A Characterization of the Grassmanian of points and lines for $\mathrm{C}_{3,2}$-buildings

Serge Lehman*

Abstract

We give necessary and sufficient conditions for a line space to be the shadow space of a $C_{3,2}$-building.

1 Introduction

Consider a Coxeter diagram of spherical type $A_{n}, C_{n}, D_{n}, \ldots, F_{4}$ with a natural labelling of its nodes as in Bourbaki [1]. The following examples will be considered in the present paper:
A_{n}

and C_{n}

[^0]Bull. Belg. Math. Soc. 2 (1995), 87-97

Each of these diagrams corresponds to a class of buildings (Tits [16]). If the node labelled i is singled out, we get a diagram called $A_{n, i}$ or $C_{n, i}$ respectively. Geometrically, this amounts to the construction of a line space (the definition is given below) with one type (namely i) of vertices of a building Δ of type X_{n}, where X_{n} is a Coxeter diagram of spherical type. The point-set P of this line space is the set of all i-elements; a subset l of P is a line if and only if there exists a flag F of cotype i such that l is the set of all i-elements incident with F. We call this line space an $X_{n, i}$-building space and we denote it by $S(\Delta, i)$. We can make a similar construction from a geometry.

The $A_{n, 1}$-building spaces correspond exactly to projective spaces (Tits [16]) and the classical work of Veblen and Young [17] characterizes the latter in terms of points and lines. Buekenhout-Shult's characterization of polar spaces [4] gives an analogous result for $C_{n, 1}$-building spaces. It seems reasonable to try to find a similar characterization for all building spaces $A_{n, i}, C_{n, i}, \ldots, F_{4, i}$. Many authors (e.g. Cameron [5], Cooperstein [10], Cohen [6] [7], Buekenhout [3], Cohen-Cooperstein [9], Hanssens[12] [13], Hanssens-Thas [14]) have worked on this problem. For a recent survey, see Cohen [8].

The first open case (in alphabetical order) is $C_{n, n-1}$; it is a difficult one in view of earlier approaches. In order to deal with this case, it seems appropriate to study $C_{3,2}$ first. This is the purpose of the present paper. The general case $C_{n, n-1}$ is discussed in Lehman [15].

A line space Γ is a pair (P, L) where P is a set whose elements are called points and L is a set of subsets of P called lines such that each line contains at least two points. Two distinct points p and q are called collinear if there exists a line which contains these two points; we denote this fact by $p \sim q$ and the fact that p and q are not collinear by $p \nsim q$. A line space Γ is called a partial linear space if any two distinct points are contained in at most one line. A subspace Γ^{\prime} of a partial linear space Γ is a pair $\left(P^{\prime}, L^{\prime}\right)$ such that $P^{\prime} \subset P, L^{\prime} \subset L$ and two points of P^{\prime} are collinear in Γ if and only if they are collinear in Γ^{\prime}. If Γ is a partial linear space and if $p \sim q$ then we denote by $p q$ the unique line containing these two points. A path between two points p_{0} and p_{k} is a sequence of points $p_{0}, p_{1}, p_{2}, \ldots, p_{k}$ such that $p_{i} \sim p_{i+1}$ for each $i=0, \ldots, k-1$. A circuit is a path such that p_{0} and p_{k} are equal. A line space Γ is called connected if there exists a path between any two points.

Let Γ be a connected partial linear space. By definition, a plane (resp. a quad) of Γ is a subspace of Γ which is a projective plane (resp. a maximal (with respect to inclusion) generalized quadrangle).
We are interested in the following properties:
CO1. Any two distinct planes intersect in at most one point.
CO2. Any two distinct quads intersect in at most one point.
CO3. Every line is contained in at least one plane.
CO4. Every line is contained in at least one quad.
CO5. The intersection of a plane and a quad is a line or the empty set .
A connected partial linear space with these 5 properties will be called a cuboctahedral space. The term cuboctahedral has been chosen on purpose. Indeed, the prototype of a building is one of its apartments, namely a Coxeter complex. For
$C_{3,1}$ this is an octahedron. For $C_{3,3}$ it is a cube. For $C_{3,2}$ the prototype is a cuboctahedron (see for instance Coxeter [11]).

We will prove that these 5 properties characterize buildings of type $C_{3,2}$; more precisely, we will prove the following results.

Theorem 1. Let Δ be a building of type C_{3}. Then the building space $S(\Delta, 2)$ is a cuboctahedral space.

Theorem 2. If S is a cuboctahedral space, then there is a building Δ of type C_{3} such that S is isomorphic to $S(\Delta, 2)$.

2 Lemmas

In a partial linear space, let us define a quadrangle as a set of four points $\left\{p_{1}, p_{2}, p_{3}\right.$, $\left.p_{4}\right\}$ such that $p_{1} \sim p_{2} \sim p_{3} \sim p_{4} \sim p_{1} \nsim p_{3}$ and $p_{2} \nsim p_{4}$. We also define a triangle as a set of three points any two of which are collinear.

2.1 The quadrangle lemma

In a cuboctahedral space, every quadrangle is contained in exactly one quad.
Proof. Let $p_{1}, p_{2}, p_{3}, p_{4}$ be the four points of a quadrangle. The line $p_{2} p_{3}$ (resp. $p_{4} p_{1}$) is contained in a plane P_{1} (resp. P_{2}). The two planes P_{1} and P_{2} are distinct, otherwise $p_{1} \sim p_{3}$ or $p_{2} \sim p_{4}$, contradicting the fact that $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$ is a quadrangle. The line $p_{1} p_{2}$ (resp. $p_{3} p_{4}$) is contained in a quad Q_{1} (resp. Q_{2}). The intersection of P_{1} and Q_{1} (resp. P_{2} and Q_{1}, P_{1} and Q_{2}, P_{2} and Q_{2}) is a line D_{1} (resp. D_{2}, D_{3}, D_{4}). As the two lines D_{1} and D_{3} (resp. D_{2} and D_{4}) are contained in a projective plane, they meet in a point q_{1} (resp. q_{2}). The points q_{1} and q_{2} are distinct, otherwise there would be a triangle (namely $\left\{p_{1}, p_{2}, q_{1}\right\}$) in the generalized quadrangle Q_{1}. The quads Q_{1} and Q_{2} are equal, otherwise their intersection would contain at least two points (q_{1} and q_{2}). The quadrangle $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$ is contained in the quad $Q=Q_{1}=Q_{2}$. The unicity of this quad follows from property CO2.

2.2 Remark

We can prove a similar property for triangles (the triangle lemma) : In a cuboctahedral space, every triangle is contained in exactly one plane.

2.3 Lemma

In a cuboctahedral space, every line is contained in exactly one plane and exactly one quad.
Proof.If a line is contained in two distinct planes (resp. quads), this contradicts property CO1 (resp. CO2). The existence of such a plane (resp. such a quad) follows from property CO3 (resp. CO4).

3 Cuboctahedral geometry

We first recall some definitions and notations about geometries.
Let V and I be two sets, let t be a function from V to I called the type function and let * be a reflexive and symmetric relation on V called incidence. The quadruple $(V, I, t, *)$ is an incidence system. A flag is a subset F of V such that any two elements of F are incident. A chamber is a flag C such that $t(C)=I$. An incidence system $(V, I, t, *)$ is called a geometry if and only if the following two conditions are satisfied:
a) Two distinct elements of V of the same type are never incident.
b) Every comaximal flag is contained in at least two chambers.

The rank of a geometry is the cardinality of I. Let $\Gamma=(V, I, t, *)$ be a geometry. Let a and b be two elements of V. A path of length n between a and b is a sequence $\left(p_{1}, p_{2}, \ldots, p_{n-1}, p_{n}\right)$ of elements of V such that $p_{1}=a, p_{n}=b$ and, for every $i<n, p_{i}$ is incident with p_{i+1}. The residue Γ_{F} of a flag F is the geometry $\left(V^{\prime}, I^{\prime}, t^{\prime}, *^{\prime}\right)$ where V^{\prime} is the set of all elements of $V \backslash F$ which are incident to every element of F, $I^{\prime}=I \backslash t(F), t^{\prime}=t_{\mid V^{\prime}}$ and $*^{\prime}=*_{\mid V^{\prime}}$. A geometry is called connected if for any two elements of V, there is a path between them. A geometry is residually connected if every residue of rank at least 2 is connected. The following result is well-known [2]: Let $\Gamma=(V, I, t, *)$ be a residually connected geometry. Let i and j be two distinct elements of I. Let a and b be two elements of V. Then there exists an integer n such that there exists a path of length n between a and b with $t\left(\left\{p_{2}, \ldots, p_{n-1}\right\}\right) \in\{i, j\}$. If $t(a)$ and $t(b) \in\{i, j\}$, we call such a path an (i-j)-path of length n.

3.1 Definition

Given a cuboctahedral space Γ, we define an incidence system of rank 3, denoted by $G(\Gamma)$, whose types are called point, plane and quad, as follows: the elements of $G(\Gamma)$ of type point (resp. plane, quad) are the points (resp. planes, quads) of Γ. The incidence is the natural one: for the points the incidence is defined by inclusion and a plane is incident with a quad if and only if their intersection is a line. We call such an incidence system a cuboctahedral geometry. We shall prove that it is indeed a geometry (see proposition 3.3).
Remark. We often identify a plane (resp. a quad) of a cuboctahedral geometry with the set of all points contained in it.

3.2 Lemma

1) Each flag of type plane-quad has at least two points incident with it.
2) Each flag of type point-quad has at least two planes incident with it.
3) Each flag of type point-plane has at least two quads incident with it.

Proof. 1) If a plane is incident with a quad, then by definition of the incidence they contain a line and, so at least two points.
2) Given a point of a quad, there are at least two distinct lines of this quad containing this point. Property CO3 shows that each of these two lines is included in a plane,
and by CO5, these planes are distinct.
3) Given a point of a plane, there are at least two distinct lines of this plane containing this point. Property CO4 shows that each of these two lines is included in a quad and, by CO5, these quads are distinct.

3.3 Proposition

A cuboctahedral geometry is a geometry.
Proof. Two distinct elements of the same type are never incident by definition of the incidence. Moreover lemma 3.2 implies that every comaximal flag is contained in at least two chambers.

3.4 Lemma

1) The residue of a point in a cuboctahedral geometry is a generalized digon.
2) The residue of a plane (resp. quad) in a cuboctahedral geometry is a projective plane (resp. a generalized quadrangle).
3) A cuboctahedral geometry is residually connected.

Proof. 1) By CO5, a quad and a plane both incident with a point p contain a common line and so are incident.
2) By lemma 2.2, there is an obvious bijection between the set of quads incident with a plane P (resp. between the set of planes incident with a quad Q) and the set of lines of P (resp. Q).
3) The geometry $G(\Gamma)$ is connected because Γ is connected. Moreover, the residue of a point (resp. a quad, a plane) is a generalized digon (resp. a generalized quadrangle, a projective plane) and so is connected. Therefore $G(\Gamma)$ is residually connected.

3.5 Corollary

A cuboctahedral geometry is a geometry of type C_{3}.
Proof. This follows immediately from 1) and 2) in lemma 3.4.

4 Proof of theorem 1

We will often identify the lines of $S(\Delta, 2)$ and the flags of type $\{1,3\}$ of Δ. We will denote the 1-, 2 - and 3 -elements of Δ by symbols such that p, D and π.

First part: The building space $S(\Delta, 2)$ is a partial linear space.
Proof. Since Δ is a building and since a building is firm, each line of $S(\Delta, 2)$ contains at least two points. Thus $S(\Delta, 2)$ is a line space. Moreover $S(\Delta, 2)$ is a partial linear space because two distinct 2 -elements of Δ are incident with at most one 1-element
of Δ and with at most one 3 -element of Δ.

Second part A subspace $\gamma=\left(P^{\prime}, L^{\prime}\right)$ of $S(\Delta, 2)$ is a projective plane if and only if there is a 3-element of Δ such that P^{\prime} is the set of 2-elements of Δ incident with it. Proof. If there is a 3 -element of Δ such that P^{\prime} is the set of 2-elements of Δ incident with it, then γ is obviously a projective plane because the residue of a 3 -element in a building of type C_{3} is a projective plane.

Let $\gamma=\left(P^{\prime}, L^{\prime}\right)$ be a subspace of $S(\Delta, 2)$ which is a projective plane. We claim that there is a 3 -element of Δ incident with every point of P^{\prime}. Indeed, let D and D^{\prime} be two distinct points of γ. Since γ is a projective plane, these two points are collinear. Let $p \pi$ be the line of γ containing these two points. We know that D and D^{\prime} are both incident with π (which is a 3 -element of Δ). We shall prove that all points of γ are incident with π. Let D " be a point of γ different from D and D^{\prime}. If $D "$ is contained in $p \pi$, then $D "$ is obviously incident with π. Hence we may assume that $D^{\prime \prime}$ is not contained in $p \pi$. Since γ is a projective plane, $D \sim D^{\prime \prime}$ and $D^{\prime} \sim D^{\prime \prime}$. Let $p^{\prime} \pi^{\prime}$ (resp. $p^{\prime \prime} \pi^{\prime \prime}$) be the line containing D and $D^{\prime \prime}$ (resp D^{\prime} and $D^{\prime \prime}$). We can easily see that the 1 -elements p, p^{\prime} and $p "$ are all incident with each of the 3 -elements π, π^{\prime} and $\pi^{\prime \prime}$ (because the residue of a 2 -element is a generalized digon).

Note that ($D, p \pi, D^{\prime}, p^{\prime \prime} \pi^{\prime \prime}, D^{\prime \prime}, p^{\prime} \pi^{\prime}$) is a circuit of length 6 in γ. Let Π denote the set of 1 -elements of Δ which are incident with each of the elements π, π^{\prime} and $\pi "$. There is an element of Δ such that the set Π is the set of all 1-elements incident with it (we can prove this property in $S(\Delta, 1)$ which is a polar space; there the property amounts to the fact that the intersection of three planes is either a point, a line or a plane). Obviously Π cannot be a unique 1-element, otherwise $p=p^{\prime}=p$ " and ($D, p \pi, D^{\prime}, p \pi^{\prime \prime}, D^{\prime \prime}, p \pi^{\prime}$) would be a circuit of length 6 completely contained in the residue of p which is a generalized quadrangle. Using $S(\Delta, 1)$, we can also prove that there is no 2 -element of Δ such that Π is the set of 1 -elements incident with it. Indeed, in that case, at most two of the 3 -elements π, π^{\prime} and $\pi^{\prime \prime}$ are equal. This means that in $S(\Delta, 1)$ two of the three subspaces $\pi \cap \pi^{\prime}, \pi \cap \pi^{\prime \prime}$ and $\pi^{\prime} \cap \pi^{\prime \prime}$ are lines and are equal to $\pi \cap \pi^{\prime} \cap \pi^{\prime \prime}$. Moreover if $\pi \cap \pi^{\prime}$ (resp. $\pi \cap \pi^{\prime \prime}, \pi^{\prime} \cap \pi^{\prime \prime}$) is a line, it must be D (resp. $D^{\prime}, D^{\prime \prime}$) and then two of those three 2-elements are equal, contradicting the fact that we have assumed them to be distinct. Then there is a 3 -element of Δ such that Π is the set of all 1 -elements incident with it. This 3 -element must be equal to $\pi=\pi^{\prime}=\pi^{\prime \prime}$ (indeed, in $S(\Delta, 1)$, if the intersection of three planes is a plane then the three planes are equal) and then D " is incident with π.

Since no projective plane contains a proper subspace isomorphic to a projective plane and since the set of all 2-elements incident with a 3 -element π of Δ is itself a projective plane, we know that for each projective plane γ in $S(\Delta, 2)$ there exists a 3 -element π of Δ such that γ is the set of all 2-elements incident with π.

Third part: A subspace $\gamma=\left(P^{\prime}, L^{\prime}\right)$ of $S(\Delta, 2)$ is a maximal generalized quadrangle if and only if there is a 1-element of Δ such that P^{\prime} is the set of 2-elements of Δ incident with it.
Proof. We shall reduce the proof to the proof of the following three statements:
A. If there is a 1 -element of Δ such that P^{\prime} is the set of 2 -elements of Δ incident with it, then γ is a generalized quadrangle.
B. If γ is a generalized quadrangle, then for each pair of points of P^{\prime} there is a 1 -element of Δ which is incident with these two points.
C. If γ is a generalized quadrangle, then there is a 1 -element of Δ which is incident with every point of P^{\prime}.
Indeed, if γ is a generalized quadrangle, then by statement \mathbf{C} there exists a 1-element p of Δ such that every point of γ is a 2 -element incident with p. Moreover, if p is a 1-element of Δ, the set of all 2-elements incident with p is itself a generalized quadrangle, and so γ can be a maximal generalized quadrangle only if there is a 1 element p of Δ such that P^{\prime} is the set of all 2 -elements incident with p. The converse is also true. Indeed, if p is a 1 -element of Δ and if P^{\prime} is the set of all 2-elements incident with p, then γ is a generalized quadrangle. Moreover, for each subspace γ^{\prime} of $S(\Delta, 2)$ which is a generalized quadrangle, there is a 1 -element p^{\prime} such that every point of γ^{\prime} is a 2 -element incident with p^{\prime}. Thus γ is a maximal generalized quadrangle. Let us now prove statements \mathbf{A}, \mathbf{B} and \mathbf{C}.
A. If there is a 1 -element of Δ such that P^{\prime} is the set of 2 -elements of Δ incident with it, then γ is clearly a generalized quadrangle because the residue of a 1-element of Δ is a generalized quadrangle.
B. Let $\gamma=\left(P^{\prime}, L^{\prime}\right)$ be a subspace of $S(\Delta, 2)$ which is a generalized quadrangle. We claim that for any two points of P^{\prime} there exists a 1-element of Δ such that the two chosen points are two 2 -elements of Δ both incident with it. Indeed, let D_{1} and D_{2} be two points of P^{\prime}. If these two points are collinear, then there is a flag $p \pi$ of type $\{1,3\}$ such that D_{1} and D_{2} are incident with $p \pi$ and so with p. If $D_{1} \nsim D_{2}$ then there is a point-line circuit of length 8 in γ including D_{1} and D_{2} (because γ is a generalized quadrangle). Let ($\left.D_{1}, p_{1} \pi_{1}, D_{3}, p_{3} \pi_{3}, D_{2}, p_{2} \pi_{2}, D_{4}, p_{4} \pi_{4}\right)$ be such a circuit. We get the following relations:

- The 2 -element D_{1} of Δ is incident with the 3 -elements π_{1} and π_{4} of Δ.
- The 1-element p_{2} of Δ is incident with the 2 -elements D_{4} and D_{2} of Δ which are incident with the 3 -elements π_{4} resp. π_{3} of Δ. Then, since the residue of a 2 -element is a generalized digon, p_{2} is incident with π_{3} and π_{4}. It is trivial that π_{1} and π_{4} are different, otherwise, since the residue of a 3 -element is a projective plane, there would be a 1-element of Δ (say p) such that D_{3} and D_{4} are both incident with p. As the line $p \pi_{1}$ of $S(\Delta, 2)$ contains each of the points D_{3} and D_{4} of γ, it is a line of γ. The contradiction follows from the fact that ($D_{1}, p_{1} \pi_{1}, D_{3}, p \pi_{1}, D_{4}, p_{4} \pi_{1}$) is a point-line circuit of length 6 in a generalized quadrangle. We also know that p_{2} is incident with π_{1}; otherwise, we can prove that in $S(\Delta, 1)$ the point p_{2} is collinear with all points of the plane π_{1}, which is impossible in a polar space of rank 3. Indeed, let $p \neq p_{1}$ be a point of $S(\Delta, 1)$ contained in the plane π_{1} of $S(\Delta, 1)$ and let D be a line of $S(\Delta, 1)$ on p which does not contain $D_{1} \cap D_{3}$ and which is included in π_{1}. Let p^{\prime} (resp. $p^{\prime \prime}$) be the point of $S(\Delta, 1)$ common to D and D_{1} (resp. to D and D_{3}). Since p_{2} and p^{\prime} (resp. p_{2} and $p^{\prime \prime}$) are included in the plane π_{4} (resp. π_{3}) of $S(\Delta, 1)$, they are collinear and as p_{2} is collinear with two points of D, it is collinear with all points of D (because $S(\Delta, 1)$ is a polar space) and so with p.

Finally, we see that p_{2} is incident with both D_{2} and D_{1}; indeed, in $S(\Delta, 1)$, the line D_{1} is the intersection of the planes π_{1} and π_{4}; and since p_{2} is contained in π_{1} and π_{4}, p_{2} is contained in D_{1}.
C. Let D and D^{\prime} be two distinct collinear points of γ. Since D and D^{\prime} are collinear, there is a flag of type $\{1,3\}$ (denoted by $p \pi$) such that D and D^{\prime} are two 2-elements of Δ incident with $p \pi$. Let $D^{\prime \prime}$ be a point of γ distinct from D and D^{\prime}. We shall prove that p is incident with $D^{\prime \prime}$. If the points D, D^{\prime} and $D^{\prime \prime}$ of γ are collinear, then the point D " of γ is contained in the line $p \pi$ of γ, and so D " is incident with p. Therefore we may assume that the points D, D^{\prime} and $D^{\prime \prime}$ of γ are not collinear. By B, we know that there exists a 1-element p^{\prime} (resp. $p^{\prime \prime}$) of Δ such that D and $D "$ (resp. D^{\prime} and $D^{\prime \prime}$) are both incident with p^{\prime} (resp. $p^{\prime \prime}$). The 2 -element $D "$ of Δ is not incident with the 3 -element π of Δ, otherwise, since each of the line $p^{\prime} \pi$ and $p^{\prime \prime} \pi$ of $S(\Delta, 2)$ has two of its points in P^{\prime}, it would be a line of γ and there would exist a point-line circuit of length $6\left(D, p \pi, D^{\prime}, p^{\prime \prime} \pi, D^{\prime \prime}, p^{\prime} \pi\right)$ in a generalized quadrangle. Moreover, the 1-elements p^{\prime} and p " of Δ are equal, otherwise, in $S(\Delta, 1)$, the line $D "$ would be the only one containing these two points and the points p^{\prime} and $p "$ of $S(\Delta, 1)$ are contained respectively in the line D and D^{\prime} of $S(\Delta, 1)$ themselves contained in the plane π of $S(\Delta, 1)$. The contradiction follows from the fact that the 2-element D " of Δ is included in the 3 -element π of Δ. Moreover p is equal to p^{\prime} because in $S(\Delta, 1)$ they belong to D and D^{\prime} and the intersection of two distinct lines cannot contain more than one point. Finally, the last equality proves that the 2 -element D " of Δ is incident with the 1 -element p of Δ.

Fourth part: The building space $S(\Delta, 2)$ is a cuboctahedral space.
We already know that $S(\Delta, 2)$ is a partial linear space and that the quads (resp. the planes) can be identified with the 1 -(resp. 3-)elements of Δ.We only need to check the five properties CO1, ..., CO5.
In $S(\Delta, 1)$ property CO1 becomes: "The intersection of any two distinct planes contains at most one line". This is straightforward because $S(\Delta, 1)$ is a polar space of rank three.
In $S(\Delta, 1)$ property CO2 becomes: "There is at most one line on two distinct points". This is straightforward because $S(\Delta, 1)$ is a line space.
In Δ properties CO3 and CO4 become: "For every flag of type $\{1,3\}$, the set of 2 -elements incident with this flag is contained in the set of all 2 -elements incident with at least one 3 -element (for CO3) or one 1-element (for CO4)".
In Δ property CO5 becomes: "Given one 1 -element p and one 3 -element π, either p is incident with π and then the intersection of the set of 2 -elements incident with p and the set of 2 -elements incident with π is the set of 2 -elements incident with the flag $p \pi$, or p is not incident with π; then there is no 2 -element incident with both p and π (because the residue of a 2 -element in Δ is a generalized digon)".

5 Proof of theorem 2

We will denote the points, quads and planes of $G(\Gamma)$ by symbols such that p, Q and P.

First part. Let Γ be a cuboctahedral space. Let p be a point of $G(\Gamma)$ and Q be
a quad of $G(\Gamma)$ non incident with p. Then there is a point-quad path of length 4 between p and Q.
Proof. We reduce the proof of this part to the proof of the following statement: If $\left(p, Q^{\prime}, p^{\prime}, Q^{\prime \prime}, p^{\prime \prime}, Q\right)$ is a point-quad path between p and Q, then there is a pointquad path of length 4 between p and Q.
Indeed, by lemma 3.4, Γ is residually connected, and so there is an integer $n>1$ and a point-quad path of length $2 n$ between p and Q. We can prove this part using the statement $(n-2)$ times.

To prove the statement, we distinguish three cases:
(1) p^{\prime} and $p^{\prime \prime}$ are collinear.

The line $p^{\prime} p^{\prime \prime}$ is contained in a plane P_{0}. The intersection of P_{0} and Q (resp. Q^{\prime}) is a line D_{1} (resp. D_{2}). Since the lines D_{1} and D_{2} are both contained in the projective plane P_{0}, they meet in a point q. As the point q is included in D_{1} (resp. D_{2}), it is incident to Q (resp. Q^{\prime}).
The path $\left(p, Q^{\prime}, q, Q\right)$ is a point-quad path of length 4 between p and Q.
(2) p and p^{\prime} (resp. p^{\prime} and $p^{\prime \prime}$) are collinear (resp. non-collinear).

The line $p p^{\prime}$ is contained in a plane P_{0}. The intersection of P_{0} and $Q "$ is a line D_{1}. Since Q " is a generalized quadrangle, there is a point-line path of length 4 between D_{1} and $p "$ in $Q "$, namely $\left(D_{1}, q, D_{2}, p "\right)$. The line D_{2} is contained in a plane P_{1}. The intersection of P_{1} and Q is a line D_{3}. The line on p and q is contained in the quad Q_{1} whose intersection with P_{1} is a line D_{4}. Since the lines D_{3} and D_{4} are both contained in the projective plane P_{1}, they meet in a point q^{\prime}.
The path $\left(p, Q_{1}, q^{\prime}, Q\right)$ is a point-quad path of length 4 between p and Q.
(3) p and p^{\prime} (resp. p^{\prime} and $p^{\prime \prime}$) are not collinear.

Since Q^{\prime} is a generalized quadrangle, there is a point-line path of length 5 between p and p^{\prime} in Q^{\prime}, namely $\left(p, D_{1}, p_{1}, D_{2}, p^{\prime}\right)$. The line D_{2} is contained in a plane P_{0} whose intersection with Q " is a line D_{3}. Since Q " is a generalized quadrangle, there exists a point-line path of length 4 between D_{3} and $p^{\prime \prime}$ in $Q "$, namely ($D_{3}, p_{2}, D_{4}, p^{\prime \prime}$). The line D_{4} is contained in a plane P_{1} whose intersection with Q is a line D_{5}. The line on p_{1} and p_{2} is contained in a quad Q_{1}. The intersection of Q_{1} and P_{1} is a line D_{6}. As the lines D_{5} and D_{6} are both contained in the projective plane P_{1}, they meet in a point q. The path $\left(p, Q^{\prime}, p_{1}, Q_{1}, q, Q\right)$ is a path satisfying the hypotheses of the second case. The second case shows that there is a point-quad path of length 4 between p and Q.

Second part. Let Γ be a cuboctahedral space. Let p be a point of $G(\Gamma)$ and Q be a quad of $G(\Gamma)$ non incident with p. If there exist two distinct (point-quad)-paths of length 4 between p and Q, namely $\left(p, Q^{\prime}, p^{\prime}, Q\right)$ and $\left(p, Q ", p^{"}, Q\right)$, then every quad incident with p is incident with a point q incident with Q.
Proof. We distinguish two cases.
(1) Either the points p and p^{\prime} or the points p and $p "$ are collinear.

Without loss of generality, we may assume that p and p^{\prime} are collinear. Let Q_{0} be a quad distinct from Q^{\prime} and incident with p. The line on p and p^{\prime} is contained in a plane P_{0} whose intersection with Q (resp. Q_{0}) is a line D_{1} (resp. D_{2}). Since the lines D_{1} and D_{2} are both included in the projective plane P_{0}, they meet in a point
q. Then Q_{0} is incident with q , which is itself incident with Q.
(2) Neither the points p and p^{\prime}, nor the points p and $p "$ are collinear.

Since Q^{\prime} is a generalized quadrangle, there is a point-line path of length 5 between p and p^{\prime} in Q^{\prime}, namely ($p, D_{1}, p_{1}, D_{2}, p^{\prime}$). The line D_{1} is contained in a plane P_{0} whose intersection with $Q "$ is a line D_{3}. Since $Q "$ is a generalized quadrangle, there is a point-line path of length 4 between D_{3} and $p^{\prime \prime}$ in $Q "$, namely ($D_{3}, p_{2}, D_{4}, p^{\prime \prime}$).

If p^{\prime} and $p^{\prime \prime}$ are collinear, then $\left\{p^{\prime}, p^{\prime \prime}, p_{2}, p_{1}\right\}$ is a quadrangle and so, by the quadrangle lemma, these four points are contained in a unique quad which is Q. Since $\left(p, Q ", p_{2}, Q\right)$ is a point-quad path of length 4 where p and p_{2} are collinear, the hypotheses of the first case are satisfied, and so every quad incident with p is incident with a point q which is itself incident with Q.

If p^{\prime} and $p^{\prime \prime}$ are not collinear, then the line D_{4} is contained in a plane P_{1} whose intersection with Q is a line D_{5}. Since Q is a generalized quadrangle, there is a point-line path of length 4 between D_{5} and p^{\prime} in Q, namely ($\left.D_{5}, p_{3}, D_{6}, p\right)$. The quadrangle $\left\{p_{3}, p^{\prime}, p_{1}, p_{2}\right\}$ is contained in a unique quad which is Q. As $\left(p, Q^{\prime}, p_{1}, Q\right)$ is a point-quad path of length 4 with p and p_{1} collinear, the hypotheses of the first case are satisfied, and so every quad incident with p is incident with a point q which is itself incident with Q.

Third part. Conclusion.
Proof. The first two parts show that $S(G(\Gamma)$,quad) is a polar space. Moreover, corollary 3.5 shows that $G(\Gamma)$ is a geometry of rank three. Therefore the geometry $G(\Gamma)$ is a building of type C_{3} such that $S(G(\Gamma)$,point) is equal to Γ.

References

[1] N. Bourbaki, Groupes et algèbres de Lie, chapter 4, 5, 6, Hermann, Paris, 1968.
[2] F. Buekenhout, The basic diagram of a geometry, in Geometries and groups, Lecture Notes in Math. 893, Springer-Verlag, Berlin (1981) 1-29.
[3] F. Buekenhout, An approach of building geometries based on points, lines and convexity, European J. Combin. 3 (1982) 103-118.
[4] F. Buekenhout and E.E. Shult, On the foundations of polar geometry, Geom. Dedicata 3 (1974) 155-170.
[5] P.J. Cameron, Dual polar spaces, Geom. Dedicata 12 (1982) 75-85.
[6] A.M. Cohen, An axiom system for metasymplectic spaces, Geom. Dedicata 12 (1982), 417-433.
[7] A.M. Cohen, On a theorem of Cooperstein, European J. Combin. 4 (1983) 107-126.
[8] A.M. Cohen, Point-line spaces related to buildings, Chapter 14 in the Handbook of Incidence Geometry (ed. by F. Buekenhout), North-Holland, to appear.
[9] A.M. Cohen and B.N. Cooperstein, A characterization of some geometries of exceptional Lie type, Geom. Dedicata 15 (1983) 73-105.
[10] B.N. Cooperstein, A characterization of some Lie incidence structures, Geom. Dedicata 6 (1977) 205-258.
[11] H.S.M. Coxeter, Regular polytopes, Dover, New York, 1973.
[12] G. Hanssens, A technique in the classification theory of point-line geometries, Geom. Dedicata 24 (1987) 85-101.
[13] G. Hanssens, A characterization of point-line geometries for finite buildings, Geom. Dedicata 25 (1988) 297-315.
[14] G. Hanssens and J.A. Thas, Pseudopolar spaces of polar rank three, Geom. Dedicata 22 (1987) 117-135.
[15] S. Lehman, A characterization of building spaces of type $C n, n-1$, J. Combin. Theory Ser. A; to appear.
[16] J. Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Math., 386, Springer-Verlag, Berlin, 1974.
[17] O. Veblen and J.W. Young, Projective Geometry, Ginn, Boston, 1910.

Département de Mathématiques CP 216
Université Libre de Bruxelles
Boulevard du Triomphe
B-1050 Bruxelles, Belgium

[^0]: *Supported by a grant of the "Fonds National Belge de la Recherche Scientifique" Received by the editors November 1993
 Communicated by J.Doyen
 AMS Mathematics Subject Classification : 51A.
 Keywords : incidence geometry, building, polar space and line space.

