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Abstract

In recent years the study of the differential geometry of the total space
E, of a vector bundle π : R → M , initiated by R.Miron [11], [12] has been
developed by many people (see [13] and the references therein). If we take
a horizontal complement of the vertical subbundle V E, we can express
the geometrical objects defined on E in a more simplified form and new
geometric objects can be obtained.

Recently P.L.Antonelli and T.Zastawniak in a series of papers [2], [3],
[4] extended the Riemannian theory of diffusion processes and stochastic
development to the case of Finsler manifolds, the extension being moti-
vated by important problems in Biology [3], [5].

In this paper we extend their formalism to study some geometric prob-
lems of the theory of the diffusion process and the stochastic development
on E, related to these new geometric objects on E. We thereby obtain
further generalization and geometric meaning for certain results of [2], [3].
But few probabilistic calculations are given here, for they are given in [2],
[3], [4]. In a forthcoming publication, as a particular case, the theory of dif-
fusion and stochastic development on Lagrange manifolds will be discussed
[9].
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1 Preliminaries

Let π : E → M a smooth vector bundle over M . Suppose that M is a real
n-dimensional differentiable manifold and the dimension of each fibre of E is m.
Local coordinates on E are (xi, ya), where (xi) are local coordinates on the base
manifold. Always in this paper, the range for the indices i, j, k, h, ... is {1, 2, ..., n},
for the indices a, b, c, d, ... is {1, 2, ..., m} and the summation convention is used.

A nonlinear connection on E is defined by a distribution HE, complementary
to the vertical distribution of TE, i.e.

(1.1) TE = HE ⊕ V E.
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A local frame for TEx,y, (x, y) ∈ E, adapted to the splitting (1.1) is (δi, δa),
where

(1.2) δi = ∂i −Na
i (x, y)∂a

is a basis in HEx,y and ∂i := ∂
∂xi , ∂a := ∂

∂ya .
We denote by (dxi, δya) the dual basis of (δi, ∂a), where

(1.3) δya = dya + Na
i (x, y)dxi.

Now we can introduce the algebra of d-tensor fields on E with respect to
the horizontal and vertical distributions. This algebra is locally spanned by
(1, δi, ∂a).

A d-connection on E is a linear connection on E which preserves by paral-
lelism the horizontal and the vertical distributions (see [13]).

The local coordinate expression for a d–connection ∇ on E is given by:

(1.4) ∇δi
δj = Lk

ijδk, ∇∂a
δi = Cj

aiδj ,
∇δi∂j = Lb

ia∂b, ∇∂a∂b = Cc
ab∂c.

A d-connection on E determines an h- and v-algorithm of covariant deriva-
tion. For example if

t = tiajbδi ⊗ δa ⊗ dxj ⊗ δyb

is a d-tensor field on E, the horizontal and vertical covariant derivative of t is
given by

tiajb|k = δktiajb + Li
khtha

jb + La
kct

ic
jb − Lh

kjt
ia
hb − Lc

kbt
ia
jc

and
tiajb|c = ∂ct

ia
jb + Ci

chtha
jb + Ca

cdt
id
jb − Ch

cjt
ia
hb − Cd

cbt
ia
jd.

If
G = gijdxi ⊗ dxj + habδy

a ⊗ δyb

is an (h, v)-metric on E, these exists d-connections compatible with G (see [13],
Ch.III).

A systematic presentation of the geometry of E is given in the monograph
of Miron and Anastasiei [13].

Throughout this paper we shall use the usual set up for the general theory
of stochastic calculus. We follow closely [3], [5]. For an introduction see [6], [7],
[10].

Let (Ω,F , P ) be a probability space endowed with a right continuous filtra-
tion (Ft)t>0 such that each Ft contains all negligible events in F . If f : Ω → R
is an integrable random variable we denote by E(f) =

∫
Ω

fdP its expectation
and by E(f/G) the conditional expectation of f given G. (G is a sub σ-field of
F).

A stochastic process is a measurable function x : [0,∞)× Ω → R. One says
that a process is continuous if all its sample path, t → x(t, ω), are continuous
functions for almost all ω ∈ Ω.
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A stochastic process is adapted if for each t ≥ 0 the random variable x(t) is
Ft-measurable.

A martingale is an adapted process such that for each t ≥ 0, x(t) is integrable
and x(s) = E(x(t)/Fs) for every t > s ≥ 0.

A continuous local martingale is a continuous adapted process x such that
the process

(t, ω) → x(τn ∧ t, ω)X{0<rn}(ω)

is a martingale for every n, where τn = inf{t ≥ 0; | x(t) |≥ n} and XA is the
indicator function A ⊂ Ω.

A continuous Ft-adapted process is called a semimartingale if it is written
as the sum of a local martingale and a process of bounded variation. For a real
semimartingale x and a continuous adapted process y we denote by ydx :=

∫
ydx

the Itô stochastic integral of y with respect to x, dxdy := d(xy) − xdy − ydx
the joint quadratic variation of x and y and y ◦ dx :=

∫
y0dx the Stratonovich

stochastic integral, where y ◦ dx = ydx + 1
2dxdy.

If M is a differentiable manifold, a M -valued semimartingale is a continuous
process x : [0,∞) × Ω → M such that (t, ω) → f(x(t, ω)) is a real-valued
semimartingale for every smooth function f : M → R.

If D is an elliptic second-order operator on M , an M -valued semimartingale
X is called a diffusion on M with generator D if the process

(t, ω) → f(x(t, ω))− f(x, (0, ω))−
∫ t

0

Df(x, (x, ω))ds

is a local martingale for every smooth function f : M → R with compact
support.

2 Stochastic parallelism on E

We consider an arbitrary smooth curve

(2.1) c : [0, T ] → E, c(t) = (x(t), y(t)), t ∈ [0, T ]

locally expressed by the equations:

xi = xi(t), ya = ya(t), t ∈ [0, T ].

The tangent vector field ċ of c is given by

(2.2) ċ =
dxi

dt
δi +

δya

dt
∂a.

If X = Xiδi + Xa∂a then it is parallel along c if and only if

(2.3) Xj
|i

dxi

dt
+ Xj |a δya

dt
= 0

and
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(2.4) Xb
|i

dxi

dt
+ Xb |a δya

dt
= 0.

Let X0 ∈ Hc(0)E be a horizontal tangent vector at c(0). Since ∇ preserves by
parallelism the horizontal distribution we can transport X0 by parallelism along
c(t) that is, we can find a horizontal vector field X = Xiδi along c, solving of
the following system of differential equations:

(2.5)
dXj

dt
+ Lj

kiX
k dxi

dt
+ Cj

kaXk δya

dt
= 0

with the initial condition

(2.6) X(0) = X0

The solution of (2.5), (2.6) will be called the h-parallel transport of X0 along
C. Analogously, if X̄0 is a vertical vector at c(0) the v-parallel transport of X̄0

along c is defined similarly as the solution of the system of differential equations:

(2.7)
dX̄b

dt
+ Lb

ciX̄
c dxi

dt
+ Cb

caXc δya

dt
= 0

with the initial condition:

(2.8) X̄(0) = X0

From the assumption that the connection is g-metrical, if X(t) and Y (t) are
two solutions of (2.5) we have

(2.9) gij(x(t), y(t))Xi(t)Y j(t) = const.

Also if X̄(t), Ȳ (t) are two solutions of (2.7) we have

(2.10) hab(x(t), y(t))X̄a(t)Ȳ b(t) = const.

In this section we extended the concept of stochastic parallel transport along
a trajectory of a diffusion process on E. For this, similar to that in [2], [6], [7], we
shall approximate the diffusion by piecewise smooth sample path for which the
parallel transport is defined by the equations (2.5), (2.6). The theorems below
are those of [2], [3], but are here given in a more general geometric setting.

Let c(t) = (x(t), y(t)) be a diffusion on E starting from (x0, y0). If π : 0 =
t0 < t1 < . . . < tn = T is a division of the time interval [0, T ] we can take a
piecewise smooth approximation cπ(t) = (xπ(t), yπ(t)) on E with bounded first
second and third order derivative such that cπ(tα) = c(tα), α ∈ {0, 1, 2, . . . , n}.
If X0 ∈ H(x0,y0)E the h-parallel transport Xπ(t) of X0 along cπ(t) can be defined
as a piecewise smooth function, solution of the following system of differential
equations:

(2.11)
dXj

π

dt
+ Lj

ki(xπ(t), yπ(t))Xk
π

dxi
π

dt
+ Cj

ka(xπ(t), yπ(t))Xk
π

δya
π

dt
= 0,
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(2.12) Xπ(0) = X0.

We have
Theorem 2.1. The solution of the family of ordinary differential equations
(2.11), (2.12) converges in probability as mesh π → 0, to the solution X(t)
of the Stratonovich stochastic differential equation

(2.13) dXj + Lj
kiX

k ◦ dxi + Cj
kaXk ◦ δya = 0,

(2.14) X(0) = X0,

where

(2.15) δya = dya + Na
i ◦ dxi.

Definition 2.2. The solution of (2.13), (2.14) is called the stochastic h-parallel
transport of X0 along the diffusion c.

Similarly we shall be able to define the v-stochastic parallel transport of
X̄0 ∈ V Ec(0) along a diffusion c as the solution of the Stratonovich stochastic
differential equation

(2.16) dX̄b + Lb
ciX̄

c ◦ dxi + Cb
caX̄c ◦ δya = 0,

(2.17) X̄(0) = X̄0.

Remark 2.3. Let c(t) = (x(t), y(t)) be a diffusion on E starting at (x0, y0). If
X0 = Xi ∂

∂xi ∈ TMx0 and A0 = Aasa ∈ Ex0 we can take the horizontal and
vertical lift of Xa and A0

(2.18) Xv
0 = Xi δ

δxi
and Av

0 = Aa ∂

∂ya
.

Now, we can define the stochastic h- and v-parallel transport for X0 and A0

along the diffusion c on E as the stochastic h- and v-parallel transport for Xv
0

and Av
0.

Theorem 2.4. (i) If X(t) and Y (t) are any two solutions of (2.13) then

(2.19) gij(x(t), y(t))Xi(t)Xj(t) = const.a.s.

(ii) If X̄(t) and Ȳ (t) are any two solutions of (2.16) then

(2.20) hab(x(t), y(t))X̄a(t)Ȳ b(t) = const.a.s.

Let c : [0, T ] → E be a diffusion on E, c(t) = (x(t), y(t)). We say that c is
a horizontal diffusion if y(t) is a solution of the following stochastic differential
equation

(2.21) dya + Na
i (x, y) ◦ dxi = 0, y(0) = y0.
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Also we say that c is a vertical diffusion if x(t) = x0 a.s. The system (2.21) has,
generally a local solution. We cannot, in general, extend the solution for almost
all t ∈ [0, T ] but there are some important situations in which we can do it [2],
[3], [9]. We can give a geometric description of the solution of (2.21).

Let x : [0, T ] → M be a diffusion on M starting from x0 and xπ a piecewise
smooth approximation with bounded first, second and third order derivative,
associated to the division π : 0 = t0 < t1 < ... < tn = T .

We define the nonlinear transport by parallelism of yπ along xπ as the solu-
tion of the following (nonlinear) system of ordinary differential equations

(2.22)
dya

π

dt
+ Na

i (xπ, yπ)
dxi

π

dt
= 0, yπ(0) = y0.

Theorem 2.5. The solution of (2.22) converges in probability as mesh π → 0
to the solution of y(t) of the Stratonovich stochastic equation (2.21).
Remark 2.6. If the solution of system (2.22) is defined on [0, T ], the same is
valid for the solution of the stochastic differential system (2.21).
Remark 2.7. If c : [0, T ] → E, c(t) = (x(t), y(t)) is a horizontal diffusion
then the equations (2.13), (2.14) and (2.16), (2.17) are written:

dXj + Lj
kiX

k ◦ dxi = 0, X(0) = X0

and
dX̄b + Lb

ciX̄
c ◦ dxi = 0, X̄(0) = X̄0.

If c(t) = (x(t), y(t)) is a vertical diffusion the equations (2.13), (2.14) and
(2.16), (2.17) become

dXj + Cj
kaXk ◦ dya = 0, X(0) = X0

and
dX̄b + Cb

caX̄c ◦ dya = 0, X̄(0) = X̄0.

3 Stochastic development on E

Let O′(E) be the principal bundle of frames on E defined as follows. The to-
tal space of O′(E) consists of elements (x, y, z), where x ∈ M, y ∈ Ex and
z = (e1, ..., en, ē1, ..., ēm) is frame of TE(x,y) such that (e1, ..., en) is an orthog-
onal frame of HE(x,y) relative to the metric structure g and (ē1, ..., ēm) is an
orthogonal frame in V E(x,y) with respect to the metric structure h.

The differential structure of O′(E) can be obtained from that of E as follows.
Let us consider (Uα, Φα) be a coordinate system of E and Ũα = {(x, y, z) ∈

O′(E); (x, y) ∈ Uα and z is a frame as above}.
We define the mapping:

Φ̃α : Ũα → Φα(Ũα)×O(n)×O(m) ⊂ Rn+m ×Rn2+m2

by
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Φ̃(x, y, z) = (Φα(x, y), ei
j , ēa

b ),

where

ej = ei
j

(
δ

δxi

)

(x,y)

, ēb = ēa
b

(
∂

∂ya

)

(x,y)

and O(n) is the group of orthogonal transformations in Rn. The projection
π : O′(E) → E is defined as usual by π(x, y, z) = (x, y) and the right action by
Rv(x, y, z) = (x, y, z · v), where

z · v = (eiu, ēaū), eiu = uj
iej , ēaū = ūb

aēb

for any v = (u, ū) ⊂ O(n)×O(m) and (x, y, z) ⊂ O′(E).
If α(t) = (γi(t), γ̄a(t)), t ∈ [0, T ] is a smooth curve in Rn+m using the

d-connection ∇ we cal roll E along α(t) to obtain a curve c(t) on E as a trace
of α(t). In fact, if (x0, y0, z0) ∈ O′(E) we must find a smooth curve c̃(t) =
(x(t), y(t), z(t)) on O′(E) such that

(3.1)

dxi

dt = dγj

dt (t)ei
j(t),

δya

dt = dγ̄b

dt ēa
b (t),

dej
h

dt + Lj
kie

k
h

dxi

dt + Cj
kaek

h
δya

dt = 0,
dēb

d

dt + Lb
ciē

c
d

dxi

dt + Cb
caēc

d
δya

dt = 0,

xi(0) = xi
0, ya(0) = ya

0 , ei(0) = e0i, ēa(0) = ē0,a.

For the curve c(t) = c(t, x0, y0, z0, α) = π(c̃(t)) it follows:

(3.2) c(t, x0, y0, z0 · v, α) = c(t, x0, y0, z0, v · α), t ∈ [0, T ],

where v = (u, ū) ∈ O(n)×O(m) and v · α is the curve in Rn+m defined by

(3.3) (v · α)(t) = (ui
j γj(t), ūa

b γ̄b(t)).

Let c(t) = (x(t), y(t)), t ∈ [0, T ] be a diffusion on E starting at (x0, y0)
and z0 an orthogonal frame in TE(x0,y0) as above.

We use the stochastic parallel transport to move this orthogonal frame along
c(t) and we shall obtain the moving frame z(t) = (e1(t), ..., en(t), ē1(t), ..., ēm(t))
such that the following stochastic differential equations are satisfied:

(3.4) dej
h + Lj

kie
k
h ◦ dxi + Cj

kaek
h ◦ δya = 0,

dēb
d + Lb

ciē
c
d ◦ dxi + Cb

caēc
d ◦ δya = 0

and almost surely on [0, T ] we have:

(3.5) gij(x(t), y(t)) ei
h(t) ej

k(t) = δhk,
hab(x(t), y(t)) ea

c (t) eb
d(t) = δcd.

We regard x(t), y(t), z(t)) as a stochastic process on the orthogonal bundle
O′(E).

Now, we can study the concept of stochastic development on E or rolling
the total space E along a standard Brownian motion in Rn+m, extending the
Riemannian and Finslerian stochastic development of [2], [3].
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Let w(t), v(t) be two independent standard Brownian motion in Rn and Rm,
thus (w(t), v(t)) is a standard Brownian motion in Rn+m.

The system of stochastic differential equations for the stochastic development
on E can be written as:

(3.6)
dxi = ei

j ◦ dwj ; δya = ēa
b ◦ dvb,

dej
h + Li

ki ek
h ◦ dxi + Cj

ka ek
h ◦ δya = 0,

dēb
d + Lb

ci ēc
d ◦ dxi + Cb

caēc
d ◦ δya = 0,

xi(0) = xi
0, ya(0) = ya

0 , ei(0) = e0i, ēa(0) = ē0a,

with (x0, y0, z0) ∈ O′(E).
From (3.5) it follows that the solution of (3.6) is a process on O′(E).

Definition 3.1. The solution (x(t), y(t), z(t)) of (3.6) is called it the stochastic
development on E.
Theorem 3.2. The solution of stochastic differential equation (3.6) defines a
flow diffeomorphisms on O′(E) (x(t), y(t), z(t)), whose projection (x(t), y(t)),
from O′(E) to E is a diffusion on E starting at (x0, y0) which have the probability
law independent of the choice of the initial orthonormal frame z0 in E(x0,y0) and
whose generator is

(3.7) D =
1
2
gij(δiδj − Lk

ijδk) +
1
2
hab(∂a∂b − Cc

ab∂c).

This result is that of [2], [3] but is here given a more general geometric setup.
The reader should consult these papers for proof of (3.7).

4 Examples

We consider the tangent bundle π : TM → M with the (h, v)-metric

G = gijdxi ⊗ dxj + habδy
a ⊗ δyb

G is called h–Riemannian (v–Riemannian) if its horizontal (vertical) part
gij(x, y) (hab(x, y)) are functions of position only, i.e. depend on x alone. If
G is h- and v-Riemannian we shall say that G is (h, v)-Riemannian. Also, we
say that G is locally-Minkowski if locally hab(x, y) = hab(y). The v-metric hab is
called weakly regular if the d-tensor field h̃ab = 1

2∂a∂bε is nondegenerate, where
ε = hab(x, y)yayb (see [13]).
1. We suppose G is Riemannian-locally Minkowski metric on TM and hab(y) is
weakly regular. Then we can take Na

i = 0 (sse [13], page 126) and the coefficients
of the canonical d-connection compatible with G are given by

Li
jk = γi

jk(x) =
1
2
gih(δkghj + δjghk − δhgjk), La

ib = 0

Ci
cj = 0; Ca

bc =
1
2
had(∂bhdc + ∂chdb − ∂dhbc).

The system (3.6) for the stochastic development takes the form
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dxi = ei
j ◦ dwj ; dei

h + γj
ki ek

h ◦ dxi = 0

dya = ēa
b ◦ dvb; dēb

d + Cb
caēc

d ◦ dya = 0.

2. Let G be a (h, v)-Riemannian metric. Then we can take Na
i = γa

iby
b as a

nonlinear connection on TM (γi
jk are the Christoffel symbols formed with gij).

The coefficients of the canonical d-connection, compatible with G are given by

Li
jk = γi

jk; La
bk = γa

bk +
1
2
hachbc‖k; Ci

jk = 0, Ca
bc = 0

where hab‖k denote the covariant derivative of hab with respect to γi
jk. The

system (3.6) for the stochastic development reads:

dxi = ei
j ◦ dwj

dej
h = γi

ki ek
h ◦ dxi = 0

δya = ēa
b ◦ dvb

dēb
d + (γb

ai +
1
2
hbchac‖i)ēa

d ◦ dxi = 0.
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Finsler spaces, Braşov, 1982, 147-188.

[13] R.Miron and M.Anastasiei, The Geometry of Lagrange Spaces, Theory and
Applications, Kluwer Academic Press, FTPH, No.59, 1994.

University Al.I. CUZA,
Department of Mathematics,
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