LS-category of classifying spaces, II

J.-B. Gatsinzi*

Abstract

Let X be a simply connected finite CW-complex. Denote by B aut X the base of the universal fibration of fibre X. We show in this paper that the Lusternik-Schnirelmann category of B aut X is not finite under some hypothesis on X.

1 Introduction

In this paper, X will denote a simply connected CW-complex of finite type. The LS-category of X, cat(X), is the least integer n such that X can be covered by (n + 1) open subsets contractible in X, and is ∞ if no such n exists. The rational category of X, $cat_0(X)$, is the LS-category of its rationalization X_0 and satisfies $cat_0(X) \leq cat(X)$. One way to approach cat(X) consists to compute $cat_0(X)$ by algebraic methods ([4]).

Recall first that the Sullivan minimal model of X is a free commutative cochain algebra $(\Lambda Z, d)$ such that $dZ \subset \Lambda^{\geq 2}Z$, with $Z^n \cong Hom_{\mathbb{Q}}(\pi_n(X), \mathbb{Q})$ ([10], [8]).

A differential graded Lie algebra (L, d) is called a Quillen model for X if there is a quasi-isomorphism between the Sullivan minimal model of X and the cochain algebra on (L, d).

The space X is called coformal if its Sullivan minimal model has the form $(\Lambda Z, d)$ where $dZ \subset \Lambda^2 Z$.

The n^{th} Gottlieb group of X, $G_n(X)$, is the subgroup of $\pi_n(X)$ defined as follows. The homotopy class of $\alpha : S^n \longrightarrow X$ belongs to $G_n(X)$ if the map $id \lor \alpha : X \lor S^n \longrightarrow X$ extends to $X \times S^n$.

Bull. Belg. Math. Soc. 3 (1996), 243-248

^{*}Supported by a Humboldt-Stiftung research fellowship

Received by the editors June 1995.

Communicated by Y. Félix.

¹⁹⁹¹ Mathematics Subject Classification : 55 P 62, 55 M 30.

Key words and phrases : rational homotopy, classifying space, Gottlieb group.

Fibrations which fiber in the homotopy type of X are obtained, up to fiber homotopy equivalence, as pull back of the universal fibration $X \longrightarrow B aut^{\bullet} X \longrightarrow$ B aut X ([1],[3]); here aut X denotes the monoid of self-homotopy equivalences of X, $aut^{\bullet} X$ is the monoid of pointed self-homotopy equivalences of X, and B is the Dold-Lashof functor ([2]).

Denote by \tilde{B} aut X the universal covering of B aut X. We briefly recall the construction of a model of \tilde{B} aut X.

We derive from $(\Lambda Z, d)$ a connected differential graded Lie algebra of derivations, $(Der \Lambda Z, D)$ ([10]): in degree k > 1, we take the derivations of ΛZ decreasing degree by k. In degree one, we only consider the derivations θ which decrease degree by one and verify $[d, \theta] = 0$. The differential D is defined by $D\theta = [d, \theta] = d\theta - (-1)^{|\theta|} \theta d$ (see [10] for more details).

Theorem. ([10]) The differential graded Lie algebra $(Der\Lambda Z, D)$ is a Quillen model for the universal covering \tilde{B} aut X of B aut X.

We know from ([6]) that $cat(\tilde{B} aut X)$ is not finite when the rational homotopy of X is finite dimensional or when X is a wedge of spheres. We shall use the model above to carry on which the computation of the rational LS-category of $\tilde{B} aut X$. Since $cat(B aut X) \ge cat(\tilde{B} aut X) \ge cat_0(\tilde{B} aut X)$, whenever $cat_0(\tilde{B} aut X) = \infty$, the LS-category of B aut X will also be infinite. We prove:

Theorem. Let X be a simply connected finite CW-complex. The LS-category of B aut X is infinite provided one of the following hypothesis is satisfied:

- (a) X is a coformal space and the Gottlieb group, $G(X_0)$, is non zero.
- (b) $X = Y \times Z$, $G(Y_0) = G(Z_0) = 0$, $\pi_*(B \text{ aut } Y) \otimes \mathbb{Q}$ is not finite dimensional and $\tilde{H}^*(Z, \mathbb{Q}) \neq 0$.
- (c) $X = Y \lor Z, Z_0 \neq \lor S_0^i$, which $\pi_*(Y) \otimes \mathbb{Q}$ infinite dimensional and Y, Z coformal spaces.

2 The classifying space spectral sequence

Let $(\Lambda Z, d)$ be the Sullivan minimal model of X. Define a filtration of the differential Lie algebra $Der(\Lambda Z, d)$ by the Lie differential sub algebras

$$F_p = \{ \theta \in Der(\Lambda Z, d) \mid \theta(Z) \subset \Lambda^{\geq p} Z \}.$$

This filtration is compatible with the differential, and verifies $[F_p, F_q] \subset F_{p+q-1}$. Therefore, we obtain a spectral sequence of differential graded Lie algebras $(E^r(X), d^r)$ such that $E^2(X) \cong H_*(Der(\Lambda Z, d_2))$, where d_2 denotes the quadratic part of the differential d, and which converges to $H_*(Der(\Lambda Z, d))$. Moreover $E_{0,*}^{\infty}(X) \cong G(X_0)$.

Proposition 1 Let X be a finite simply connected CW-complex, then $E_{q,*}^{\infty}(X) = 0$ for all q greater than the homological dimension of X.

Proof. Let n be the homological dimension of X and $\theta \in F_p$, p > n, such that $[d, \theta] = 0$, we shall prove that θ is a boundary i.e. there is a derivation θ' such that $\theta = [d, \theta']$. For degree reasons, $\theta = 0$ on $Z^{\leq n+|\theta|}$, so that we put $\theta' = 0$ on $Z^{\leq n+|\theta|}$. Suppose now that that θ' is defined on $Z^{< r}, r > n + |\theta|$, such that $\theta = [d, \theta']$ on $Z^{< r}$. Let $x \in Z^r$, compute

$$d[\theta(x) + (-1)^{|\theta|} \theta'(dx)] = d\theta(x) + (-1)^{|\theta|} d\theta'(dx) = (-1)^{|\theta|} \theta(dx) + (-1)^{|\theta|} d\theta'(dx) = (-1)^{|\theta|} (\theta - [d, \theta'])(dx) = 0.$$

Therefore there is an element y in ΛZ such that $\theta(x) + (-1)^{|\theta|} \theta'(dx) = dy$. Then define $\theta'(x) = y$; the elements θ and $[d, \theta']$ agree on $Z^{\leq r}$.

Corollary 2 Let X be a finite simply connected CW-complex such that $G(X_0) = 0$, then $E_{\geq 2}^{\infty}(X)$ is a nilpotent ideal of $\pi_*(\Omega \tilde{B} \text{ aut } X) \otimes \mathbb{Q}$.

3 Proof of the theorem

3.1 Case (a)

Let *n* be an integer such that $G_n(X_0) \neq 0$, then according to ([4]), *n* is odd. Denote by $(\Lambda Z, d_2)$ the Sullivan minimal model of *X*. By definition ([4]), there is a derivation θ of ΛZ such that $\theta(z) = 1$ for some $z \in Z$, which commutes with the differential. Write $\theta = \theta_0 + \cdots + \theta_i \cdots$ such that $\theta_i(Z) \subset \Lambda^i Z$. Since $[d_2, \theta_0] = 0$ and $\theta_0^2 = 0$, there is a KS-extension ([8]) $(\Lambda y, 0) \longrightarrow (\Lambda y \otimes \Lambda Z, d) \longrightarrow (\Lambda Z, \overline{d})$ such that $dx = d_2x + y\theta_0(x)$ for $x \in \Lambda Z$. The spatial realization of this KS-extension is a fibration with fibre X_0 and basis $K(\mathbb{Q}, n+1)$. This provides a non trivial classifying map $f : K(\mathbb{Q}, n+1) \longrightarrow (\tilde{B} aut X)_0$. Therefore, applying the mapping theorem ([4]), we conclude that the category of $(\tilde{B} aut X)_0$ is not finite. *Remarks:*

- A Gottlieb element of degree n of $(\Lambda Z, d)$ provides a derivation θ of ΛZ of degree -n such that $\theta(z) = 1$ and $[d, \theta] = 0$ ([4]). As the homology class of θ is non zero in $\pi_{n+1}(\tilde{B} aut X) \otimes \mathbb{Q}$, there is a fibration $X_0 \longrightarrow E \longrightarrow S_0^{n+1}$ classified by $\theta: S_0^{n+1} \longrightarrow (\tilde{B} aut X)_0$. Moreover, if the hypothesis of case (a) are satisfied, this map factors through $K(\mathbb{Q}, n+1)$.
- The proof above holds for $S^n \times Y$ where Y is a finite CW-complex. Therefore the hypothesis on the coformality of X is not necessary if we require dz = 0. In this case $(\Lambda Z, d) \cong (\Lambda z, 0) \otimes (\Lambda Y, d)$ ([9]).

3.2 Case (b)

Let $(\Lambda V, d)$ and $(\Lambda W, d')$ be Sullivan minimal models of Y and Z. There is an isomorphism

$$\Phi: Der((\Lambda V, d) \otimes (\Lambda W, d')) \xrightarrow{\cong} \left[(Der\Lambda V) \hat{\otimes} \Lambda W \right] \oplus \left[\Lambda V \hat{\otimes} (Der\Lambda W) \right],$$

where $\hat{\otimes}$ denotes the complete tensor product.

Let $\theta \in Der((\Lambda V, d) \otimes (\Lambda W, d'))$ be a derivation of degree n,

$$\Phi(\theta) = \sum_{i \ge 0} \theta_i \otimes b_i + \sum_{j \ge 0} a_j \otimes \psi_j$$

where $\theta_i \in Der \Lambda V$, $\psi_j \in Der \Lambda W$, $a_j \in \Lambda V$, $b_i \in \Lambda W$ are of respective degrees n+i, n+j, -i, -j, with

$$(\theta_i \otimes b_i)(v) = (-1)^{|v||b_i|} \theta_i(v) \cdot b_i, \ v \in V; \ (a_j \otimes \psi_j)(w) = a_j \cdot \psi_j(w), \ w \in W.$$

The Lie bracket in $\left[(Der\Lambda V) \hat{\otimes} \Lambda W \right] \oplus \left[\Lambda V \hat{\otimes} (Der\Lambda W) \right]$ is defined by :

$$\begin{array}{ll} \left[\begin{array}{l} \theta_1 \otimes w_1, \ \theta_2 \otimes w_2 \right] &= (-1)^{|\theta_1||w_1|} \left[\begin{array}{l} \theta_1, \ \theta_2 \right] \otimes w_1 w_2, \ \theta_i \in Der\Lambda V, \ w_i \in W; \\ \\ \left[\theta \otimes w, \ v \otimes \psi \right] &= (-1)^{|w||v \otimes \psi| + |\theta||v|} v \theta \otimes \psi(w) + (-1)^{|v||w|} \theta(v) \otimes w \psi, \\ \\ \theta \in Der\Lambda V, \psi \in Der(\Lambda W), \ v \in V, \ w \in W; \\ \\ \left[\begin{array}{l} v_1 \otimes \psi_1, v_2 \otimes \psi_2 \end{array} \right] &= (-1)^{|v_2||\psi_1|} v_1 v_2 \otimes \left[\psi_1, \psi_2 \right], \ \psi_i \in Der\Lambda W, \ v_i \in V. \end{array}$$

Since $H^*(Y, \mathbb{Q})$ and $H^*(Z, \mathbb{Q})$ are finite dimensional, we can replace $(\Lambda V, d)$ and $(\Lambda W, d')$ by finite models, and in this case the complete tensor product is equivalent to the usual tensor product. Therefore

$$H_*(Der(\Lambda V \otimes \Lambda W)) \cong [H_*(Der\Lambda V) \otimes H^*(Z)] \oplus [H^*(Y) \otimes H_*(Der\Lambda W)].$$

Then $I = [H_*(Der\Lambda W) \otimes \tilde{H}^*(Z)] \oplus [\tilde{H}^*(Y) \otimes H_*(Der\Lambda W)]$ is an infinite nilpotent Lie ideal of $H_*(Der(\Lambda V \otimes \Lambda W))$, since $G(Y_0) = G(Z_0) = 0$. Therefore, according to ([5]), the LS-category of B aut X is not finite.

3.3 Case (c)

Let $(\Lambda V, d)$, $(\Lambda W, d')$, $(\Lambda T, D)$ denote respectively minimal models of Y, Z and X. Let $\alpha \in H^*(Z, Q)$ be an element of the highest degree. It is represented by a cocycle $u \in (\Lambda W)^n$. Recall that $T = V \oplus W \oplus W'$ with

- 1. $DW' \subset (\Lambda^+ V \otimes \Lambda^+ W) \oplus (\Lambda^+ W' \otimes \Lambda (V \oplus W)).$
- 2. The ideal $I = (\Lambda^+ V \otimes \Lambda^+ W) \oplus (\Lambda^+ W' \otimes \Lambda (V \oplus W))$ is acyclic.

Choose an element $y \in V$ such that |y| = k > n. Define a map $f : Q.y \longrightarrow \Lambda T$ by f(y) = u, and extend it as a derivation θ of ΛT which commutes with the differential as follows:

- If $z \in W$, then $\theta(z) = 0$;

- Define θ on V by induction of the degree: $\theta = 0$ on the supplementary of Q.y in $V^{\leq k}$. If |z| > k, suppose that θ had been defined on $V^{\leq |z|}$, then $\theta(Dz) \in \Lambda^{\geq 3}T$ is cocycle in I. As $\theta(Dz)$ is a coboundary, we choose $z' \in \Lambda^{\geq 2}T$ such that $\theta(Dz) = Dz'$, and define $\theta(z) = (-1)^{|\theta|} z'$.
- Similarly for $z \in W'$, if $|z| \leq k$, define $\theta(z) = 0$, and extend it on W' such $\theta(W') \subset \Lambda^{\geq 2}T$.

The derivation θ is a cycle in $Der \Lambda T$ and it is not a boundary. In fact suppose that there is a derivation θ' in $Der \Lambda T$ such that $[D, \theta'] = \theta$. Therefore

$$u + (-1)^{|\theta'|} \theta'(Dy) = D\theta'(y),$$

thus u is cohomologuous to an element in the ideal generated by V, but this is impossible.

Since we have associated to each element $y \in V^{>n}$ an element $\theta \in E_{\geq 2}^{\infty}(X)$, $E_{\geq 2}^{\infty}(X)$ is not finite dimensional. According to corollary 2, $E_{\geq 2}^{\infty}(X)$ is a nilpotent ideal of $\pi_*(B \text{ aut } X) \otimes Q$, therefore the category of B aut X is not finite ([5]).

4 Examples

- We know from ([6]) that the category of Baut X is infinite whenever $\pi_*(X) \otimes \mathbb{Q}$ is finite dimensional. The part (a) of the theorem above is a generalization of this result for coformal spaces. For instance, the LS-category of Baut X is not finite if X is a coformal space such that the center of $\pi_*(\Omega X) \otimes \mathbb{Q}$ is not trivial.
- Combining assertion (a) with (b) of the theorem, we obtain that the LScategory of $B \ aut X$ is not finite if X is a product of wedge of spheres or more generally if X is a product of coformal spaces X_i such that the center of $\pi_*(\Omega X_i) \otimes \mathbb{Q}$ is trivial.
- If X is a wedge of at least three coformal spaces, then the LS-category of B aut X is not finite.

References

- A. Dold, Halbexacte Homotopiefunctoren, Lecture notes in mathematics, vol. 12 (1966), Springer-Verlag.
- [2] A. Dold and R. Lashoff, Principal quasi-fibrations and fibre homotopy equivalence of bundles, Illinois J. Math. 3 (1959), pp. 285-305.
- [3] E. Dror and A. Zabrodsky, Unipotency and nilpotency in homotopy equivalences, Topology 18 (1979), pp. 187-197.
- [4] Y. Félix and S. Halperin, Rational LS-category and its applications, Trans. A.M.S. 273 (1982), pp. 1-17.
- [5] Y. Félix, S. Halperin, J.-M. Lemaire and J.C. Thomas, Mod p loop space homology, Inventiones math. 95 (1989), pp.247-262.
- [6] J.-B. Gatsinzi, LS-category of classifying spaces, Bull. Belg. Math. Soc. 2 (1995), pp. 121-126.
- [7] D.H. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. of math. 91 (1969), pp. 729-756.
- [8] S. Halperin, *Lectures on minimal models*, Mémoire de la la Société Mathématique de France, 9-10, 1983.
- [9] S. Halperin, Torsion gaps in the homotopy of finite complexes I, Topology 27 (1988), pp. 367-375.
- [10] D. Sullivan, Infinitesimal computations in homotopy theory, Publ. I.H.E.S. 47 (1977), pp. 269-331.

Freie Universtät Berlin Institut für Mathematik II Arnimallee 3 D-14195 Berlin, Germany e-mail: gatsinzi@math.fu-berlin.de