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Abstract

We give subtle, simple and precise results about the convergence or the
divergence of the sequence (xn), where xj = f(xj−1) for every integer j, when
the initial element x0 is in the neighbourhood of a neutral fixed point, i.e. a
point x∗ such that f(x∗) = x∗ with |f ′(x∗)| = 1 (where f is a C∞ function
defined on a subset of R).

1 Introduction

Throughout this paper, we consider a C∞ function f defined on a subset S =
dom f of R and a fixed point x∗ for f , i.e. a point x∗ which will be supposed in the
interior of S and such that f(x∗) = x∗.

Given a point x0 ∈ S, we define the orbit of x0 under f to be the infinite sequence
of points x0, x1, x2, . . ., where x0 = f0(x0), x1 = f(x0) = f1(x0), x2 = f(x1) =
f2(x0), . . . , xn+1 = f(xn) = fn+1(x0), . . . : the point x0 is called the seed of this orbit
which will be denoted by O(f ; x0) [3, 4].

The aim of this note is to very simply study the asymptotic behavior (i.e. the con-
vergence or divergence) of an orbit the seed of which is in a suitable neighbourhood
of a fixed point.

The situation is clear and well-known when x∗ is hyperbolic, i.e. when |f ′(x∗)| 6= 1
[3]. Indeed, if |f ′(x∗)| < 1, then x∗ is stable or attracting; this means that there exists
an open interval I which contains x∗ and such that f(I) ⊂ I and lim

n→∞
fn(x) = x∗

for every x ∈ I [3, p. 43] [7, p. 45]. Moreover, if |f ′(x∗)| > 1, then x∗ is unstable
or repelling; this means that there exists an open interval I which contains x∗ and
for which the following condition is satisfied : if x ∈ I \ {x∗}, there exists an integer
n > 0 such that fn(x) 6∈ I [3, p. 44] [6, p. 20].

Received by the editors October 1996.
Communicated by J. Mawhin.
1991 Mathematics Subject Classification : 26A18, 26A06, 26A48.
Key words and phrases : neutral fixed point, monotonous stability.

Bull. Belg. Math. Soc. 4 (1997), 639–646



640 J. Bair – G. Haesbroeck

When x∗ is neutral (i.e. when x∗ is not hyperbolic), Holmgren says that “nothing
definitive can be said about the behavior of points near x∗” [5, p. 53]; nevertheless,
easy examples show that several typical situations are possible : x∗ may be stable,
unstable, “semistable from above”, “semistable from below” as it can be seen on
these figures which give the orbit analysis [3] in classical cases.
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These curves suggest that, even if the first derivative is “inconclusive”[6, p. 160]
for neutral fixed points, some interesting results can nevertheless be found in this
case.

It is necessary to consider separately the cases where x∗ is positively neutral (i.e.
f ′(x∗) = 1) and negatively neutral (i.e. f ′(x∗) = −1). The fundamental reason for
this distinction is the following : in the first case, the function f is increasing in a
neighbourhood U of x∗ so that f(U ∩ (−∞, x∗)) ⊂ (−∞, x∗) and f(U ∩ (x∗,+∞)) ⊂
(x∗,+∞); in the second case, f is decreasing in a neighbourhood U of x∗ so that
f(U ∩ (−∞, x∗)) ⊂ (x∗,+∞) and f(U ∩ (x∗,+∞)) ⊂ (−∞, x∗).

2 Positively neutral fixed points

Because f is increasing near its positively neutral fixed point x∗, the orbit under
f with a seed x0 in a neighbourhood of x∗ is often a monotone sequence. This
ascertainment leads to these definitions which are slight and appropriate changes of
classical ones [3, 4, 6].

• x∗ is monotonously attracting from below (for f) if there exists a positive real
number ε such that, for every x ∈ (x∗ − ε, x∗), the orbit O(f ; x) is strictly
increasing and converges to x∗;

• x∗ is monotonously attracting from above (for f) if there exists a positive real
number ε such that, for every x ∈ (x∗, x∗ + ε), the orbit O(f ; x) is strictly
decreasing and converges to x∗;

• x∗ is monotonously repelling from below (for f) if there exists a positive real
number ε such that, for every x ∈ (x∗ − ε, x∗), there is a positive integer n
such that fk(x) < fk−1(x) for k ∈ {1, 2, . . . , n} and fn(x) 6∈ (x∗ − ε, x∗ + ε);

• x∗ is monotonously repelling from above (for f) if there exists a positive real
number ε such that, for every x ∈ (x∗, x∗ + ε), there is a positive integer n
such that fk−1(x) < fk(x) for k ∈ {1, 2, . . . , n} and fn(x) 6∈ (x∗ − ε, x∗ + ε);

• x∗ is monotonously stable (for f) if it is monotonously attracting from below
and from above (for f);

• x∗ is monotonously semistable from below (for f) if it is monotonously attract-
ing from below, but monotonously repelling from above (for f);

• x∗ is monotonously semistable from above (for f) if it is monotonously attract-
ing from above, but monotonously repelling from below (for f);

• x∗ is monotonously unstable (for f) if it is monotonoulsy repelling from below
and from above (for f).

It is clear that if x∗ is monotonously stable (resp. monotonously unstable) for f ,
then x∗ is also stable (resp. unstable) for f in the preceding sense, but the converse
is not true.

If x∗ is a positively neutral fixed point for f , then the point P ∗ = (x∗, x∗) lies on
the graph of f and the line with equation y = x is tangent at P ∗ to this curve. Thus,
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usually, we have f(x) < x or f(x) > x for every point x belonging to (x∗−ε, x∗) and
to (x∗, x∗+ε) for a suitable ε > 0. Now we prove that such a condition characterizes
the monotonous stability (from below and from above) of x∗ (for f).

Proposition 1 Let x∗ be a positively neutral fixed point for f .

a) x∗ is monotonously attracting from below for f if and only if there exists a
positive real number ε such that f(x) > x for every x ∈ (x∗ − ε, x∗);

b) x∗ is monotonously attracting from above for f if and only if there exists a
positive real number ε such that f(x) < x for every x ∈ (x∗, x∗ + ε);

c) x∗ is monotonously repelling from below for f if and only if there exists a
positive real number ε such that f(x) < x for every x ∈ (x∗ − ε, x∗);

d) x∗ is monotonously repelling from above for f if and only if there exists a
positive real number ε such that f(x) > x for every x ∈ (x∗, x∗ + ε).

Proof. a) The condition is clearly necessary.
Conversely, we may suppose the existence of a real positive number ε such that

f is strictly increasing on the open interval I = (x∗ − ε, x∗) and such that f(x) >
x ∀x ∈ I . Therefore, for every x ∈ I , the orbit O(f ; x) is increasing and bounded
by x∗ : so, O(f ; x) converges to a limit x̄ ∈ (x∗ − ε, x∗] and x̄ is a fixed point for f .
Because of the assumption f(x) > x when x ∈ I, x̄ = x∗.

b) The proof is similar to a).
c) Necessity of the condition is a trivial consequence of the definitions.
Conversely, let ε be a positive real number such that f is increasing on I =

(x∗−ε, x∗) and f(x) < x ∀x ∈ I . For an arbitrary real number x0 ∈ I , it is possible
to construct the first elements of a decreasing sequence x0, x1, x2, . . .. If the orbit
O(f ; x0) is well-defined (i.e. if fn(x0) ∈ S for every integer n), then there are two
possibilities : there exists an integer n such that x∗ > xn−1 > x∗−ε and xn ≤ x∗−ε,
whence the conclusion, or all the elements of O(f ; x0) are greater than x∗−ε, whence
O(f ; x0) converges to a limit x̄ which belongs to [x∗− ε, x∗) \ (x∗ − ε, x∗) : in these
conditions, x̄ = x∗−ε and x∗−ε is a fixed point for f , with f(x) < x ∀x ∈ (x∗−ε, x∗)
and f ′(x∗ − ε) ≥ 0, so we can adopt, for the fixed point x∗ − ε, the reasoning made
in the case b) for x∗. In summary, it is always sufficient to take ε

2
, instead of ε, in

the definition of a monotonously repelling fixed point from below in order to reach
to the conclusion.

d) The proof is similar to the preceding one. �

Proposition 2 Let x∗ be a positively neutral fixed point for f . Denote by n the
smallest integer greater or equal to 2 such that dn

dxn
f(x∗) 6= 0.

a) If n is odd and dn

dxn
f(x∗) < 0, then x∗ is monotonously stable for f ;

b) If n is odd and dn

dxn
f(x∗) > 0, then x∗ is monotonously unstable for f ;

c) If n is even and dn

dxn
f(x∗) > 0, then x∗ is monotonously semistable from below

for f ;
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d) If n is even and dn

dxn
f(x∗) < 0, then x∗ is monotonously semistable from above

for f ;

e) If f is strictly convex on an open interval I containing x∗, then x∗ is monoto-
nously semistable from below for f ;

f) If f is strictly concave on an open interval I containing x∗, then x∗ is mono-
tonously semistable from above for f .

Proof. By Taylor’s Theorem, we know that

f(x) = f(x∗) +
n∑
j=1

(x− x∗)j
j!

dj

dxj
f(x∗) +R(x),

where R(x) = (x−x∗)n+1

(n+1)!
dn+1

dxn+1 f(c) for a suitable c between x and x∗.

Since lim
x→x∗

R(x) = 0, f(x)−x and (x−x∗)n
n!

dn

dxn
f(x∗) have the same sign for every

point x which is sufficiently close to (but different from) x∗.

When n is odd, (x−x∗)n
n!

and x − x∗ have the same sign (for x 6= x∗). Therefore,
if dn

dxn
f(x∗) < 0, then f(x) > x (resp. f(x) < x) for every x close to and less than

(resp. greater than) x∗. In the same way, if dn

dxn
f(x∗) > 0, then f(x) < x (resp.

f(x) > x) for every x close to and less than (resp. greater than) x∗.
When n is even, (x − x∗)n is positive for x 6= x∗. Thus, if dn

dxn
f(x∗) > 0 (resp.

dn

dxn
f(x∗) < 0), then f(x) > x (resp. f(x) < x) for every x in a neighbourhood of x∗

(with x 6= x∗).
Proposition 1 gives the conclusion for a), b), c) and d).
If f is strictly convex on I , then, for every x ∈ I \ {x∗} :

f(x) > f(x∗) + (x− x∗)f ′(x∗).

Since f ′(x∗) = 1 and f(x∗) = x∗, we also have

f(x) > x ∀x ∈ I \ {x∗},

and proposition 1 can also be applied.
The reasoning is similar for a strictly concave function. �

Examples 1 Let f(x) = x+αxp, with α ∈ R\{0}, p ∈ IN and p ≥ 2. The point

x∗ = 0 is a positively neutral fixed point such that dj

dxj
f(x∗) = 0 for 2 ≤ j < p and

dp

dxp
f(x∗) = αp!. Thus, if p is odd and α < 0 (resp. α > 0), then x∗ is monotonously

stable (resp. unstable) for f ; if p is even and α < 0 (resp. α > 0), then x∗ is
monotonously semistable from above (resp. below) for f .

3 Negatively neutral fixed points

When f ′(x∗) = −1, the situation is fundamentally different from the preced-
ing case because the orbits whose seed x0 is near x∗ cannot be monotone, but
often alternate around x∗ and consist of two monotone subsequences O′(f ; x0) =
(x0, x2, x4, x6, . . .) and O′′(f ; x0) = (x1, x3, x5, . . .), where xn = fn(x0) for every
integer n.
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So, we introduce this new definition about a fixed point x∗ for f : x∗ is alterna-
tively monotonously stable for f if there exists a positive real number ε such that, for
every x0 ∈ (x∗− ε, x∗+ ε), O′(f ; x0) and O′′(f ; x0) are strictly monotone sequences,
one being increasing and the other decreasing, which both converge to x∗.

Note that if a fixed point x∗ is alternatively monotonously stable for f , then it
is also stable for f , but the converse is not true.

Let x∗ be a negatively neutral fixed point for f . It is clear that f2(x∗) = x∗ and
d
dx
f2(x∗) = 1. Hence, the line with equation y = x is tangent to the graph of f2 at

the point P ∗ = (x∗, x∗). So, we generally have f2(x) > x or f2(x) < x for every x
belonging to (x∗ − ε, x∗) and to (x∗, x∗ + ε) for a suitable ε > 0. Precisely, we shall
see that such a condition characterizes the alternatively monotonous stability of x∗.

Proposition 3 Let x∗ be a negatively neutral fixed point for f .
The following propositions are equivalent :

a) x∗ is alternatively monotonously stable for f ;

b) x∗ is monotonously stable for f2;

c) there exists a positive real number ε such that f2(x) > x ∀x ∈ (x∗− ε, x∗) and
f2(x) < x ∀x ∈ (x∗, x∗ + ε).

Proof. The assertions b) and c) are equivalent by virtue of proposition 1.
Suppose that there exists ε > 0 such that, for every x0 ∈ (x∗ − ε, x∗ + ε), the

two subsequences O′(f ; x0) and O′′(f ; x0) are monotone and converge to x∗; clearly
O′(f ; x0) is increasing and O′′(f ; x0) is decreasing. Of course, x∗ is monotonously
stable for f2 because f2(x∗) = x∗, while O(f2; x0) cöıncides with O′(f ; x0).

Conversely, if x∗ is monotonously stable for f2, there exists an open interval I
containing x∗ such that f ′(x) < 0 for any x ∈ I and O(f2; x0) converges to x∗ when
x0 is an arbitrary element of I .

Moreover, by proposition 1, we have f2(x) > x (resp. f2(x) < x) when x is
close to and less (resp. greater) than x∗, so one of the subsequences O′(f ; x0) and
O′′(f ; x0) is increasing, and the other decreasing.

On the other hand, because f is continuous, it is possible to find a real ε > 0
such that x1 = f(x0) belongs to I for every x0 ∈ J = (x∗ − ε, x∗ + ε). Let x0 be
any point of I ∩ J . The orbit O(f2; x1) converges to x∗. Therefore, O(f ; x0) also
converges to x∗, since this sequence consists of elements of O(f2; x0) and O(f2; x1).

�

As a corollary of this last result, a statement similar to proposition 2 can be given
in this case by using the function f2 instead of f . Nevertheless, it is convenient to
work with the given function f itself. For that, the derivatives of f will be replaced
by other more complicated notions as the schwarzian derivative of f [1],i.e.

Dsf(x) =
f ′′′(x)

f ′(x)
− 3

2

(
f ′′(x)

f ′(x)

)2

and Bell’s polynomials defined by

lBn,k(x1, x2, . . . , xn−k+1) =
∑ n!

c1!c2! . . . (1!)c1(2!)c2 . . .
xc11 x

c2
2 . . .
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where the summation goes for every non-negative integers c1, c2, . . . such that c1 +
2c2 + 3c3 + . . . = n and c1 + c2 + c3 + . . . = k [2, pp. 144-145]; moreover, we shall
denote

bn =
n∑
k=1

aklBn,k(a1, a2, . . . , an−k+1)

where, for each k, ak = dk

dxk
f(x∗).

Proposition 4 Let x∗ be a negatively neutral fixed point for f .

a) If Dsf(x∗) < 0, then x∗ is alternatively monotonously stable for f ;

b) If Dsf(x∗) > 0, then x∗ is unstable for f : more precisely, x∗ is monotonously
unstable for f2;

c) When Dsf(x∗) = 0, let n be the smallest integer greater than 3 such that
bn 6= 0; n is odd; x∗ is alternatively monotonously stable for f when bn < 0;
x∗ is unstable for f and monotonously unstable for f2 when bn > 0.

Proof. It is clear that

d

dx
f2(x∗) = 1,

d2

dx2
f2(x∗) = 0,

Dsf(x∗) =
1

2

d3

dx3
f2(x∗) and bn =

dn

dxn
f2(x∗)

due to the formula of Faa di Bueno [2, p. 148].
Now, we prove by contradiction that n is odd. Suppose that n is even. When

bn > 0 (resp. bn < 0), x∗ is monotonously semistable from below (resp. from
above) for f2 by proposition 2; this is impossible because if a sequence (x0, f

2(x0) =
x2, f

2(x2) = x4, . . . ) converges to x∗, then, by continuity of f , (f(x0) = x1, f(x2) =
f2(x1) = x3, f(x4) = f2(x3) = x5, . . .) is also converging to f(x∗) = x∗.

Therefore, propositions 2 and 3 give the conclusions. �

Remark. When the schwarzian derivative Dsf(x∗) is equal to 0 for a nega-
tively neutral fixed point x∗ for f , it is convenient to successively compute the reals
b5, b7, b9, . . . until obtaining a non-zero number.

Elementary calculations give, for such a point x∗ :

b5 = −2
d5

dx5
f(x∗) − 15

d4

dx4
f(x∗)

d2

dx2
f(x∗) + 30

[
d2

dx2
f(x∗)

]4

.

Examples 2 Here are some elementary and varied examples of functions for
which x∗ = 0 is a negatively neutral fixed point.

• f(x) = − sinx and g(x) = −arctgx : 0 is alternatively monotonously stable
for f and for g, since Dsf(0) = −1 and Dsg(0) = −2.

• f(x) = − arcsinx : 0 is unstable for f and monotonously unstable for f2

because Dsf(0) = 1.
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• f(x) = −x+ αx2 − βx3, with α ∈ R \ {0} and β ∈ R :

Dsf(0) = 6(β − α2), b4 = 24α(α2 − β) and b5 = 480α4. Therefore, if β < α2,
then 0 is alternatively monotonously stable for f ; if β ≥ α2, then 0 is unstable
for f and monotonously unstable for f2.

• f(x) = −x+ αxp, where p is an integer greater than 3 and α is an arbitrary
real number which is different from 0 : Dsf(0) = 0.

If p is odd, then n = p and bn = −2αp! : thus, 0 is alternatively monotonously
stable for f when α > 0; 0 is unstable for f and monotonously unstable for f2

when α < 0.

If p is even, then n = 2p − 1 and bn = −α2p(2p − 1)! : 0 is alternatively
monotonously stable for f .
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n◦ 108, (1996), pp. 29-38.

[2] L. Comtet, Analyse combinatoire I, (Presses Universitaires de France, 1970).

[3] R.L. Devaney, An Introduction to Chaotic Dynamical Systems, (Addison-Wesley
Publ. Comp, 2d Ed., 1989).

[4] R.L. Devaney, A First Course in Chaotic Dynamical Systems, (Addison-Wesley
Publ. Comp., 1992).

[5] R.A. Holmgren, A First Course in Discrete Dynamical Systems, (Springer-
Verlag, 1991).

[6] J.T. Sandefur, Discrete Dynamical Systems, (Clarendon Press Oxford, 1990).

[7] A.N. Sharkowsky, Y.L. Mainstrenko and E.Y. Romanenko, Difference equations
and their application, (Kluwer Academic Publishers, 1993).

Jacques BAIR and Gentiane HAESBROECK
Université de Liège
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