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1 Introduction

Given a finite field F = GF (qn) of order qn it is well-known that the map f : F → F ,
f : x 7→ xq is a field automorphism of F of order n, called the Frobenius automor-
phism. If V is an n-dimensional vector space over the finite field GF (q), then V can
be considered as the vector space of the field GF (qn) over GF (q). Therefore the
Frobenius automorphism induces a linear map over GF (q)

R : V → V

R : x 7→ xq

of order n on V . It follows that R induces a projective collineation ϕ on the (n−1)-
dimensional projective space PG(n−1, q). We call ϕ and any projective collineation
conjugate to ϕ a Frobenius collineation. In the present paper we shall study the case
n = 3, that is, the Frobenius collineations of the projective plane PG(2, q).

Let P = PG(2, q2). Then every Singer cycle σ (see Section 3) of P defines a
partition P(σ) of the point set of P into pairwise disjoint Baer subplanes. These
partitions are called linear Baer partitions or, equivalently, Singer Baer partitions
[17]. If % is a Frobenius collineation of P , then we define E% to be the set of Baer
subplanes of P fixed by %. It turns out that for q ≡ 2 mod 3 we have |P(σ)∩E%| ∈
{0, 1, 3} with |P(σ) ∩ E%| = 3 if and only if % ∈ NG(< σ >), where G = PGL3(q

2)
(see 3.5).
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Therefore we define a geometry F of rank 2 as follows: Let P = PG(2, q2), q ≡ 2
mod 3, and let % be a Frobenius collineation of P .

• The points of F are the Baer subplanes of E%.
• The lines of F are the sets P(σ) ∩ E%, where σ is a Singer cycle such that
|P(σ) ∩ E%| = 3.

• A point B ∈ E% and a line P(σ) ∩ E% are incident if and only if B ∈ P(σ).

Then the geometry F is called a Frobenius plane of order q. Our first result
reads as follows:

Theorem 1.1. Let q ≡ 2 mod 3, and let F be a Frobenius plane of order q.
a) F is a partial linear space with 3(q2− 1) points, 2

3
(q2 − 1)

2
lines, three points

on a line and 2
3
(q2 − 1) lines through a point.

b) Given a non-incident point-line-pair (B,G), then there are either one or two
lines through B intersecting G.

c) Let d0, d1 and g be the 0-diameter1, the 1-diameter and the gonality of F ,
respectively.

If q = 2, then d0 = d1 = g = 4. Actually, F is a 3× 3-grid.
If q > 2, then d0 = d1 = 4 and g = 3.
d) The group PGL3(q

2) acts flag-transitively on F .

Parts a), b), c) and d) are proved in 4.3, 4.6, 4.7 and 5.5, respectively. – The
Frobenius planes can be used to construct a geometry Γ of rank 3 as follows: For,
let P = PG(2, q2), q ≡ 2 mod 3.

• The points of Γ are the Baer subplanes of P .

• The lines of Γ are the sets P(σ)∩E% for some Singer cycle σ and some Frobenius
collineation % such that |P(σ) ∩ E%| = 3.

• The planes of Γ are the sets E%, where % is a Frobenius collineation.

• The incidence relation is defined by set-theoretical inclusion.

The geometry Γ is called a Frobenius space of order q. Our second result reads
as follows:

Theorem 1.2. Let q ≡ 2 mod 3, and let Γ be the Frobenius space of order q.
a) Γ is a geometry of rank 3, whose planes are Frobenius planes of order q.
b) The group PGL3(q

2) acts flag-transitively on Γ.

Part a) and b) are proved in 5.4 and 5.5, respectively. In Theorems 5.4 and 5.5
the combinatorial parameters (number of points, etc.) and the various flag stabilizers
are stated.

∗
1The 0-diameter is the maximal distance from an element of type 0 in the incidence graph of

F . For details see Buekenhout, [3], Sec. 3.3.2
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The “history” of this paper is as follows: In [17] I studied the dihedral groups
generated by the Baer involutions τ1 and τ2 of two disjoint Baer subplanes B1 and
B2 of P = PG(2, q2). It turned out that δ := τ1τ2 is a projective collineation whose
order is a divisor of q2 − q + 1. If δ is of order q2 − q + 1, then the point orbits
of δ are complete (q2 − q + 1)-arcs. Furthermore the orbit of Baer subplanes of δ
containing B0 and B1 is a Singer Baer partition. In particular it turned out that
any two disjoint Baer subplanes are contained in exactly one Singer Baer partition.

The last observation motivated me to define in [18] a geometry Bq (Baer geometry
of order q) of rank 2 whose points are the Baer subplanes of P and whose lines are
the Singer Baer partitions. The Baer geometry of order q admits PGL3(q

2) as a
flag-transitive automorphism group. For q = 2 it turned out that the corresponding
Baer geometry is the point-line-truncation of a geometry of rank 3 with diagram

2 1 6

c

still admitting PGL3(4) as flag-transitive automorphism group.
The present paper grew out of the attempt to find for all possible q a rank-3-

geometry Γq such that the Baer geometry Bq is a point-line-truncation of Γq. It
turned out that good candidates for the lines of such a geometry are not the whole
Singer Baer partitions but parts of them consisting of exactly three Baer subplanes.
In this way the Frobenius spaces have been found.

∗

The present paper is organized as follows: In Section 2 we shall study some
elementary properties of Frobenius collineations and we shall introduce the sets E%.
Section 3 is devoted to the study of the possible intersections of a set E% and a Singer
Baer partition. In Section 4 we shall define the Frobenius planes of order q and we
shall prove Theorem 1.1. Finally, in Section 5, we shall give a proof of Theorem 1.2.

Acknowledgement. I wish to thank Albrecht Beutelspacher, Jorg Eisfeld, Udo
Heim and Katja Valentin for many valuable discussions.

2 Frobenius Collineations

The present section is devoted to the study of the elementary properties of the
Frobenius collineations (see 2.1) like the number of fixed points (2.4) or different
matrix representations (2.5 and 2.6). In particular we shall show that in the case
q ≡ 1 mod 3 for any triangle {x, y, z} of PG(2, q) there exists exactly one Frobenius
group admitting x, y, z as fixed points.

Given a Frobenius collineation % of PG(2, q2) we shall denote by E% the set of
Baer subplanes fixed by %. In the second half of this section we shall study the
following properties of E%: possible intersections of two subplanes of E% (2.10, 2.12
and 2.13), computation of the groups fixing E% element- or setwise (2.14 and 2.15),
computation of the number of the sets E% (2.17) and of the number of the sets E%
containing a given Baer subplane (2.18).
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Let V be the 3-dimensional vector space over GF (q), that is, V = GF (q)3 ∼=
GF (q3), and let R : V → V be defined by R(x) := xq. Since R is a linear and
bijective map from V onto V , it induces a projective collineation ϕ of the projective
plane P (V ) = PG(2, q). (The map R : GF (q3) → GF (q3), R : x 7→ xq is often
considered as a collineation of the projective plane PG(2, q3) leaving a subplane
PG(2, q) pointwise invariant. Note that our approach is different.)

Definition 2.1. Let P = PG(2, q), and let G be the group PGL3(q). A collineation
% of P is called a Frobenius collineation if % is conjugate to ϕ by some element of G.

The group < % > is called a Frobenius subgroup of G.

Proposition 2.2. Let P = PG(2, q), and let % be a Frobenius collineation of P .
a) % is of order 3.
b) % has at least one fixed point.
c) % is not a central collineation.

Proof. It is sufficient to prove the proposition for the collineation ϕ defined above.
a) Obviously, ϕ is of order 3.
b) The field GF (q3) has exactly one subfield F isomorphic to GF (q). If we con-

sider GF (q3) as a 3-dimensional subspace V over GF (q), then F is a 1-dimensional
subspace fixed by the map R : V → V , R : x 7→ xq. Hence F is a fixed point of ϕ.

c) Again, consider V = GF (q3) as a 3-dimensional vector space over GF (q).
Then V admits a primitive normal base (see Jungnickel [9], Result 3.1.13), that
is, a base of the form {ω, ωq, ωq

2}, where ω is a primitive element of GF (q3). So the
elements ω, ϕ(ω) and ϕ2(ω) define a triangle in the corresponding plane PG(2, q).
In particular ϕ cannot be a central collineation. �

Proposition 2.3. Let P = PG(2, q), and let α be a projective collineation of order
3. Then one of the following cases occurs.

(i) α is a central collineation.
(ii) α has no fixed point.
(iii) α is a Frobenius collineation.

Proof. Suppose that 1 6= α is neither of type (i) nor of type (ii).
Step 1. There is a point z of P which is not incident with any fixed line of α.

Assume that any point of P is incident with a fixed line of α. Then α admits at
least q+1 fixed lines and therefore at least q+1 fixed points. Since α is not a central
collineation, the fixed points form a k-arc with k ≥ q + 1. Since 1 6= α, it follows
k ≤ 3, hence q = 2. A collineation of PG(2, 2) with at least three fixed points is
either a central collineation or the identity, a contradiction.

Step 2. The points z, α(z) and α2(z) form a triangle. Otherwise z, α(z) and
α2(z) would be collinear, and the line through z, α(z) and α2(z) would be a fixed
line contradicting the choice of z.

Step 3. Let p be a fixed point of α. Then the points z, α(z), α2(z) and p form a
quadrangle. Assume for example that p, z and α(z) were collinear. Then the line
l through p, z and α(z) is a fixed line, it follows that α2(z) is incident with l, a
contradiction.

Step 4. Let α and α′ be two projective collineations of order 3 which are neither
of type (i) nor of type (ii). Then α and α′ are conjugate. By Steps 1 - 3 there exist
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fixed points p and p′ and orbits {x, y, z} and {x′, y′, z′} forming triangles of α and
α′, respectively. Let β be a projective collineation of P with β(x) = x′, β(y) = y′,
β(z) = z′ and β(p) = p′. Then we have βαβ−1(r′) = α′(r′) for all r′ ∈ {x′, y′, z′, p′}.
Hence α and α′ = βαβ−1 are conjugate.

Step 5. Let α be a projective collineation of order 3 which is neither of type (i) nor
of type (ii). Then α is a Frobenius collineation. Let % be a Frobenius collineation
of P . By Proposition 2.2, % is a projective collineation of order 3 which is neither of
type (i) nor of type (ii). By Step 4, α and % are conjugate, hence α is a Frobenius
collineation. �

Lemma 2.4. Let P = PG(2, q), and let % be a Frobenius collineation.
If q ≡ 0 mod 3, then % has exactly one fixed point.
If q ≡ 1 mod 3, then % has exactly three fixed points.
If q ≡ 2 mod 3, then % has exactly one fixed point.

Proof. We first observe that % has at most three fixed points. (Otherwise % would
either have four fixed points forming a quadrangle which implies % = 1 or % would
have at least three collinear fixed points which implies that % is a central collineation.
Both cases cannot occur.) So % has either one, two or three fixed points.

If q ≡ 0 mod 3, then q2 + q + 1 ≡ 1 mod 3. Since % has point orbits of either
one or three points, it follows that % has exactly one fixed point. For the rest of the
proof it suffices to observe that if q ≡ 1 mod 3, then q2 + q + 1 ≡ 0 mod 3 and if
q ≡ 2 mod 3, then q2 + q + 1 ≡ 1 mod 3. �

Proposition 2.5. Let P = PG(2, q), and let % be a Frobenius collineation of P .
Then % can be represented by the following matrix

R =

 0 0 1
1 0 0
0 1 0

 .

Proof. Let V = GF (q3) and consider V as a 3-dimensional vector space over GF (q).
It suffices to consider the map R : V → V defined by R : x 7→ xq. Let B :=
{ω, ωq, ωq

2} be a primitive normal base (see Jungnickel [9], Result 3.1.13) of V .
With respect to B, R has the matrix representation described in the proposition. �

Proposition 2.6. Let P = PG(2, q), q ≡ 1 mod 3, and let % be a Frobenius
collineation of P . Let < θ > be the (multiplicative) subgroup of order 3 of GF (q)∗.
Then % is induced by the linear map with matrix representation 1 0 0

0 θ 0
0 0 θ2


with respect to the basis defined by the three fixed points of %.

Proof. Since q ≡ 1 mod 3, % has exactly three fixed points, say p1, p2, p3. If V is
the 3-dimensional vector space over GF (q), then there exist three vectors x, y, z of
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V with p1 = < x >, p2 = < y > and p3 = < z >. With respect to the basis {x, y, z}
the collineation % is induced by a linear map R with matrix representation 1 0 0

0 µ 0
0 0 ν


for some elements µ, ν ∈ GF (q3). Because of %3 = 1 we have R3 = 1, and it follows
µ3 = ν3 = 1. Since % is neither the identity nor a central collineation, it follows that
the values 1, µ and ν are pairwise distinct. Hence {1, µ, ν} = < θ >.2 �

Corollary 2.7. Let P = PG(2, q), q ≡ 1 mod 3. Then for any triangle {p1, p2, p3}
of P there exist exactly two Frobenius collineations % and %′ admitting p1, p2, p3 as
fixed points. Furthermore we have %′ = %2 = %−1.

Corollary 2.8. Let P = PG(2, q), q ≡ 1 mod 3. Then the number of Frobenius
subgroups of P equals 1

6
(q2 + q + 1) (q2 + q) q2.

Proof. By 2.7, any triangle of P defines exactly one Frobenius subgroup and vice
versa. It follows that the number of Frobenius subgroups equals the number of
triangles. �

The number of Frobenius groups of PGL3(q
2) with q ≡ 2 mod 3 is determined

in 2.19.

Definition 2.9. Let P = PG(2, q2), and let % be a Frobenius collineation of P .
Then we define E% to be the set of all Baer subplanes of P whose point and line set
are fixed (setwise) by %.

Proposition 2.10. Let P = PG(2, q2), q ≡ 2 mod 3, and let % be a Frobenius
collineation of P . Let p1, p2, p3 be the fixed points of %.

a) The points p1, p2, p3 form a triangle.
b) For any plane B ∈ E% the collineation % induces a Frobenius collineation in B.

Furthermore we have |B ∩ {p1, p2, p3}| = 1.
c) Let x be a point which is not incident with any of the lines p1p2, p2p3, p1p3.

Then the points x, %(x), %2(x) form a triangle.
d) Let x be a point not incident with any of the lines p1p2, p2p3, p1p3. Then for

each j ∈ {1, 2, 3} there is exactly one plane of E% containing x and pj .
e) We have |E%| = 3 (q2 − 1).
f) Let l be the line p2p3, and let E1 be the set of planes of E% containing p1.
(i) Let B and B ′ be two Baer subplanes of E1. Then either B∩B ′ does not contain

any point of l or B and B ′ share q + 1 points of l.
(ii) The set {l ∩ B | B ∈ E1} is a partition of l \ {p2, p3} into q − 1 pairwise

disjoint Baer sublines of l.
(iii) If B ∈ E1, then there are q+1 elements B ′ of E1 with B∩l = B ′∩l (including

B itself).

2Alternatively one also can consider the matrix representation of % given in 2.5. Its characteristic
polynomial is x3 − 1. Because of q ≡ 1 mod 3 the field GF (q) has three third unit roots. As a
consequence we get the matrix representation described above.
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Proof. a) Since q ≡ 2 mod 3, it follows that q2 ≡ 1 mod 3, by 2.4, % has three
fixed points. Since % is not a central collineation, these three fixed points have to
form a triangle.

b) Let B ∈ E%. By definition %(B) = B. Hence % induces a projective collineation
on B of order 3. Since q ≡ 2 mod 3, it follows that q2+q+1 ≡ 1 mod 3. Therefore
% has at least one fixed point in B. Since % is no central collineation in P , it cannot
induce a central collineation in B. By 2.3, % induces a Frobenius collineation in B
admitting exactly one fixed point. In particular we have |B ∩ {p1, p2, p3}| = 1.

c) Assume that x, %(x) and %2(x) were collinear. Then the line through x and
%(x) is a fixed line different from p1p2, p2p3 and p1p3. Thus % has at least four fixed
lines and therefore four fixed points, a contradiction.

d) The points p1, x, %(x) and %2(x) form a quadrangle. Let B be the Baer subplane
through these four points. Then B is fixed by %, hence B ∈ E%.

Let B ′ be a second Baer subplane through p1 and x. Then it contains p1, x, %(x)
and %2(x). Hence B = B ′.

e) Let E1 be the set of Baer subplanes of E% containing p1. By d), the planes of
E1 cover the points of P outside the lines p1p2, p2p3, p1p3.

Let B ∈ E1. Since % contains one fixed point in B, it also contains a fixed line l
in B. Since q +1 ≡ 0 mod 3, the line l cannot be incident with p1. Hence l = p2p3.
It follows that B contains q2 + q + 1 − (q + 2) = q2 − 1 points not incident with

any of the lines p1p2, p2p3, p1p3. It follows that |E1| = (q2−1)2

q2−1
= q2 − 1. Therefore

|E| = 3(q2 − 1).
f) (i) Let B, B ′ be two planes of E1 sharing a point z ∈ l. Then z 6= p2, p3. Hence

B ∩ B ′ share the three collinear points z, %(z) and %2(z). It follows that B ∩ B ′

contains q + 1 points on l.
(ii) and (iii) The set {B ∩ l | B ∈ E1} is by (i) a partial partion of l \ {p2, p3}

into at most q − 1 pairwise disjoint Baer sublines of l. Let B ∩ l be one of these
Baer sublines. Through B ∩ l and p1 there are exactly q + 1 Baer subplanes. It
follows that |E1| ≤ (q − 1)(q + 1). In view of |E1| = q2 − 1 it follows that all q + 1
Baer subplanes through B ∩ l and p1 belong to E1 and that the set {B ∩ l | B ∈ E1}
consists of q − 1 mutually disjoint Baer sublines of l. �

Corollary 2.11. Let P = PG(2, q2), q ≡ 2 mod 3, and let % be a Frobenius colli-
neation of P with fixed points p1, p2, p3. If l is the line p2p3, then there is exactly
one partition {s1, . . . , sq−1} of l \ {p2, p3} into q − 1 disjoint Baer sublines.3

Then the planes of E% containing p1 are exactly the Baer subplanes of P through
p1 intersecting l in one of the Baer sublines s1, . . . , sq−1.

Proposition 2.12. Let P = PG(2, q2), q ≡ 2 mod 3, and let % be a Frobenius
collineation of P . Let p1, p2, p3 be the three fixed points of %, and let B and B ′ be two
planes of E% with pi ∈ B, pj ∈ B ′ and i 6= j. Then B∩B ′ = ∅ or there exists a point x
not incident with any of the lines p1p2, p2p3, p1p3 such that B∩B ′ = {x, %(x), %2(x)}.

Proof. W. l. o. g. let i = 1 and j = 2. Let ∆ be the set of points incident with the
lines p1p2, p2p3 or p1p3.

3The points and Baer sublines of l define a so-called miquelian inversive plane I. The partition
{s1, . . . , sq−1} is the linear flock with carriers p2 and p3. For details see Thas [14], Sec. 10.
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Step 1. We have B ∩B ′ ∩∆ = ∅. By the proof of 2.10 e), B ∩∆ consists of the
point p1 and q +1 points on p2p3 different from p2 and p3. Similarly, B ′∩∆ consists
of p2 and q + 1 points on p1p3 different from p1 and p3. Hence B ∩B ′ ∩∆ = ∅.

Step 2. Let x ∈ B ∩ B ′. Then x /∈ ∆ and B ∩ B ′ = {x, %(x), %2(x)}. From
%(B) = B and %(B ′) = B ′, it follows that {x, %(x), %2(x)} ⊆ B ∩ B ′. Assume that
there exists a further point z ∈ B ∩ B ′. Then B ∩ B ′ is a near pencil consisting of
q + 2 points. W. l. o. g. let z be incident with the line x%(x). Then %(z) ∈ B ∩ B ′

and %(z) is incident with the line through %(x) and %2(x), a contradiction. �

Proposition 2.13. Let P = PG(2, q2), q ≡ 2 mod 3, and let % be a Frobenius
collineation of P . Let p1, p2, p3 be the three fixed points of %, and let i, j ∈ {1, 2, 3}
with i 6= j. If B is a plane of E% containing pi, then there are exactly 2

3
(q2 − 1)

planes B ′ of E% containing pj with B ∩B ′ = ∅ and exactly 1
3
(q2− 1) planes B ′ of E%

containing pj with |B ∩B ′| = 3.

Proof. Let ∆ be the set of points incident with p1p2, p2p3 or p1p3. W. l. o. g. let
i = 1 and j = 2. Let B ′ be a plane of E% containing p2. By 2.12, we have B∩B ′ = ∅
or |B ∩B ′| = 3. In the latter case we have B ∩B ′ = {x, %(x), %2(x)} for some point
x not contained in ∆.

Conversely, any set of the form {z, %(z), %2(z)} contained in B but not in ∆
is contained in exactly one plane of E% containing p2. Hence there are exactly
1
3
(q2+q+1−(q+2)) = 1

3
(q2−1) planes B ′ of E% containing p2 such that |B∩B ′| = 3.

The second part of the proposition follows from the fact that E% contains exactly
q2 − 1 planes through p2. �

Proposition 2.14. Let P = PG(2, q2), q ≡ 2 mod 3, and let % be a Frobenius
collineation of P . Let α be a projective collineation of P . Then α(B) = B for all
B ∈ E% if and only if α ∈ < % >.

Proof. By definition of E%, we have α(B) = B for all B ∈ E% and all α ∈< % >.
Conversely, let us suppose that α is a projective collineation such that α(B) = B

for all B ∈ E%. Let p1, p2, p3 be the fixed points of %. By 2.10 f), there are two planes
B and B ′ of E% containing p1 such that {p1} = B ∩ B ′. It follows that α(p1) = p1.
Similarly, we have α(p2) = p2 and α(p3) = p3.

Let x be a point not incident with p1p2, p2p3 or p1p3, and let B1 (and B2) be
the Baer suplanes through {x, %(x), %2(x)} and p1 (and p2, respectively). Then
B1, B2 ∈ E% and B ∩ B ′ = {x, %(x), %2(x)}. It follows that α(x) ∈ {x, %(x), %2(x)}.
If α(x) = x, then α = 1. If α(x) = %(x), then α = % and, finally, if α(x) = %2(x),
then α = %2. In particular α ∈< % >. �

Proposition 2.15. Let P = PG(2, q2), q ≡ 2 mod 3, let % be a Frobenius collinea-
tion of P , and let G = PGL3(q

2). If GE := {α ∈ G | α(B) ∈ E% for all B ∈ E%},
then we have GE = NG(< % >).

Proof. Firstly, let α ∈ GE , and let %′ := α−1%α. Let E ∈ E%. Then

%′(E) = α−1%(α(E)) = α−1α(E) = E.

By 2.14, it follows that %′ ∈< % >, hence α ∈ NG(< % >).
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Conversely, let α ∈ NG(< % >). For all E ∈ E% we have

%(α(E)) = α(α−1%α)(E) = α(E).

It follows that α(E) ∈ E%, hence α ∈ GE . �

Proposition 2.16. Let P = PG(2, q2), q ≡ 2 mod 3, let % and %′ be two Frobenius
collineations of P . If E% = E%′ , then < % > = < %′ >.

Proof. Because of E% = E%′ it follows that %′(E) = E for all E ∈ E%. By 2.14, we
have %′ ∈< % >, hence < %′ > = < % >. �

Proposition 2.17. Let P = PG(2, q2), q ≡ 2 mod 3. Then the number of sets E%
in P equals 1

6
(q4 + q2 + 1)q6(q2 + 1).

Proof. By 2.16, we have E% 6= E%′ for any two distinct Frobenius groups < % >
and < %′ > of P . Hence the number N of the sets E% equals the number of the
Frobenius subgroups of PGL3(q

2). Since q2 ≡ 1 mod 3, it follows from 2.8 that
N = 1

6
(q4 + q2 + 1)q6(q2 + 1). �

Proposition 2.18. Let P = PG(2, q2), q ≡ 2 mod 3. Let B be a Baer subplane of
P . Then there are exactly 1

2
q3(q3 − 1) sets E% containing B.

Proof. For a Baer subplane B let NB be the number of sets E% containing B. Since
the group PGL3(q

2) acts transitively on the set of Baer subplanes of P , it follows
that N := NB is independent of the choice of B.

Let B̃ be the set of Baer subplanes of P , and let Ẽ be the set of sets E%. Consider
the set {(B, E%) | B ∈ B̃, E% ∈ Ẽ , B ∈ E%}. Computing its cardinality we obtain

|B̃|N = |Ẽ |3(q2 − 1).

Because of |B̃| = q3(q3 + 1)(q2 + 1) (see Hirschfeld [7], Cor. 3 of Lemma 4.3.1)
and |Ẽ| = 1

6
q6(q4 + q2 + 1)(q2 + 1) (2.17) it follows that N = 1

2
q3(q3 − 1). �

Corollary 2.19. Let P = PG(2, q), q ≡ 2 mod 3. Then P admits exactly 1
2
q3(q3−

1) Frobenius groups.

Proof. We embed P into the projective plane P ∗ = PG(2, q2). Any Frobenius group
of P extends to a Frobenius group of P ∗. Therefore the number N of Frobenius
groups of P equals the number of Frobenius groups of P ∗ leaving P invariant.
So, by 2.16, N equals the number of sets E% through P . By 2.18, it follows that
N = 1

2
q3(q3 − 1). �
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3 Singer Cycles and Frobenius Collineations

A Singer cycle of the projective plane P = PG(2, q) is a collineation of order q2+q+1
permuting all points of P in a single cycle. Every finite desarguesian plane admits
Singer cycles. If P = PG(2, q2) is a desarguesian projective plane of square order
and if σ is a Singer cycle of P , then the point orbits of P under the action of
< σq

2−q+1 > form a partition of P into q2 − q + 1 disjoint Baer subplanes. Such a
partition is called a Singer Baer partition and is denoted by P(σ) (see Singer [12]
and Ueberberg [17]).

The main topic of this section are the possible intersections of a Singer Baer
partition and a set E% introduced in Section 2.

If σ is a Singer cycle and if % is a Frobenius collineation of PG(2, q2), q ≡ 2
mod 3, then we shall see that |P(σ)∩E%| ∈ {0, 1, 3} with |P(σ)∩E%| = 3 if and only
if % ∈ NG(< σ >), where G = PGL3(q

2) (see 3.5). Furthermore if |P(σ) ∩ E%| = 3
and if < γ > is the subgroup of order 3 of < σ >, then γ and % commute (3.3).

Proposition 3.1. Let P = PG(2, q2), and let G = PGL3(q
2). Furthermore let

P = P(σ) be a Singer Baer partition for some Singer cycle σ, and let α be a
projective collineation of P . Then we have α(P) = P if and only if α ∈ NG(< σ >).

Proof. See Ueberberg [18], Proposition 2.8 d). �

Proposition 3.2. Let P = PG(2, q), and let G = PGL3(q). Let σ be a Singer cycle
of P , and let N := NG(< σ >).

a) |N | = 3(q2 + q + 1) and N\ < σ > contains a Frobenius collineation.
b) If q ≡ 2 mod 3, then any element of N\ < σ > is a Frobenius collineation.

Proof. a) By Huppert [8], II, 7.3, we have |N | = 3(q2 + q + 1) and N\ < σ >
contains a Frobenius collineation %.

b) Because of q ≡ 2 mod 3 we have q2+q+1 ≡ 1 mod 3, that is, 3 and q2+q+1
are relatively prime. Hence < % > is a 3-Sylow subgroup of N . By 2.4, % has exactly
one fixed point, say p.

Let α ∈ < σ > ∩ NN (< % >). Then α−1%α ∈ < % >, hence α−1%α(p) = p. It
follows that %(α(p)) = α(p). Hence α(p) is a fixed point of % implying that α(p) = p.
The only element of < σ > admitting fixed points is the identity map. Hence α = 1.
It follows that NN(< % >)∩ < σ >=< 1 >. Hence NN (< % >) =< % >. (Otherwise
there would exist an element αβ ∈ NN(< % >) with 1 6= α ∈< σ > and β ∈< % >.
It follows that α ∈ NN(< % >), a contradiction.)

The Theorem of Sylow implies

|Syl3(N)| = |N : NN(< % >)| = 3(q2 + q + 1)/3 = q2 + q + 1.

It follows that N has exactly q2 + q + 1 Frobenius subgroups. Since the elements
of < σ > are fixed point free, any element of N\ < σ > has to be a Frobenius
collineation. �

Proposition 3.3. Let P = PG(2, q2), q ≡ 2 mod 3, and let G = PGL3(q
2). Let σ

be a Singer cycle of P , and let % be a Frobenius collineation with % ∈ NG(< σ >).
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a) We have |P(σ) ∩ E%| = 3.
b) Let < γ > be the subgroup of order 3 in < σ >. Then

< γ > = NG(< % >) ∩ < σ > = CG(< % >) ∩ < σ >,

in particular γ and % commute. Furthermore P(σ)∩E% is an orbit under the action
of < γ >.

Proof. Let P(σ) be the Singer Baer partition defined by σ.
a) Since % ∈ NG(< σ >), it follows from 3.1 that %(B) ∈ P(σ) for all B ∈ P(σ).

Let p1, p2, p3 be the fixed points of %. Then there exists an element B1 ∈ P(σ)
with p1 ∈ B1. It follows %(B1) = B1, in other words, B1 ∈ E%. In particular we
have p2, p3 /∈ B1. Similarly, we get two further planes B2, B3 ∈ P(σ) with p2 ∈ B2,
p3 ∈ B3 and B2, B3 ∈ E%. Hence |P(σ) ∩ E%| = 3.

b) Since q ≡ 2 mod 3, we have q4 + q2 + 1 ≡ 0 mod 3. Since < σ > is cyclic,
it has exactly one subgroup < γ > of order 3. Because of % ∈ NG(< σ >) it
follows that < γ >% = < γ >. Assume that %−1γ% = γ−1. Then γ% = %γ−1 and
γ%−1 = %−1γ−1. Therefore < γ, % > = {%iγj | i, j = 0, 1, 2} is a group of order 9. In
particular it is abelian, contradicting the assumption %−1γ% = γ−1. So we have seen
that

< γ >≤ CG(< % >) ∩ < σ >≤ NG(< % >) ∩ < σ > .

Let 1 6= α ∈ NG(< % >) ∩ < σ >. Then

%(α(p1)) = α(α−1%α)(p1) = α(p1).

It follows that α(p1) is a fixed point of %. In the same way we see that α({p1, p2, p3}) =
{p1, p2, p3}. Since 1 6= α ∈ < σ >, α has no fixed points. So {p1, p2, p3} is an or-
bit of α which implies (again in view of α ∈ < σ >) that α is of order 3. Hence
< α > = < γ >. Furthermore the three Baer subplanes of P(σ) ∩ E% are exactly
the three Baer subplanes B1, B2, B3 of P(σ) containing p1, p2, p3, respectively. In
particular {B1, B2, B3} is an orbit under the action of < γ >. �

Definition 3.4. Let P = PG(2, q2), q ≡ 2 mod 3, and let σ be a Singer cycle of
P . Then we denote by < γσ > the subgroup of order 3 of < σ >.

Proposition 3.5. Let P = PG(2, q2), q ≡ 2 mod 3, and let G = PGL3(q
2). Let σ

be a Singer cycle of P , and let % be a Frobenius collineation.
a) We have |P(σ) ∩ E%| ∈ {0, 1, 3}.
b) Let |P(σ) ∩ E%| = 3. Then % ∈ NG(< σ >).
c) Let P(σ)∩E% = {B1, B2, B3}. If τ1, τ2, τ3 are the Baer involutions of B1, B2, B3,

respectively, then we have

< τ1τ2 > = < τ1τ3 > = < τ2τ3 > = < γσ > .

Proof. a) and b) Let B and B ′ be two Baer subplanes contained in P(σ)∩E%. Then
B and B ′ are disjoint therefore there exists a unique Singer Baer partition through
B and B ′ (see Ueberberg [17], Th. 3.1), namely P(σ). Because of %(B) = B
and %(B ′) = B ′ it follows that % leaves P(σ) invariant. By 3.1, it follows that
% ∈ NG(< σ >). By 3.3, we have |P(σ) ∩ E%| = 3.
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c) By Ueberberg [17], Th. 1.1, we have τ1τ2 ∈ < σ >. Since %(B1) = B1 and
%(B2) = B2, the Baer involutions τ1 and τ2 commute with % (see [17], Prop. 2.1).
Furthermore τ1τ2 is a projective collineation ([17], Prop. 2.2). If G = PGL3(q

2),
then it follows

< τ1τ2 >⊆< σ > ∩ CG(< % >) = < γσ >,

where the last equality follows from 3.3. �

4 The Frobenius Planes of Order q

In view of Propositions 3.3 and 3.5 we shall endow the sets E% (where % is a Frobenius
collineation) with an additional structure of points and lines.

Definition 4.1. Let P = PG(2, q2), q ≡ 2 mod 3, and let % be a Frobenius colli-
neation of P . Then we define a geometry F = F(P, %) of points and lines as follows:

• The points of F are the Baer subplanes of E%.
• The lines of F are the sets P(σ) ∩ E%, where σ is a Singer cycle such that
|P(σ) ∩ E%| = 3.

• A point B ∈ E% and a line P(σ) ∩ E% are incident if and only if B ∈ P(σ).

Then F is called a Frobenius plane of order q.

In the rest of this section we shall compute the parameters of the Frobenius planes
(4.3), and we shall show that for any non-incident point-line-pair (B,G) there exist
either one or two lines through B intersecting G (4.6). As a corollary we shall
determine the 0- and 1-diameters of the Frobenius planes (4.7).

Proposition 4.2. Let P = PG(2, q2), q ≡ 2 mod 3, and let % be a Frobenius
collineation of order 3. Let F = F(P, %) be the corresponding Frobenius plane.
Two points B and B ′ of F are joined by a line if and only if B and B ′ are disjoint
Baer subplanes of E%.

Proof. If B and B ′ are joined by a line, then B and B ′ are contained in some Singer
Baer partition. In particular we have B ∩ B ′ = ∅.

Conversely, let B and B ′ be two disjoint Baer subplanes of E%. Then, by [17], Th.
1.1, there is a Singer Baer partition P(σ) containing B and B ′. By 3.5, P(σ) ∩ E%
is a line of F through B and B ′. �

Proposition 4.3. Let F be a Frobenius plane of order q.

a) F has 3(q2 − 1) points.
b) F has 2

3
(q2 − 1)2 lines.

c) Any line of F is incident with exactly three points.
d) Any point is incident with 2

3
(q2 − 1) lines.
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Proof. Let P = PG(2, q2), and let % be a Frobenius collineation of P . Let p1, p2, p3

be the three fixed points of %.
a) By 2.10, E% contains 3(q2 − 1) Baer subplanes, hence F has 3(q2 − 1) points.
c) follows from the definition of F .
d) Let B be an element of E% containing p1. By 2.13, there are exactly 2

3
(q2 − 1)

planes B ′ such that p2 ∈ B ′ and B ∩ B ′ = ∅. It follows from 4.2 that there are
exactly 2

3
(q2 − 1) lines in F through B.

b) Counting the pairs (B,G), where B is a point and G is a line of F through B
yields that F contains 2

3
(q2 − 1)2 lines. �

Lemma 4.4. Let P = PG(2, q2), q ≡ 2 mod 3, and let % be a Frobenius collineation
of P . Let p1, p2, p3 be the three fixed points of %, and let B and B ′ be two elements
of E% such that p1 ∈ B and p2 ∈ B ′.

If B and B ′ intersect in three points and if τ and τ ′ are the Baer involutions of
B and B ′, then ττ ′ is a Frobenius collineation of P .

Proof. Let δ := ττ ′. By [17], Proposition 2.2 a), δ is a projective collineation. Let
B ∩B ′ = {x, y, z}. By 2.12, the points x, y, z form a triangle. By definition of δ, we
have δ(x) = x, δ(y) = y, δ(z) = z.

Since B, B ′ ∈ E%, it follows that %(B) = B and %(B ′) = B ′. Hence [τ, %] = 1 and
[τ ′, %] = 1. In particular we have [δ, %] = 1.

It follows that %(δ(p1)) = δ(%(p1)) = δ(p1). So δ(p1) is a fixed point of % whence
δ(p1) ∈ {p1, p2, p3}. In the same way we get δ({p1, p2, p3}) = {p1, p2, p3}. It follows
that {p1, p2, p3} is one orbit of δ (otherwise {p1, p2, p3} would contain a fixed point
and, in view of δ(x) = x, δ(y) = y, δ(z) = z, it follows that δ = 1). So δ3(p1) = p1.
Hence δ3 has the four fixed points x, y, z, p1 forming a quadrangle, that means,
δ3 = 1. So δ is a projective collineation of order 3 admitting three fixed points and
an orbit {p1, p2, p3} forming a triangle. It follows from 2.7 that δ is a Frobenius
collineation. �

Lemma 4.5. Let P = PG(2, q2), q ≡ 2 mod 3, and let % be a Frobenius collineation
of P . Let α and α′ be two further Frobenius collineations both commuting with %.
Then αα′ admits at least three fixed points.

Proof. Let P = P (V ), where V is a 3-dimensional vector space over GF (q2). Let
p1, p2, p3 be the three fixed points of %. By 2.5, there is a basis {v1, v2, v3} of V such
that % is induced by the linear map with matrix

R =

 1 0 0
0 θ 0
0 0 θ̄

 ,

where 1, θ, θ̄ are the third unit roots in GF (q2). (Observe that pj = < vj > for
j = 1, 2, 3.) Since α% = %α and α′% = %α′, there are matrices

A =

 a b c
d e f
g h i

 and A′ =

 a′ b′ c′

d′ e′ f ′

g′ h′ i′


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inducing α and α′, respectively such that AR = λRA and A′R = λ′RA′ for some
elements 0 6= λ, λ′ ∈ GF (q2). It follows that

AR =

 a b c
d e f
g h i


 1 0 0

0 θ 0
0 0 θ̄

 =

 a bθ cθ̄
d eθ fθ̄
g hθ iθ̄



= λRA = λ

 1 0 0
0 θ 0
0 0 θ̄


 a b c

d e f
g h i

 = λ

 a b c
dθ eθ fθ
gθ̄ hθ̄ iθ̄

 .

If a 6= 0, then λ = 1 and b = c = d = f = g = h = 0. Hence

A =

 a 0 0
0 e 0
0 0 i

 .

It follows that α fixes the points p1, p2, p3. Since α is a Frobenius collineation, by
2.7, < α > = < % >.

Let a = 0. If b = 0, then c 6= 0 (otherwise detA = 0). Hence λ = θ̄ and
e = f = g = i = 0, thus

A =

 0 0 c
d 0 0
0 h 0

 .

The characteristic polynomial of A equals x3− cdh. Since α is a Frobenius collinea-
tion, the matrix A can be diagonalized, hence x3 − cdh has three roots. In other
words, cdh admits three third roots.

If b 6= 0, then λ = θ and c = d = e = h = i = 0, hence

A =

 0 b 0
0 0 f
g 0 0

 .

As above, we see that bfg admits three third roots.
Similarly, A′ is of the form

A′ =

 a′ 0 0
0 e′ 0
0 0 i′

 or A′ =

 0 0 c′

d′ 0 0
0 h′ 0

 or A′ =

 0 b′ 0
0 0 f ′

g′ 0 0

 ,

where c′d′h′ and b′f ′g′ both admit three third roots.

If A =

 0 0 c
d 0 0
0 h 0

 and A′ =

 0 0 c′

d′ 0 0
0 h′ 0

, then AA′ =

 0 ch′ 0
0 0 dc′

bd′ 0 0

.

The characteristic polynomial of AA′ is x3 − ch′dc′bd′ = x3 − (bcd)(c′d′h′). Since
bcd and c′d′h′ both admit three third roots, x3 − ch′dc′bd′ is reducible, hence AA′

has three eigenvalues. It follows that αα′ has three fixed points.

If A =

 0 b 0
0 0 f
g 0 0

 and A′ =

 0 b′ 0
0 0 f ′

g′ 0 0

, then AA′ =

 0 0 bf ′

fg′ 0 0
0 gb′ 0

.
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As above it follows that αα′ has three fixed points.

If A =

 0 0 c
d 0 0
0 h 0

 and A′ =

 0 b′ 0
0 0 f ′

g′ 0 0

, then AA′ =

 cg′ 0 0
0 db′ 0
0 0 hf ′

.

Obviously, αα′ has three fixed points.

If A =

 0 b 0
0 0 f
g 0 0

 and A′ =

 0 0 c′

d′ 0 0
0 h′ 0

, then AA′ =

 bd′ 0 0
0 fh′ 0
0 0 gi′

.

Again αα′ has three fixed points. �

Theorem 4.6. Let q ≡ 2 mod 3, and let F be the Frobenius plane of order q.
For a non-incident point line pair (B,G) of F , we denote by α(B,G) the number of
lines through B intersecting G. a) We have α(B,G) ∈ {1, 2} for all non-incident
point-line-pairs (B,G) of F .

b) Given a line G of F there are exactly 2(q2− 1) points B with α(B,G) = 1 and
q2 − 4 points B ′ with α(B ′,G) = 2.

Proof. a) Let (B,G) be a non-incident point-line-pair of F .
Step 1. There exists a line through B intersecting G.
For, assume that every line through B is disjoint to G. Let B1, B2, B3 be the

points on G. Translating the above situation to P = PG(2, q2) we obtain a Frobe-
nius collineation % such that the points of F are the Baer subplanes of E%. Fur-
thermore there is a Singer cycle σ such that {B1, B2, B3} = P(σ) ∩ E%. Finally the
property that there is no line through B intersecting G means that B has non-trivial
intersection with any of the planes B1, B2, B3.

Let p1, p2, p3 be the three fixed points of %. W. l. o. g. we can suppose that
p1 ∈ B1, p2 ∈ B2, p3 ∈ B3 and, say, p2 ∈ B.

By 2.12, there are two points x and y of P such that {x, %(x), %2(x)} and
{y, %(y), %2(y)} form two triangles and such that B1 ∩ B = {x, %(x), %2(x)} and
B3 ∩ B = {y, %(y), %2(y)}. Let τ, τ1, τ2, τ3 be the Baer involutions of B, B1, B2, B3,
respectively.

By Lemma 4.4, τ1τ and ττ2 are Frobenius collineations, both commuting with %.
By 4.5, τ1τ2 = (τ1τ )(ττ2) admits three fixed points. On the other hand, by 3.5, we
have < τ1τ2 > = < γσ > implying that τ1τ2 has no fixed points, a contradiction.

Step 2. We have α(B,G) ∈ {1, 2}. By Step 1, we have α(B,G) ≥ 1. If B1, B2, B3

are the points of G and if p1, p2, p3 are the fixed points of %, then we can assume
w. l. o. g. that pi ∈ Bi for i = 1, 2, 3. The plane B does also contain a fixed point of
%, say p2. It follows that B and B2 are not joined by a line, hence α(B,G) ≤ 2.

b) Let L̃ be the set of lines intersecting G in a point. By a), L̃ covers the point
set of F .

Let α1 and α2 be the number of points B with α(B,G) = 1 and the number of
points B ′ with α(B ′,G) = 2, respectively.

Let B̃ be the set of points not incident with G, and let

S := {(B,L) | B ∈ B̃,L ∈ L̃, B ∈ L}.

Counting the elements of S we get

α1 + 2α2 = 2 · 3
(

2

3
(q2 − 1)− 1

)
= 4(q2 − 1)− 6.
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Since α1 + α2 = |B̃| = 3(q2 − 1)− 3, it follows that α1 = 2(q2 − 1) and α2 = q2 − 4.
�

Corollary 4.7. Let q ≡ 2 mod 3, and let F be a Frobenius plane of order q. Let
d0, d1 and g be the 0-diameter, the 1-diameter and the gonality of F , respectively.

If q = 2, then d0 = d1 = g = 4. Actually, F is a 3× 3-grid.
If q > 2, then d0 = d1 = 4 and g = 3.

Proof. Step 1. Let g be the gonality of F . If q = 2, then g = 4. If q > 2, then g = 3.
It follows from 4.6 that F admits triangles if and only if q > 2. Hence g = 3 for

q > 2. For q = 2, the assertion follows from Ueberberg [18], Th. 1.2.
Step 2. We have d0 = d1 = 4.
By 4.6, it follows that d0 ≤ 4. On the other hand, since there exist non-collinear

points x, y of F we have d0 ≥ dist(x, y) = 4, hence d0 = 4. Similarly, it follows that
d1 = 4. �

5 Frobenius Spaces

In this section we shall introduce a geometry Γ of rank 3 of points, lines and planes
such that the planes of Γ are Frobenius planes. For this reason we shall call these
geometries Frobenius spaces.

The main result of this section is the computation of the parameters of Γ (5.4)
and the computation of the flag stabilizers of Γfor any type of flags (5.5). It turns
out that the group PGL3(q

2) acts flag-transitively on Γ.

Definition 5.1. Let P = PG(2, q2), q ≡ 2 mod 3. Then we define a geometry Γ of
rank 3 as follows:

• The points of Γ are the Baer subplanes of P .

• The lines of Γ are the sets P(σ) ∩ E%, where σ and % are a Singer cycle and a
Frobenius collineation of P , such that |P(σ) ∩ E%| = 3.

• The planes of Γ are the sets E%, where % is a Frobenius collineation of P .

• The incidence relation is induced by the set-theoretical inclusion.

Γ is called a Frobenius space of order q.

Lemma 5.2. Let P = PG(2, q2), q ≡ 2 mod 3, and let Γ be the corresponding
Frobenius space. Let G be a line of Γ with point set {B1, B2, B3}.

Then there is exactly one Singer cycle σ of P such that {B1, B2, B3} ⊆ P(σ). If
< γ > is the subgroup of order 3 of σ, then {B1, B2, B3} is an orbit of P(σ) under
the action of < γ >.

Proof. By definition, we have G = P(σ) ∩ E% for some Singer cycle σ and some
Frobenius collineation %. On the other hand, by Ueberberg [17] Th. 3.1 there is
exactly one Singer Baer partition through B1 and B2. The rest of the lemma has
been proved in 3.3. �
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Proposition 5.3. Let P = PG(2, q2), q ≡ 2 mod 3, and let Γ be the corresponding
Frobenius space. Let G := {B1, B2, B3} be a set of three Baer subplanes of P .

Then G is a line of Γ if and only if there exists a Singer cycle σ such that G is
an orbit of the subgroup < γ > of order 3 of < σ > acting on P(σ).

Proof. We first suppose that G is a line of Γ. Then the assertion follows from 5.2.
Now suppose that σ is a Singer cycle of P and < γ > is the subgroup of order 3

of < σ >. Let G be an orbit of < γ > acting on P(σ). Let G = PGL3(q
2). By 3.2,

there is a Frobenius collineation % ∈ NG(< σ >). By 3.3, the set G ′ := P(σ) ∩ E%
is a line of Γ and an orbit under the action of < γ >. If G = G ′, then the proof
is complete. Suppose that G 6= G ′, and let G ′ := {B ′1, B ′2, B ′3}. Since the group
< σq

2+q+1 > permutes the Baer subplanes of P(σ) in a single cycle, there exists an
element σ̄ ∈ < σ > such that σ̄(B1) = B ′1. Since γ and σ̄ are both contained in
< σ >, they commute. It follows that σ̄(G) = G ′. Let %̄ := σ̄−1%σ̄. Then %̄ is a
Frobenius collineation, and one easily verifies that %̄ fixes the Baer subplanes of G.
Hence G = P(σ) ∩ E%̄ is a line of Γ. �

Theorem 5.4. Let q ≡ 2 mod 3, and let Γ be the Frobenius space of order q.
a) Γ has q3(q3 +1)(q2 +1) points, 1

9
q6(q4− 1)(q2− 1)(q2− q +1) lines, and Γ has

1
6
q6(q4 + q2 + 1)(q2 + 1) planes.
b) The lines and planes of Γ are incident with 3 and 3(q2−1) points, respectively.
c) The points and planes are incident with 1

3
q3(q2−1)(q−1) and 2

3
(q2−1)2 lines,

respectively.
d) The points and lines are incident with 1

2
q3(q3 − 1) and q2 + q + 1 planes,

respectively.
e) Let E be a plane containing a point B. Then there are exactly 2

3
(q2 − 1) lines

in E through B.

Proof. Let P = PG(2, q2), and let Γ be the corresponding Frobenius space.
a) By Hirschfeld [7] (Cor. 3 of Lemma 4.3.1), P contains q3(q3 + 1)(q2 + 1)

Baer subplanes.
By 5.3, the number of lines of Γ equals the number of Singer Baer partitions times

1
3
(q2 − q + 1). Since P admits 1

3
q6(q4 − 1)(q2 − 1) Singer groups ([7], Cor. 3 of Th.

4.2.1), it follows that Γ has 1
9
q6(q4 − 1)(q2 − 1)(q2 − q + 1) lines.

By 2.17, the number of planes of Γ equals 1
6
q6(q4 + q2 + 1)(q2 + 1).

b) These parameters have been computed in 4.3.
c) Let B be a point of Γ. Then the number of lines through B equals the number

of Singer Baer partitions through B. This number equals 1
3
q3(q2−1)(q−1) (see [18]

Prop. 2.4 d)). The number of lines contained in a plane has been computed in 4.3.
d) Let B be a point of Γ. By 2.18, the number of planes of Γ through B equals

1
2
q3(q3 − 1).
Let G = PGL3(q

2). By [18], Th. 1.1, the group G acts transitively on the Singer
Baer partitions of P . Given a Singer Baer partition P(σ) the group < σq

2+q+1 > acts
transitively on the lines of Γ contained in P(σ). It follows that G acts transitively
on the lines of Γ. In particular any line of Γ is incident with the same number N
of planes. Computing the pairs (G, E) of incident line-plane-pairs it follows from a)
and c) that N = q2 + q + 1.

e) This number has been computed in 4.3. �
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Theorem 5.5. Let P = PG(2, q2), q ≡ 2 mod 3 and let Γ be the corresponding
Frobenius space, and let G = PGL2(q

2).
Let {B,G, E} be a flag of Γ, where B is a Baer subplane of P admitting τ as a

Baer involution, G = P(σ)∩E%, and E = E%. Furthermore let < γ > be the subgroup
of order 3 of < σ >.

a) G acts transitively on the chambers of Γ.
b) Let Ḡ be the stabilizer of B in G. Then Ḡ ∼= PGL3(q). Let σ̄ := σq

2−q+1. Then
σ̄ induces a Singer cycle on B. The stabilizers of the flags of Γ are as indicated in
the following table:

Flag Stabilizer Order
{B} Ḡ (q2 + q + 1)(q2 + q)q2(q − 1)2

{G} NḠ(< σ̄ >)× < γ > 9(q2 + q + 1)

{E} NG(%) 6 (q2 − 1)
2

{B,G} NḠ(< σ̄ >) 3(q2 + q + 1)

{B, E} NḠ(%) 2(q2 − 1)

{G, E} < γ > × < % > 9

{B,G, E} < % > 3

Proof. We first compute the various stabilizers. By definition, Ḡ is the stabilizer of
B.

Let H1 be the stabilizer of G. For each α ∈ H1 we have α(G) = G and hence
α(P(σ)) = P(σ). It follows that H1 is a subgroup of NG(< σ >). The subgroup of
< σ > leaving G invariant is the group < σ̄ > × < γ >. Since % fixes all elements
of G, we have % ∈ H1 and % ∈ NḠ(< σ̄ >). It follows that H1 = < %, σ̄, γ >. Since %
and γ commute (3.3), we finally get H1 = NḠ(< σ̄ >)× < γ >.

By 2.15, the stabilzer H2 of E equals the group NG(< % >).
The stabilizer of {B,G} is the group

Ḡ ∩H1 = Ḡ ∩NḠ(< σ̄ >)× < γ > = NḠ(< σ̄ >).

The stabilizer of {B, E} is the group

Ḡ ∩H2 = Ḡ ∩NG(< % >) = NḠ(< % >).

The stabilizer of {G, E} is the group H1∩H2 = (NḠ(< σ̄ >)× < γ >)∩NG(< % >).
Since NG(< % >) ∩ < σ > = < γ > (see 3.3), it follows that

H1 ∩H2 = (NḠ(< σ̄ >)× < γ >) ∩NG(< % >) = < % > × < γ > .

Finally the stabilizer of {B,G, E} is the group Ḡ ∩H1 ∩H2 = < % >.
The next step is to show that G acts transitively on the chambers of Γ. By [18],

G acts transitively on the Singer Baer partitions of P . Given a Singer Baer partition
P(σ), the group < σ > acts transitively on the Baer subplanes of P(σ). Hence G
acts transitively on the flags of type {0, 1}. Given a chamber {B,G, E} we denote
by S the stabilizer of {B,G} and by O the orbit of S containing E in the set of
planes of Γ. If T is the stabilizer of the chamber {B,G, E}, then we get

|O| = |S||T | =
3(q2 + q + 1)

3
= q2 + q + 1.
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(For the second equality we have used 3.2.) Since there are exactly q2 + q +1 planes
incident with {B,G}, it follows that G acts transitively on the chambers of Γ.

The orders of the stabilizers are in the most cases easy to compute. If F is the
set of flags of a given type and if F is one flag of this type with stabilizer GF , then
we have

|GF | =
|G|
|F| .

Using this formula all orders can be computed. �
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