2. Define $e_{i}=$ g.c.d. $\left(\bar{\beta}_{0}, \ldots, \bar{\beta}_{i}\right) ; i=0, \ldots, g+1$ and $N_{i}=e_{i-1} / e_{i}$. Then:

If $a_{1}^{(g+1)} \neq 0$, one has the equality

$$
H_{g r_{v} R}(t)=\frac{1}{1-t^{\bar{\beta}_{0}}} \prod_{i=1}^{g} \frac{1-t^{N_{i} \overline{\bar{\beta}}_{i}}}{1-t^{\bar{\beta}_{i}}} \frac{1}{1-t^{\bar{\beta}_{g+1}}}
$$

and if $a_{1}^{(g+1)}=0$, then

$$
H_{g r_{v} R}(t)=\frac{1}{1-t^{\bar{\beta}_{0}}} \prod_{i=1}^{g-1} \frac{1-t^{N_{i} \bar{\beta}_{i}}}{1-t^{\bar{\beta}_{i}}} \frac{1}{1-t^{\bar{\beta}_{g}}}
$$

Proof. Consider the Hamburger-Noether expansion (1) for v. For each $\alpha \in \phi^{+}$we define the K-vector spaces homomorphism, $\gamma_{\alpha}: P_{\alpha} \longrightarrow K[u]$ by

$$
\gamma_{\alpha}(f)=\sum_{i+j=\alpha, A_{j i} \neq 0} A_{j i} u^{j}
$$

where $f \in P_{\alpha}, x(t, u)$ and $y(t, u)$ are as in 3.1 and,

$$
f(x(t, u), y(t, u))=\sum_{i \geq \beta} A_{i}(u) t^{i}
$$

and $A_{i}(u)=\sum_{j} A_{i j} u^{j}$.
By 3.1 if $v(f)=\alpha$, then, $\gamma_{\alpha}(f) \neq 0$ and if $v(f)>\alpha, \gamma_{\alpha}(f)=0$. Therefore, $\operatorname{Ker} \gamma_{\alpha}=P_{\alpha^{+}}$and obviously,

$$
\bar{\gamma}_{\alpha}: P_{\alpha} / P_{\alpha^{+}} \longrightarrow K[u]
$$

is a vector space monomorphism.
Let $\left\{Q_{i}\right\}_{0 \leq i \leq g+1}$ be a generating sequence for v such that $v\left(Q_{i}\right)=\bar{\beta}_{i} \in \mathbf{Z}$. This sequence is minimal if $a_{1}^{(g+1)} \neq 0$. Put $\gamma_{\bar{\beta}_{i}}\left(Q_{i}\right)=\bar{A}_{i}(u) \in K[u]$ and $\bar{Q}_{i}=Q_{i}+P_{\bar{\beta}_{i}^{+}} \in$ $g r_{v} R$. Moreover, for all $\alpha \in \mathbf{N}, P_{\alpha} / P_{\alpha^{+}}$is the homogeneous component of degree α of $K\left[\bar{Q}_{0}, \bar{Q}_{1}, \ldots, \bar{Q}_{g+1}\right]=g r_{v} R$, therefore it is generated by

$$
\left\{\prod_{i=0}^{g+1} \bar{Q}_{i}^{v_{i}} \mid \sum_{i=0}^{g+1} v_{i} \bar{\beta}_{i}=\alpha\right\}
$$

as a K-vector space. Since $P_{\alpha} / P_{\alpha^{+}}$is isomorphic to $\bar{\gamma}_{\alpha}\left(P_{\alpha} / P_{\alpha^{+}}\right)$as a vector space, this space will be generated by

$$
\left\{\prod_{i=0}^{g+1}\left[\bar{A}_{i}(u)\right]^{v_{i}} \mid \sum_{i=0}^{g+1} v_{i} \bar{\beta}_{i}=\alpha\right\}
$$

hence the dimension of $\left(P_{\alpha} / P_{\alpha^{+}}\right)$and $\bar{\gamma}_{\alpha}\left(P_{\alpha} / P_{\alpha^{+}}\right)$as K-vector spaces coincides.
Now, we take an index $i \in \mathbf{N}, 0 \leq i \leq g$. Then, $v\left(Q_{i}\right)$ and hence $\gamma_{\bar{\beta}_{i}}\left(Q_{i}\right)$ are constant under the change of variables $u \rightarrow u+c t$ for any $c \in K$, hence $\bar{A}_{i}(u)=A_{i} \in$ $K . \bar{A}_{g+1}(u) \in K[u]$ and so the dimension of the space generated by the products,

$$
\mathcal{A}=\left\{\prod_{i=0}^{g} A_{i}^{v_{i}}\left[\bar{A}_{g+1}(u)\right]^{v_{g+1}} \mid \sum_{i=0}^{g+1} v_{i} \bar{\beta}_{i}=\alpha\right\}
$$

is equal to $\operatorname{dim}_{K}\left(P_{\alpha} / P_{\alpha^{+}}\right)$.
Let us observe that if $\sum_{i=0}^{g} v_{i} \bar{\beta}_{i}=\alpha=\sum_{i=0}^{g} v_{i}^{\prime} \bar{\beta}_{i}$, then $\prod_{i=0}^{g}\left(Q_{i}\right)^{v_{i}} \equiv c \prod_{i=0}^{g}\left(Q_{i}\right)^{v_{i}^{\prime}}$ $\bmod P_{\alpha^{+}}$for a suitable $c \in K$. To show it, we note that $Q_{i}(x(t, u), y(t, u))=$ $A_{i} t^{\bar{\beta}_{i}}+M_{i}(t, u), 0 \neq A_{i} \in K, M_{i}(t, u) \in K[[t, u]]$, ord $\left(M_{i}(t, u)\right)>\bar{\beta}_{i}$. Then, applying 3.1

$$
v\left(\prod_{i=0}^{g}\left(Q_{i}\right)^{v_{i}}-c \prod_{i=0}^{g}\left(Q_{i}\right)^{v_{i}^{\prime}}\right)=\mu_{t}\left[A t^{\alpha}+M(t, u)-c\left(A^{\prime} t^{\alpha}+M^{\prime}(t, u)\right)\right]>\alpha
$$

for $c=A / A^{\prime}\left(u \in\left\{a_{0} t+a_{1} t^{2}+\cdots\right\}\right)$. The data $A, A^{\prime} \in K, A \neq 0 \neq A^{\prime}$ and $M(t, u), M^{\prime}(t, u) \in K[[t, u]]$, ord $(M(t, u))>\alpha<\operatorname{ord}\left(M^{\prime}(t, u)\right)$ are the ones got by substituting and computing.

Consider the set

$$
\begin{aligned}
& H_{\alpha}=\left\{v^{*} \in \mathbf{N} \mid \text { there exists a }(g+1)\right. \text {-uple of non negative integers } \\
& \left.\qquad\left(v_{0}, \ldots, v_{g}\right) \text { such that } \sum_{i=0}^{g} v_{i} \bar{\beta}_{i}+v^{*} \bar{\beta}_{g+1}=\alpha\right\} .
\end{aligned}
$$

Since the K-vector space generated by \mathcal{A} and the vector space generated by

$$
\left\{\left[\bar{A}_{g+1}(u)\right]^{v_{g+1}} \mid \sum_{i=0}^{g+1} v_{i} \bar{\beta}_{i}=\alpha\right\}
$$

coincide, and its dimension is $\operatorname{card}\left(H_{\alpha}\right)$, one has that

$$
H_{g r_{v} R}(t)=\sum_{\alpha \in \mathbf{N}} \operatorname{card}\left(H_{\alpha}\right) t^{\alpha}
$$

In order to give an explicit computation of $H_{g r_{v} R}(t)$ we define

$$
h_{\alpha, a}= \begin{cases}0 & \text { if } a \notin H_{\alpha} \\ 1 & \text { if } a \in H_{\alpha}\end{cases}
$$

and then $\operatorname{card}\left(H_{\alpha}\right)=\sum_{a \in \mathbf{N}} h_{\alpha, a}$, therefore,

$$
H_{g r_{v} R}(t)=\sum_{\alpha \in \mathbf{N}} \operatorname{card}\left(H_{\alpha}\right) t^{\alpha}=\sum_{\alpha \in \mathbf{N}}\left(\sum_{a \in \mathbf{N}} h_{\alpha, a}\right) t^{\alpha}=\sum_{a \in \mathbf{N}} \sum_{\alpha \in \mathbf{N}} h_{\alpha, a} t^{\alpha} .
$$

The second equality holds because for each $\alpha \in \mathbf{N}$ the values $h_{\alpha, a}$ vanish all but a finite number of a.

Thus, one can write

$$
H_{g r_{v} R}(t)=\sum_{\alpha \in \mathbf{N}} h_{\alpha, 0} t^{\alpha}+\sum_{\alpha \in \mathbf{N}} h_{\alpha, 1} t^{\alpha}+\cdots
$$

and since $\left\{\bar{\beta}_{0}, \ldots, \bar{\beta}_{g}\right\}$ generates the semigroup of values ϕ^{+}, the following equalities hold

$$
\begin{gathered}
h_{\alpha, 0}= \begin{cases}0 & \text { if } \alpha \notin \phi^{+} \\
1 & \text { if } \alpha \in \phi^{+}\end{cases} \\
h_{\alpha, a}= \begin{cases}0 & \text { if } \alpha-a \bar{\beta}_{g+1} \notin \phi^{+} \\
1 & \text { if } \alpha-a \bar{\beta}_{g+1} \in \phi^{+} .\end{cases}
\end{gathered}
$$

Now, the Poincaré series can be written as follows

$$
H_{g r_{v} R}(t)=\sum_{\rho \in \phi^{+}} t^{\rho}+\sum_{\rho \in \phi^{+}} t^{\rho+\bar{\beta}_{g+1}}+\cdots+\sum_{\rho \in \phi^{+}} t^{\rho+(a-1) \bar{\beta}_{g+1}}+\cdots
$$

and making the change $\rho=\alpha-(a-1) \bar{\beta}_{g+1}$ in the a-th term, we obtain:

$$
\left(\sum_{\rho \in \phi^{+}} t^{\rho}\right)\left(1+t^{\bar{\beta}_{g+1}}+\cdots+t^{(a-1) \bar{\beta}_{g+1}}+\cdots\right)=H_{\phi^{+}}(t)\left(1 / 1-t^{\bar{\beta}_{g+1}}\right) .
$$

The right hand side of this equality follows from the fact that the first series is the Poincaré series of a curve in \mathcal{C}, that we denote by $H_{\phi^{+}}(t)$, and the second one is a geometric series.

Let $C \in \mathcal{C}$ be an analytically irreducible curve with semigroup of values ϕ^{+}, and maximal contact values $\left\{\bar{\beta}_{i}\right\}_{i=0}^{g}$. If $\alpha \in \phi^{+}$, there exists a unique expression of α, $\alpha=i_{0} \bar{\beta}_{0}+\cdots+i_{g} \bar{\beta}_{g}$ such that its indices satisfy the conditions,

$$
\begin{equation*}
i_{0} \geq 0, i_{j}<N_{j}, i \leq j \leq g \tag{2}
\end{equation*}
$$

(See [1, 4.3.9]).
Then,

$$
\begin{gathered}
H_{\phi^{+}}=\sum_{\left\{i_{0}, \ldots, i_{g}, \text { satisfy }(2)\right\}} t^{i_{0} \bar{\beta}_{0}+\cdots+i_{g} \bar{\beta}_{g}}= \\
=\left(\sum_{i_{0} \in \mathbf{N}} t^{i_{0} \bar{\beta}_{0}}\right)\left(\sum_{0 \leq i_{1}<N_{1}} t^{i_{1} \bar{\beta}_{1}}\right) \cdots\left(\sum_{0 \leq i_{g}<N_{g}} t^{i_{g} \bar{\beta}_{g}}\right)= \\
=\frac{1}{1-t^{\bar{\beta}_{0}}} \frac{1-t^{N_{1} \bar{\beta}_{1}}}{1-t^{\bar{\beta}_{1}}} \cdots \frac{1-t^{N_{g} \bar{\beta}_{g}}}{1-t^{\bar{\beta}_{g}}} .
\end{gathered}
$$

Finally, the theorem is completed in the case $a_{1}^{(g+1)} \neq 0$, and in the remaining case it suffices to simplify the formula considering that $\bar{\beta}_{g+1}=N_{g} \bar{\beta}_{g}$ according to [6, 8.13].

Theorem 2 Let v be a valuation. The dual graph and the Poincaré series $H_{g r v_{v} R}(t)$ are equivalent data.

Proof. From the dual graph is easy to compute the data $\left\{\bar{\beta}_{i}\right\}_{i=0}^{r_{0}}$ and from them the Poincaré series $H_{g r_{v} R}(t)$.

Conversely, we are going to obtain the values $\bar{\beta}_{i}$ from $H_{g r_{v} R}(t)$. If $H_{g r_{v} R}(t)=$ $\sum_{i=0}^{\infty} a_{i} t^{i}$, one has $\phi_{v}^{+}=\left\{j \mid a_{j} \neq 0\right\}$. Let $\left\{\bar{\beta}_{i}\right\}_{i=0}^{g}$ be the minimal system of generators for ϕ_{v}^{+}and write,

$$
H_{g}(t)=\frac{1}{1-t^{\bar{\beta}_{0}}} \prod_{i=1}^{g-1} \frac{1-t^{N_{i} \bar{\beta}_{i}}}{1-t^{\bar{\beta}_{i}}} \frac{1}{1-t^{\bar{\beta}_{g+1}}} \text { and } H_{\phi^{+}}(t)=\frac{1}{1-t^{\bar{\beta}_{0}}} \prod_{i=1}^{g-1} \frac{1-t^{N_{i} \bar{\beta}_{i}}}{1-t^{\bar{\beta}_{i}}}
$$

If $H_{g}(t)=H_{g r_{v} R}(t)$, one has $a_{1}^{(g+1)}=0$. If $H_{g}(t) \neq H_{g r_{v} R}(t)$ we have the equality $H_{g r_{v} R}(t)=H_{\phi^{+}}(t) \frac{1}{1-t^{\beta_{g+1}}}$ therefore

$$
t^{\bar{\beta}_{g+1}}=1-\left(H_{\phi^{+}}(t) / H_{g r_{v} R}(t)\right)
$$

Thus, we obtain $\bar{\beta}_{g+1}$, that together with $\left\{\bar{\beta}_{i}\right\}_{i=0}^{g}$ are some data which show the dual graph of v.

Acknowledgement. I thank A. Campillo for his comments and suggestions.

References

[1] A. Campillo. Algebroid curves in positive characteristic. Lecture Notes in Math. 613. Springer-Verlag, Berlin and New York. (1980).
[2] F. Cano. Desingularization of plane vector fields. Trans. of the A.M.S. 83-93. (1986).
[3] C. Galindo. Desarrollos de Hamburger-Noether y equivalencia discreta de valoraciones. Thesis U. Valladolid, Spain. (1991).
[4] A. Seidenberg. Reduction of singularities of the differential equation $A d y=B d x$. Amer. J. of Math. 90. 248-269. (1968).
[5] M. Spivakovsky. Sandwiched singularities of surfaces and the Nash resolution for surfaces. Thesis Harvard. (1985).
[6] M. Spivakovsky. Valuations in function fields of surfaces. Amer. J. of Math. 112. 107-156. (1990).

Carlos Galindo
D. Matemáticas. ESTCE. UJI.

Campus P.Roja.
12071 Castellón.
SPAIN.

[^0]: *Supported by DGICYT PB91-0210-C02 and by F.Caixa Castelló A-39-MA.
 Received by the editors November 1993
 Communicated by J. Van Geel
 AMS Mathematics Subject Classification : Primary 14B05; Secondary $13 H 15$.
 Keywords : Poincaré series, valuation.

