On the locally finite chain algebra of a proper
homotopy type

Hans-Joachim Baues Antonio Quintero

Abstract

In the classical paper [A-H| Adams-Hilton constructed a free chain algebra
which is an important algebraic model of a simply connected homotopy type.
We show that this chain algebra (endowed with an additional structure given
by a “height function”) yields actually an invariant of a proper homotopy type.
For this we introduce the homotopy category of locally finite chain algebras
without using the usual methods of pro-categories. As examples we consider
the locally finite chain algebras of R"*1, S% x §%2 —{point}, and CP, —{point}.

1 Proper homotopy types of locally finite polyhedra.

Let Top be the category of topological spaces. A map f : X — Y is proper if
both f is closed and the fibre f~!(y) is compact for each point y € Y. Let Topp
be the subcategory of T'op consisting of topological spaces and proper maps. The
unit interval I = [0, 1] C R yields the cylinder /X = X x [ in T'op and Topp such
that these categories are [-categories in the sense of [BAH;I §3], compare [BP;1.3.9]
or [ADQ1]. Hence the homotopy categories T'op/~ and Topp/~ are defined, and
isomorphism types in these categories are homotopy types and proper homotopy
types respectively. We are interested in new algebraic invariants of the proper ho-
motopy type of a locally finite polyhedron. A polyhedron X is a topological space
homeomorphic to a simplicial complex; if every vertex belongs to only finitely many
simplices the polyhedron is locally finite, this is the case if and only if the space X is
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locally compact. For example, all topological manifolds have the proper homotopy
type of a finite dimensional locally finite polyhedron (see [K-S; p. 123]).

Given a topological space X a collection S = {A4,;j € J} of subsets A; C X is
said to be locally finite if every point in X has a neighbourhood U such that the set
{j € J;UNA; # 0} is finite; that is, every point has a neighbourhood which meets
only finitely many members of §. A polyhedron is locally finite if and only if the
collection of all the closed simplices is locally finite.

A tree T, in this paper, is a contractible locally finite 1-dimensional simplicial
complex. We shall consider the category Topp? of objects in Topp under T, such
objects are proper maps 7' — X and morphisms in T'opp” are commutative diagrams

VAN

X Y

in Topp. The category Topp” is a cofibration category, see [BAH;1.3.3 and I11.1.4].
The tree T plays the role of “base point” in proper homotopy theory. The category
Topp™ is the analogue of the category Top* of pointed spaces * — X in classical
homotopy theory. A “pointed” object T" — X is cofibrant if the map T — X is a
cofibration in Topp. An object in Topp? is T-connected if X is path-connected and
if T'— X induces a homeomorphism, Ends(T) — Ends(X), between the spaces of
Freudenthal ends ([Fr]).

(1.1) Lemma: For each locally finite path-connected polyhedron X there exists
a tree T' such that X is T-connected.

In fact, T' can be chosen to be a suitable maximal tree in the 1-skeleton of X
([BP;II1.1.9]), and in this case X is cofibrant.

(1.2) Definition: Let T° be the O-skeleton of the tree T', and let E be a countable
set. A height function is a finite-to-one function € : £ — T°. The spherical object
S is obtained by attaching n-dimensional spheres S” to the vertices of T'; more
precisely, S” is the push-out in Top

I_leEE Sg

S¢

B € T°CT
Hence S? is a cofibrant object. Let

T (X) = [S7, X]"

n

be the set of homotopy classes in Topp” of maps S™ — X. For n > 1 75(X) is
a group which is abelian for n > 2. The properties of the proper homotopy group
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7& (X)) are studied in [BP;Ch. II]. The space X is properly simply connected if both
X is T-connected and 7§(X) = 0 for all height functions e. This implies that X is
simply connected in Top*.

(1.3) Definition: A finite dimensional proper CW-complex under T (or a T-CW-
complex) is a finite dimensional CW-complex X with the following properties

(i) The 1-skeleton X' is a 1-dimensional spherical object.

(ii) For n > 1 the (n + 1)-skeleton X" is obtained by a push-out diagram in
Top

CS;L f~n+1 Xn+1

STL fn+1 Xn
where S” with o = a(n + 1) : E,y1 — T° is an n-dimensional object and f,,; is
a proper map under 7'. Here C'S?! is the ‘cone’ of the spherical object S given by
attaching (n + 1)-dimensional balls D! with S* = D" to the vertices of T° as
in the push-out diagram with £ = E,, 4

|—|e€E DZ—H CS;L

E a °CcT

Hence the set of (n + 1)-cells of X — T can be identified with E, and therefore a
height fuction « : cells(X —T) — TV is given where cells(X — T) is the set of cells
in X -T.

(1.4) Proposition: Let X be a cofibrant finite dimensional locally finite poly-
hedron in Topp? which is properly simply connected. Then there exists a T-CW-
complex Y with Y! = T and a proper homotopy equivalence X ~ Y in Topp”.

Compare [BP; I11.2.10].

The proposition will be used to replace locally finite polyhedra by equivalent
T-CW-complexes.

Let CW1(T) be the full subcategory of Topp” consisting of T-CW-complexes X
with X1 = T and let CW;(T')~ be the associated homotopy category. Let CW; be
the full subcategory of Top* consisting of CW-complexes Y with Y1 = . We have
the forgetful functor

¢ : CWl(T) —_— CWl
which carries X to the quotient X/T.
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If T'= x is a point we have the full inclusion
7 CWl(*) c CWy

where the objects of CTW; (%) are the finite CW-complexes for which all the attaching
maps are pointed. Any proper cellular map v : T — T’ between trees induces the
functor

1/1# . CWl(T) e CWl(T/)
which carries X to the space Y obtained by the push-out in T'op

X Y

T P T

These functors ¢, 7,14 induce functors between the corresponding homotopy
categories.

(1.5) Proposition: If ¢ is a proper homotopy equivalence then
w# : CWl(T)/2—> CWl(T/)/E

is an equivalence of categories.
Compare [BP;I1.1.4]

(1.6) Remark: We point out that the proper homotopy types of trees are in 1—1
correspondence with homeomorphism types of closed subspaces of the Cantor set.
The correspondence carries a tree T' to the space of Freudenthal ends of 7'. Hence
up to equivalence the homotopy category CW;(T')/~ is determined by the choice
of a closed subset of the Cantor set ([BP; I1.1.10]).

2 Chain algebras and locally finite chain algebras.

Let R be a commutative ring of coefficient with unit 1 which we assume to be a
principal ideal domain.

Let A be a differential graded free R-module such that A, = 0 for n < 0 and
dA,, C A,—1. Then A will be called a chain algebra (over R) if a product is defined
in A such that

(i) A is an algebra over R with unit element

(ii) ApAg C Apiq

(ili) d(zy) =dz y+ (—1)Px dy, if z € A,

We also write p = |z| if x € A,. A function f from the chain algebra A to the
chain algebra A’ is called a map if it is a homomorphism of chain complexes and a
homomorphism of algebras.
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A free chain algebra is a chain algebra for which the underlying algebra A is
free. In this case a graded set B = {B,;n > 0} is given such that A = ®*(B) is
the tensor algebra generated by B. That is, ®*(B) is the free R-module generated
by the free graded monoid, Mon(B), generated by B where Mon(B) consists of all
words by ...b, with b; € B for 1 <i < k and k > 0. The empty word for k£ = 0 is
the unit. The degree is given by |by ...bg| = |b1| + -+ + |bk|.

Let C'hain Algebras be the category of free chain algebras and maps.

A monoid M yields the associated algebra over R denoted by R[M|] which is the
free R-module generated by M, in particular the tensor algebra generated by B is

©"(B) = R[Mon(B)|
We define a carrier function
car : ®*(B) — P(B)

where P(B) is the set of subsets of B = U{B,;n > 0}. This function carries an
element z € ®*(B) to the following subset of B. The element z can be expressed
uniquely as a sum > r;y; where y; is a word in Mon(B). Let car(z) = Ucar(y;)
where car(by ...b;) = {b1,...,bx} C B.

Given a tree T and a subset X C T° let T[X] C T be the subtree generated by
X; that is the intersection of all the subtrees containing X.

(2.1) Definition: A locally finite chain algebra (with respect to the tree T')
Ao = (®*(B>7 d, a)

is a free chain algebra A = (®*(B),d) together with a height fuction a : B — T°
(see (1.2)) such that the collection of subtrees

{T]o(b) U a(car d(b))] }oen
is locally finite in T'. A proper map
frA, — A'ﬂ

between locally finite chain algebras is a map of the underlying chain algebras such
that the collection of subtrees

{Tla(b) U B(car f(b))]}ben
is locally finite. The composition of proper maps is defined by the composition of
the underlying maps between chain algebras, indeed we have

(2.2) Lemma: The composition of proper maps is a proper map.

Clearly the identity is a proper map since a height function is finite-to-one. Hence
the lemma shows that the category of locally finite chain algebras and proper maps
is well-defined. We denote this category by Chain Algebras(T).
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Proof of (2.2): Let f: Ay, — Aj and g : Ay — A’ be two proper maps. If
B, B', and B" denote the basis of A,, Aj, and A7 respectively, the collections of
finite subtrees

{Tla(b), B(car f(b))]}oen
and
{T[B),v(car g(b))]}ves (1)
are locally finite. Given a finite tree K’ C T', let B C B’ be a finite set with
T[B(b'), y(car g(b')] N K’ =0

for each b’ € B’ — Bj,.
Let K C T be a finite subtree with K’ U B(B{) C K. We take a finite subset
By C B with
Tla(b), B(car f(b))]NK =0 (2)

for each b € B— By. In particular, S(car f(b))NG(B,) =0, and so car f(b)N B, = 0.
We claim that
Tlo(b), y(car gf (b)) N K" =0 (3)

for each b € B — By. Indeed, it is not hard to check the inclusions
Tleu(b), v(car gf(b))] C T[a(b), U {y(car g(t')); V" € car f(b)}] C

C Tla(b), B(car f(b))] U{T[B(),~(car g(b'))]; " € car f(b)}
And now equations (1) and (2) yield (3) since (car f(b))N B, = 0 as it was remarked
above. ]

As in [BAH; 1.7.11] we obtain the cylinder I A of the free chain algebra A =
(®*B,d) as follows. Let sB be the graded set with (sB),, = B,_1, and let B" and
B” be two copies of B. Then

IA = (®*(B'UB"UsB),d)
is the free chain algebra with the differential given by
dr' =ipdr da" =ide dszx =2" — 2’ — Sdx

Here ' € B',z" € B”, and sx € sB are the elements which correspond to = € B,
and i, 41 : A — I A are defined by io(z) = z, and i;(z) = z”. Moreover S

S:A—1TA
is the unique homomorphism of degree +1 between graded R-modules which satisfies
Sxr=sx forx e B

S(ay) = (Sz)(ia(y)) + (1)1 (ioz)(Sy) for 2,y € A

Since A is free S is well-defined by these conditions. Moreover, (I A,1ig,i1,p) is a
cylinder object in the category of free chain algebras, where p : A — A satisfies
p(z') = p(z”) = z and p(sx) = 0.
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As it was shown in [BAH; 1.§7], this cylinder satisfies the axioms of an /-category,
where cofibrations are maps of the form

A= (®B,d)C A' = ("B, d)

given by an inclusion of graded sets B C B’. A homotopy H : f ~ g between maps
fig: A— A’is given by a commutative diagram

A
7N
IA LY

W

in the category of free chain algebras. Let Chain Algebras/~ be the homotopy
category.

(2.4) Definition: Given a locally finite chain algebra A, = (®*B, d, o) we obtain

the cylinder

1(A0) = (1A, Ia)
by the cylinder IA above and the height function Ia with (I«)(2') = (Ia)(2”) =
(Ia)(sz) = a(z) for x € B. A cofibration A, C Aj is given as above where 3 is an

extension of a.
With the obvious changes the proof of [BAH; 1.7.18] can be mimiced to get

(2.5) Proposition:  The cylinder I(A,) is a well-defined locally finite chain
algebra and it satisfies the axioms of an I-category.

In particular homotopies for proper maps are defined as above and one obtains
the homotopy category C'hain Algebras(T)/~.

For locally finite chain algebras A,, A} let [A,, A3]" be the set of homotopy
classes of proper maps A, — A’ﬂ; this is the set of morphisms in the category
Chain Algebras(T)/~. Given a height function € : E — T we obtain for each
n > 1 the proper chain algebra

A(S™M) = (®"Eny,d = 0,€)

here E(,) is the graded set concentrated in degree n given by F. This chain algebra,
as we will see, is the Adams-Hilton model of the spherical object S™*!. We define
the proper homology of the proper chain algebra A, by the set of homotopy classes

Hy(Aq) = [A(SEH), Aa]"

As we will see, this homology is the analogue of the homotopy group ¢ (X) in
section 1.

There is an obvious forgetful functor

¢ : Chain Algebras(T) — Chain Algebras
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which carries A, to A. If T'= % we have the full inclusion
i : Chain Algebras(x) C Chain Algebras

of finitely generated free chain algebras. Moreover any proper cellular map ¢ : T —
T’ between trees induces the functor

ty : Chain Algebras(T) — Chain Algebras(T")

which carries A, to Ay. These functors ¢, 4,14 induce functors between the cor-
responding homotopy categories. Moreover, the category Chain Algebras(T') up to
equivalence depends only on the proper homotopy type of T'. In fact we have

(2.5) Proposition: If ¢ is a proper homotopy equivalence between trees then
1y is an equivalence of categories.

Proof: Notice that for any two properly homotopic cellular maps ¢, ¢ : T — T’
the collection of finite subtrees of T”

{T[pa(b), ¢'a(b)] }oen

is locally finite. Therefore the identity 1 : Ay, — Ay is an isomorphism of locally
finite chain algebras. In fact it induces a natural equivalence

As an immediate consequence one gets that ¢y is an equivalence of categories if ¢
is a proper homotopy equivalence. [ ]

Similarly as in (1.6) above, the theory of locally finite chain algebras is deter-
mined by the choice of a closed subspace of the Cantor set.

3 Adams-Hilton models.

Adams and Hilton ([A-H]) constructed for a CW-complex X with X' = % a free
chain algebra

A(X) = (®"Cells(X — x),d)

where Cells(X —x) is the desuspension of the set of cells of X —x, that is Cells(X —
%), is the set of (n + 1)-cells in X — *. Moreover they constructed a homology
equivalence

Oy : A(X) — C.(QX)

Here C,(Q2X) denotes the singular chain complex of the loop space of X which by
the multiplication in €2X, is a chain algebra. The construction of §x is compatible
with subcomplexes, that is for each subcomplex K C X one has the commutative
diagram
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iR (I)

A(K)— . 0,(QK)

The vertical arrows are induced by the inclusions Cells(K — %) C Cells(X — ), and
K C X respectively.

For a pointed map f : X — Y in CW; which we may assume to be cellular,
we can choose up to homotopy a unique map f for which the following diagram
commutes up to homotopy

|

A(X)

A(Y)
Ox Oy (II)

C.(x) —<9 o qy)

The homotopy class of f is well-defined by the homotopy class of f and the choices of
fx and fy. Henceforth we assume that for all X in C'W; the homology equivalence
fx is chosen. Then we obtain the functor

A: CWy/~ — Chain Algebras /~

which carries X to A(X) and the homotopy class of f to the homotopy class of f.

The next result shows that the Adams-Hilton functor A admits a canonical
analogue in proper homotopy theory. For this we use the functors ¢, 7, 14 in section
1 and section 2.

(3.1) Theorem: There exists a commutative diagram of functors
CWA(T)~ ---Boiiis Chain Algebras(T)

¢ ¢

CW, f~ A Chain Algebras /~

Moreover the functor H commutes with the functors ¢ and 4. That is, Hyy =
Yy H, and Hi=iA.

We use the functor H for the definition of the following Hurewicz homomorphism

he s (X) — Hy o (H(X))

n

which carries an element ¢ € [S”, X|T to the induced map H(&) € [ H(S™), H(X)]”,
compare section 1 and section 2. This Hurewicz homomorphism is the proper ana-
logue of the homomorphism

h:mp(X) =m1(QX) — H,—1(2X)
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which is used in the Milnor-Moore theorem ([M-M]). We shall study the proper
analogue of the Milnor-Moore theorem concerning h® elsewhere.

For the proof of the theorem we shall use the following additional properties of
the Adams-Hilton construction. Given f : X — Y in CW; the map f together with
a homotopy

Hf . C*(Qf)ex ~ eyf

in the category of differential chain algebras can be chosen to be filtration preserving;
this means for any pair of subcomplexes K C X and L C Y with f(K) C L the
map f admits a restriction 7 = f|¥ for which the diagram

A(X) —L— A(v)
ir ir (III)
A(K) —— A(L)

commutes and for which the restriction of Hy is H,, where r : K — L is the
restriction of f. Moreover, given a filtration preserving map 7 and H, for r, we can
choose f and H; to be filtration preserving such that f extends 7 and H extends
H,; this is the extension property of the Adams-Hilton construction.

We have for a T-CW-complex X the equation
Cells(X —T) = Cells(X/T — %)
Hence the height function « for X in section 1 yields a height function
a: Cells(X/T — %) — T°

For the proof of the theorem we show

(3.2) Lemma : For X in CW;(T') the object H(X) = A(X/T), is a well-defined
locally finite chain algebra. This shows that ¢ H(X) = A¢(X).

Amap f: X — Y in CW(T) induces a map ¢(f) : X/T — Y/T in CW;.

(3.3) Lemma: A filtration preserving chain algebra map ¢(f) : A(X/T) —
A(Y/T) associated to ¢(f) above is proper with respect to the height functions «

and [ of X and Y respectively, and the homotopy class of ¢(f) in Chain Algebras(T')
is well-defined by the homotopy class of f in CW;(T'). Henceforth we shall denote

¢(f) simply by f.

The functor H carries a T-CW-complex X to H(X) = A(X/T), in (3.2) and
carries the homotopy class of f : X — Y in CW;(T') to the homotopy class of f in
(3.3).
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(3.4) Lemma: [ is a well-defined functor and satisfies the compatibility prop-
erties ¢ H = A¢, Hvw =vx H, and Hi =iA.

A key lemma for proving these propositions is the charaterization of proper maps
between T-CW-complexes in the next lemma. Given a subset U C X of a T-CW-
complex X let < U > be the smallest T-CW-subcomplex containing U; that is the
union of 7" and the smallest CW-subcomplex containing U.

(3.5) Lemma: Let X and Y be T-CW-complexes with height functions o and
[ respectively. Then a continuous map f : X — Y under T is proper if and only if
the collection of subtrees

{Ta(cells(< e > =T)) U B(cells(< f < e >> =T))|}ecceus(x—1) (1)

is locally finite in 7T'.

Proof of (3.5): A T-CW-complex X is a finite dimensional locally finite CW-
complex, and hence X is strongly locally finite ([F-T-W]). That is, X is the union of a
locally finite sequence of finite subcomplexes. Let {X;;7 > 1} and {Y;;¢ > 1} be such
sequences for X and Y respectively. It is not hard to show that f : X — Y is proper
if and only if for each Y(,) = U{Yi;4 > m} we can find X,y = U{X;;i > n} such that
J(Xn)) C Y. Moreover, since f is a map under T', we have X,y N T C Y,y N T,
and for any component C' C X,y N T we have f(D¢) C Der. Here C' C Yy NT
is the unique component with C'= f(C) C €', and D¢ C Xy, Dor C Y,y are the
components defined by C' C D¢ and C' C Der respectively. Therefore, for any cell
e C D¢ we have a(< e > —T) C C C (', and then g(< f <e>> —T) C C'. Thus
the family in (1) is locally finite since for a compact subset K C 7" we can choose
Yy with K N Y,y = 0.

Conversely, assume that this family is locally finite. Given a compact subset
K CYlet Y® = U{Y;;i <t} such that K C Y®. We now choose X, such that
XmyNT CT — K, and for each cell e € Xy,

Tla(cells(< e > =Y)), Blcells(< f <e>> -TNHNYD =0

Hence B(< f < e >> ~T)NY® =), and for each cell ¢ in < f < e >> —T we
have ¢/ ¢ Y. That is, (< f <e >> -T)NY® =@, and so f(X) C X — K.
Therefore f is proper. [

Proof of (3.2) and (3.3): Property (III) with K =< e > and L =< ¢(f) < e >>
implies that car(fe) C cells(< f < e >> —T). This shows by (3.5) that f in (3.3)
is proper. Next the differential in A(X/T') is induced by the attaching map

far : 52— X"

that is, d(e) = 7n+1(se) with s, € A(SY/T) being the generator in degree n — 1
corresponding to S™ C S™, see §2. Since [, 41 1s proper and since a T-CW-complex
is finite dimensional we see that d satisfies the properness condition in section 2 and
hence (3.2) holds.
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Now let H : f ~ g : X — Y be a homotopy in CW1(T). Then ¢(H) : I7X =
IX/IT —Y is a map in CW; and H can be chosen to be an extension of f and g
so that H : f ~ g is a homotopy in Chain Algebras(T). n

Proof of (3.4): Let f: X —Y and g:Y — Z be maps in CWy(T) and let f, g,
and gf be the associated maps in Chain Algebras(T). We have to show that there
is a proper homotopy G’ : gf ~ gf. Now we have a homotopy

G=—Hy+g.Hy + HJIf:079f ~055f

Let J be the set of triples j = (K,L,R) where K € X, L C Y, R C Z are
subcomplexes with f(K) C L and ¢g(L) C R and hence ¢gf(K) C R. For each such
j the homotopy G restricts to a homotopy

G+ 0r(gfIR) ~ Or(@lR) (/L)

We now consider the following category DA(J), objects A are chain algebras A
together with a collection {A;;j € J} of chain subalgebras indexed by J, and
morphisms are collection preserving chain maps. We obtain the following objects
and morphisms in DA(J)

AY/T)

7/ 7

AX)T) —L+ A(Z/T)

The corresponding collections indexed by j = (K, L, R) € J are defined by
A(X/T); = A(K/T), A(Y/T); = A(L/T), A(Z/T); = A(R/T)

The properties above show that the diagram is well-defined in DA(J). Using
the homotopy G : 0;9f ~ 0,Gf we construct inductively a homotopy G’ : gf ~ Gf
in DA(J). For the induction we use the skeleta and the assumption that f and g
are cellular. Let J" defined as above by the n-skeleta of X,Y, and Z, and let g,
and f, be restrictions to the n-skeleta and assume G™ : g, fn ~ Gnfn in DA(J") is
constructed. Let e be an (n + 1)-cell in X then we have in J the triple

Je=(Ke=<e> L. =<f<e>> R.=<g< f<e>>>)

and an inclusion < ¢gfK., >C R.. Hence we obtain the following commutative
diagram of unbroken arrows

A(([TKe>n+1/T) In+1 fn+1 UGy mfn-&-l A(Re/T)
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Let G be a lift of this diagram in the cofibration category of chain algebras
([BAH;I1.1.11]). Then the homotopy G™*! : g, i1 far1 =~ Gniifni1 is defined on the
cell Te by G"1(Ie) = G™*!(Ie). This completes the induction since one can check
that G™™ is a homotopy in DA(J™"); in fact this is a consequence of the inclusion
of triples j. = (K., L., R.) C (K, L, R) whenever e C K. Let G’ be given by the
sequence G™ (n > 1). It is clear how to start the induction for n = 1 since all
1-skeleta coincide with 7. The homotopy G’ being a homotopy in DA(J), can be
checked to be also a homotopy in C'hain Algebras(T). This completes the proof that
H is a well-defined functor. It is obvious that ¢ Hf = A¢ and Hi = iA. Moreover

How = p H since (v X)/T = X/T. -

4 Examples.

Let R be the half-line [0, o0) which is a tree with O-skeleton R} = {z € Z;z > 0}.
The product S™ x Ry is a R,-CW-complex. We assume n > 2 so that S™ x R, is
properly simply connected. The closed cells are z; = S™ x {t} and y; = S™ x [t, t +1]
for t € RY. The height function a : cells(S™ x Ry — Ry) — RY is given by
a(xy) = a(y:) = t. Moreover we obtain the locally finite chain algebra

H(S™ xRy) = A(S" X Ry /Ry )a

with degree |z =n — 1, |ys] = n, and dxy = 0, dy = —x¢ + x441. More generally
let X be a finite CW-complex with pointed attaching maps and trivial 1-skeleton
X! = x. Then X xR, is again an R,-CW-complex which can be obtained by gluing
cylinders on X

XXxRy =X xTUx X xITUyx...

Hence
HX xRy) =A(X xRy /Ry ), = TA(X) Ua(x) TA(X) Uax) - - - (4.1)

where JA(X) is the cylinder of the chain algebra A(X), see section 2. The explicit
formula for this cylinder hence gives us the differential of A(X x R, /R, ). For each
cell e C X — % we obtain the cells e; = e x {t} and €} = e x (¢, + 1) which yield all
cells of X x Rt — {x} x R;. Hence we have

H(X xRy) = (@ {es, e3¢ € cells(X — *),t € RY}, d, )

with degrees |e;] = dim(e) — 1 and |ej| = dim(e), and a(e;) = a(e}) = t. Using
the differentials of JA(X) and the union above one easily obtains formulas for the
differential d of H(X x R;). A particular example is S™ x Ry above.

We can identify S™ x R, and D" — {p} where p is a point in the interior of the
closed disk D"*!. This gives us the possibility of computing for a simply connected
manifold M the locally finite chain algebra H(M — {p}) where p is a point in M.
As examples we consider the cases M = S? x S? and M = CP;, for which we have
the homeomorphisms

S?x 8% —{p} = (S*V S*) U, S* xR,
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CP, — {p} = S2U, S x R,

Here w is the Whitehead product and 7 is the Hopf map. These homeomorphisms
yield the structure of properly simply connected R -CW-complexes. The associated
locally finite chain algebras are given as follows.

A(S? x 8% = {p}) = (®"{a,b,z,ysit, s € Rt >0}, d, a)

Here the degrees are |a| = |b| = 1, || = 2, and |ys|] = 3. The height function
a satisfies a(a) = a(b) = a(yy) = 0 and a(x;) = a(y;) = t for t > 0. The
differential d is determined by d(a) = d(b) = d(z;) = 0 and d(yo) = —(ab+ba) + z1,
d(y:) = —x¢ + w41 for t > 0. Similarly we have

ACP — {p}) = (®"{a, 21, ys;5,t € R, L > 0}

with degrees and height function as above, and with the differential d(a) = d(x;) =0
and d(yo) = —aa + 1, d(y) = —x¢ + 2441 for t > 0.

Finally we consider the locally finite chain algebra of the euclidean space R
n > 2. The R -CW-structure of R**! is given by the identification

R = 57" x R, /5™ x {0}

Hence we get
AR™) = (@ {4, ys; t, s € RY,t > 0}, d, a)

with degrees |z¢| = n —1 |ys] = n, and height function a(z;) = t, a(ys) = s.
The differential is d(x;) = 0 and d(yo) = x1, d(y:) = —xr + 2441 for t > 0.
Clearly, since R™! is contractible also the underlying chain algebra of H(R™")
is homotopy equivalent to the trivial chain algebra. However it is well-known that
R™"! is not contractible in the proper homotopy category. Similarly the locally
finite chain algebra H(R™™!) is not homotopy equivalent to the trivial algebra in
Chain Algebras(Ry). This is also a consequence of the following computation of
sets of homotopy classes in Chain Algebras(R.)/~.

(4.2) Proposition: Let k,n > 2. Then we have

Zfor (k—1)=(n—1m, m>1
0 otherwise

RS, fR[R = {

This result might be surprising since the underlying chain algebra of H(R™*!) is
very large. We know however, see [ADQ2], that the function

m(S") — [RFF R R

which carries a map f : S¥ — S™ to the proper map R¥! — R"*! induced by
f x R4, is an isomorphism. Here m;(S™) is the usual homotopy group of a sphere
while [RFFL R 1R+ is the homotopy set in Topp®+. Similarly the proposition is a
consequence of the isomorphism

o

O : [A(SY), A(S™)]—[ AR™), FR™)*
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where the left-hand side denotes the homotopy set in Chain Algebras. The iso-
morphism © carries the map f : A(S¥) — A(S™) to the map induced by If
on each cylinder in H(S™ x Ry) = TA(S™) UTA(S™) U ..., compare (4.1), with
AR = H(S" x RT)/A(S" x {0}).
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