
Family of Projetive Projetions onTensors and ConnetionsC.Udri�ste and I.E. Hiri�a
Abstratx1 �nds the expliit expressions for all projetive projetions on the set of(1,2)-tensors. x2 analyses the ation of extended projetive projetions on theset of onnetions and shows that in partiular one gets the lassial Thomasonnetion. x3 gives properties of the almost projetive transformations of on-netions.Mathematis Subjet Classi�ation: 15A72, 53A55, 53B10Key words: projetive projetions, tensor spae deomposition, onnetion spaedeompositionIntrodutionThe theory of invariant deompositions of tensors and onnetions using global proje-tions built with the Kroneker Æ-tensor or the Æ-tensor together with the Riemannianmetri, almost omplex struture, almost ontat struture et have been initiated bythe �rst author in 1975. It was disussed by letters (1976-1977) with Prof.Dr. LievenVanheke and was orally ommuniated as remarks at di�erent Conferenes in Geom-etry. A part of this theory is detailed in this paper on (1,2)-tensors and onnetions,but of ourse it an be generalized for (p; q)-tensors. The most interesting generaliza-tion is to apply the theory for the urvature (1,3)-tensor, and to relate the projetionon onnetions with the projetion on the orresponding urvature tensors, but thissubjet will be developed in another paper.As was remarked by Krupka [4℄, [6℄ whose invariant trae deompositions arespeial ases of ours, the results an be applied in the representation theory of theorthogonal group, developed by Weyl [12℄. Extensive literature on this subjet an befound from di�erent perspetives. For examples, N.Bokan [1℄ onsiders the ase of atorsion free onnetion on a spae endowed with a positive de�nite metri and �ndsa deomposition of the underlying tensor spae, invariant with respet to the groupSO(n).Balkan Journal of Geometry and Its Appliations, Vol.2, No.2, 1997, pp. 139-156Balkan Soiety of Geometers, Geometry Balkan Press



140 C.Udri�ste and I.E.Hiri�a1 Family of projetive projetions on(1,2)-tensorsLet V be a real n-dimensional vetor spae, where n � 2, T 12 (V ) = fT abg be the vetorspae of all tensors T of type (1,2), Æij be the symbol of Kroneker, I = fÆraÆbsÆtg bethe identity on T 12 (V ).A projetion P = fP ba rstg on T 12 (V ) of the formP ba rst = x1ÆraÆbsÆt + x2ÆbaÆrsÆt + x3ÆraÆsÆbt + x4ÆaÆbsÆrt + x5ÆaÆrsÆbt + x6ÆbaÆsÆrtis alled a projetive projetion. The adjetive "projetive" is justi�ed by the fat thatthere exist indued projetions P whih transform a symmetri onnetion into theThomas projetive onnetion (see Setion 2).Of ourse, P is a projetion i� P 2 = P or P ba rstP str ijk = P ba ijk ; i.e.,(1:1) 8>>>>>><>>>>>>: x21 + x23 = x12x1x2 + nx22 + x2x5 + x3x5 + x2x6 + x3x6 + nx5x6 = x22x1x3 = x32x1x4 + x3x6 + nx24 + x4x6 + x3x5 + x4x5 + nx5x6 = x42x1x5 + x2x3 + x2x4 + x3x4 + nx4x5 + nx2x5 + x25 = x52x1x6 + x2x3 + x2x4 + nx2x6 + x3x4 + nx4x6 + x26 = x6:This algebrai system is easily obtained via the simpli�ed expression P = x1I1 +:::+ x6I6, the ondition P 2 = P and the table of ompositions* I1 I2 I3 I4 I5 I6I1 I1 I2 I3 I4 I5 I6I2 I2 nI2 I6 I6 I2 nI6I3 I3 I5 I1 I6 I2 I4I4 I4 I5 I5 nI4 nI5 I4I5 I5 nI5 I4 I4 I5 nI4I6 I6 I2 I2 nI6 nI2 I6If P = fP ba rstg is a projetive projetion, then its supplement Q = I � P is alsoa projetive projetion. That in way the following theorem is true.Theorem 1.1.. If (x01; :::; x06) is a solution for the algebrai system (1.1), then (1 �x01;�x02; :::;�x06) is also a solution.The projetive projetion P belongs to the lass of invariant tensors studied byD.Krupka and J.Janyska [5℄ (a tensor T 2 T rr (V ) being invariant i� A Æ T = T , forany A 2 GL(V )).Let us solve the system (1.1). For that reason we start with(1:2) � x21 + x23 = x12x1x3 = x3:This system is equivalent to



Family of Projetive Projetions on Tensors and Connetions 141(1:3) � x1 + x3 = 02x1x3 = x3 or (1:4) � x1 + x3 = 12x1x3 = x3:From (1.3) we obtain � x1 = 0x3 = 0 or 8><>: x1 = 12x3 = �12 : . The supplementary solutions� x1 = 1x3 = 0 or 8><>: x1 = 12x3 = 12 : are obtained from (1.4). We solve the initial system (1.1)for x1 = 0; x3 = 0 and for x1 = x3 = 12. The other two ases are obtained takingsupplementary solutions for the system (1.1).I. In the ase x1 = x3 = 0, from (1.1) we get the system(1:5) 8>><>>: x2(1� nx2 � x5) = x6(x2 + nx5)x5(1� nx2 � x5) = x4(x2 + nx5)x4(1� nx4 � x6) = x5(x4 + nx6)x6(1� nx4 � x6) = x2(x4 + nx6):Multiplying the �rst equation with the third equation and the seond equationwith the fourth equation, we get(1:6) � x2x4(1� nx2 � x5)(1� nx4 � x6) = x5x6(x2 + nx6)(x4 + nx6)x5x6(1� nx2 � x5)(1� nx4 � x6) = x2x4(x2 + nx5)(x4 + nx6):A). We study the ase x2x4 � x5x6 6= 0. From (1.5) we obtain� nx2 + x5 = 1x2 + nx5 = 0 and � x4 + nx6 = 0x6 + nx4 = 1:We get the solution 8<: x2 = x4 = � n1� n2x5 = x6 = 11� n2 :B). We study the ase x2x4 = x5x6.B1). Let x2x4 = x5x6 6= 0. The system (1.6) implies(1� nx2 � x5)(1� nx4 � x6) = (x2 + nx5)(x4 + nx6):We �nd the system � n(x2 + x4) + x5 + x6 = 1x2x4 = x5x6:B2). Let x2x4 = x5x6 = 0.a) If x2 = x5 = 0, then (1.5) beomes � x4(1� nx4 � x6) = 0x6(1� nx4 � x6) = 0: We get x2 =x4 = x5 = x6 = 0 or � x2 = x5 = 01 = nx4 + x6:



142 C.Udri�ste and I.E.Hiri�ab) If x2 = x6 = 0, then (1.5) implies � x5(1� x5 � nx4) = 0x4(1� x5 � nx4) = 0: We �nd x2 = x4 =x5 = x6 = 0 or � x2 = x6 = 01 = nx4 + x5:) If x4 = x5 = 0, then (1.5) beomes � x2(1� nx2 � x6) = 0x6(1� nx2 � x6) = 0: Consequentlyx2 = x4 = x5 = x6 = 0 or � x4 = x5 = 01 = nx2 + x6:d) If x4 = x6 = 0, then (1.5) gives � x2(1� nx2 � x5) = 0x5(1� nx2 � x5) = 0: We get x2 = x4 =x5 = x6 = 0 or � x4 = x6 = 01 = nx2 + x5:II. The ase x1 = x3 = 12. From (1.1) we get
(1:7) 8>>>>>>>>>><>>>>>>>>>>:

nx22 + x2x5 + 12x5 + 12x6 + x2x6 + nx5x6 = 0nx24 + x4x6 + 12x5 + 12x6 + x4x6 + nx5x6 = 012x2 + 12x4 + x2x4 + nx4x5 + nx2x5 + x25 = 012x2 + 12x4 + x2x4 + nx2x6 + nx4x6 + x26 = 0:From the �rst two equations of the system (1.7) we obtain(x2 � x4)[(x2 + x4)n+ x5 + x6℄ = 0:From the last equations of the system (1.7) we obtain (x5�x6)[(x2+x4)n+x5+x6℄ = 0.Let � x2 = x4x5 = x6:From the �rst equation and the third equation of (1.7)� nx22 + 2x2x5 + x5 + nx25 = 0x22 + 2nx2x5 + x2 + x25 = 0we get (x2 � x5)[(n � 1)(x2 � x5) � 1℄ = 0. If x2 = x5, then x2[(2n + 2)x2 + 1℄ = 0.We obtain (1:81)� x2 = x4 = 0x5 = x6 = 0;or(1:82) x2 = x4 = x5 = x6 = � 12(n+ 1) :If x2 = x5 + 1n� 1 , then we obtain the solution



Family of Projetive Projetions on Tensors and Connetions 1438><>: x2 = x4 = 12(n� 1)x5 = x6 = 12(1� n) or 8<: x2 = x4 = 1n2 � 1x5 = x6 = n1� n2 :The system 8>><>>: n(x2 + x4) + x5 + x6 = 0nx22 + x2x5 + 12x6 + 12x5 + x2x6 + nx5x6 = 012x2 + 12x4 + x2x4 + nx4x5 + nx2x5 + x25 = 0is equivalent to ( n(x2 + x4) + x5 + x6 = 0x5x6 = 12(x2 + x4) + x2x4:Theorem 1.2. The solutions of the quadrati system (1.1) and hene the set of allprojetive projetions P on T 12 (V ) are given byI.a) x1 = x2 = x3 = x4 = x5 = x6 = 0:b) x1 = 0; x3 = 0; x2 = x4 = nn2 � 1 ; x5 = x6 = 11� n2 ;) x1 = x3 = 0; x2x4 = x5x6; 1 = n(x2 + x4) + x5 + x6.Introduing the parameters x5 = �; x6 = � and imposing the ondition ��+ �� 1n �2 �4��; �; � 2 R, the values x2 = �; x4 = � are solutions of the equation z2 + 1n (� +�� 1)z + �� = 0.The supplementary solutions for I areI0.a) x1 = 1; x3 = x2 = x4 = x5 = x6 = 0;b) x1 = 1; x3 = 0; x2 = x4 = n1� n2 ; x5 = x6 = 1n2 � 1;) x1 = 1; x3 = 0; x2x4 = x5x6; �1 = n(x2 + x4) + x5 + x6.Denoting x5 = �; x6 = �, and imposing the ondition ��+ �+ 1n �2 �4��; �; � 2 R, the values x2 = �; x4 = � are solutions of the equation z2 + 1n (� +�+ 1)z + �� = 0.II.a) x1 = x3 = 12 ; x2 = x4 = x5 = x6 = 0;b) x1 = x3 = 12 ; x2 = x4 = x5 = x6 = � 12(n+ 1) ;) x1 = x3 = 12 ; x2 = x4 = �x5 = �x6 = 12(n� 1);



144 C.Udri�ste and I.E.Hiri�ad) x1 = x3 = 12 ; x2 = x4 = 1n2 � 1 ; x5 = x6 = n1� n2 :e) x1 = x3 = 12 ; n(x2 + x4) + x5 + x6 = 0; x5x6 = 12(x2 + x4) + x2x4.With x5 = �; x6 = �, � 1n (�+ �)� 1�2 � 1 + 4��; �; � 2 R, the values x2 =�; x4 = � are solutions of the equation z2 + 1n (�+ �)z + ��+ 12n(�+ �) = 0.The supplementary solutions for II areII0.a) x1 = �x3 = 12 ; x2 = x4 = x5 = x6 = 0;b) x1 = �x3 = 12 ; x2 = x4 = x5 = x6 = 12(n+ 1) ;) x1 = �x3 = 12 ; x2 = x4 = �x5 = �x6 = 12(1� n) ;d) x1 = �x3 = 12 ; x2 = x4 = 11� n2 ; x5 = x6 = nn2 � 1 :e) x1 = �x3 = 12 ; n(x2 + x4) + x5 + x6 = 0; x5x6 = �12(x2 + x4) + x2x4.With x5 = �; x6 = �; � 1n (�+ �) + 1�2 � 1 + 4��; �; � 2 R, the values x2 =�; x4 = � are solutions of the equation z2 + 1n (�+ �)z + ��� 12n(�+ �) = 0.The images of a (1,2)-tensor by the preedent projetions are obvious and ontainthe following generalizations of the results of Krupka [4℄.Theorem 1.3. Let T = (T ab) 2 T 12 (V ). There exists an in�nity of projetive pro-jetions P = (P ba rst) suh that 
 = PT = (P ba rstT ab) is a traeless tensor (i.e.
sst = 
sts = 0).I. T aat = 0.1) 
 = 0 for x1 = x3 = x4 = x5 = 0; nx2 + x6 = 1;2) 
rst = T rst � 11� n2 (T ataÆrs � nT asaÆrt ) forx1 = 1; x3 = 0; x6 + nx2 = 0; x4 = n1� n2 ; x5 = 1n2 � 1 ;3) 
rst = 12(T rst+T rts)+Ærsx5T ata�ÆrtT asa(12 +nx5), for x1 = x3 = 12 ; 12 +x4+nx5 =0; n(x2 + x4) + x5 + x6 = 0; x5x6 = 12(x2 + x4) + x2x4; 12 + x6 + nx2 6= 0;4) 
rst = 12(T rst�T rts)+x5ÆrsT ata+(12�nx5)Ært T asa, for x1 = �x3 = 12;�12+x4+nx5 =0; n(x2 + x4) + x5 + x6 = 0; x5x6 = �12(x2 + x4) + x2x4; 12 + x6 + nx2 6= 0:II. T aat = T ata = 0.1) 
 = T , for x1 = 1; x2 = x3 = x4 = x5 = x6 = 0;2) 
 = 0, for x1 = x3 = 0; x2 = x4 = nn2 � 1 ; x5 = x6 = 11� n2 ;



Family of Projetive Projetions on Tensors and Connetions 1453) 
rst = 12(T rst + T rts), for x1 = x3 = 12 ; x2 = x4 = �x5 = �x6 = 12(n� 1) ;4) 
rst = 12(T rst � T rts), for x1 = �x3 = 12 ; x2 = x4 = x5 = x6 = 12(n+ 1) .III. T aat = �T ata.1) 
rst = 12(T rst + T rts), for x1 = x3 = 12 ; x2 = x4 = x5 = x6 = 0;2) 
rst = 12(T rst � T rts) + 11� n (ÆrsT aat � ÆrtT aas); for x1 = �x3 = 12 ; x5 = x6 =nn2 � 1 ; x2 = x4 = 11� n2 .IV. T aat = T ata.1) 
rst = 12(T rst + T rts) � 1n+ 1(ÆrsT aat + Ært T aas), for x1 = x3 = 12 ; x2 = x4 =1n2 � 1 ; x5 = x6 = n1� n2 ;2) 
rst = 12(T rst � T rts), fora) x1 = �x3 = 12 ; x2 = x4 = x5 = x6 = 0;b) x1 = �x3 = 12 ; x2 = x4 = �x5 = �x6 = 12(1� n) ;V. T ata = �x6 + nx2x4 + nx5T aat ) 
 = 0, forx4 6= �nx5 x2x4 = x5x6; 1 = n(x2 + x4) + x5 + x6:VI.T ata = �1 + x6 + nx2x4 + nx5 T aat ) 
rst = T rst � x4x4 + nx5T aasÆrt � x5x4 + nx5T aatÆrs ;for x4 6= �nx5; x2x4 = x5x6; �1 = n(x2 + x4) + x5 + x6:VII. T ata = �1 + 2x6 + 2nx21 + 2x4 + 2nx5T aat:
rst = 12(T rst + T rts) + x6 + x21 + 2x4 + 2nx5T aasÆrt � x4 + x51 + 2x4 + 2nx5T aatÆrs ;forx1 = x3 = 12 ; n(x2 + x4) + x5 + x6 = 0; x5x6 = 12(x2 + x4) + x2x4; x4 + nx5 6= �12 :VIII. T ata = �1 + 2x6 + 2nx21 + 2x4 + 2nx5T aat:
rst = 12(T rst � T rts) + x4 � x5�1 + 2x4 + 2nx5 (T aatÆrs � T aasÆrt );for



146 C.Udri�ste and I.E.Hiri�ax1 = 12 ; x3 = �12 ; n(x2+x4)+x5+x6 = 0; x5x6 = �12(x2+x4)+x2x4; x4+nx5 6= 12 :IX. For any T having arbitrary traes one gets1) 
rst = T rst + 1n2 � 1 [Ærs(�nT aat + T ata) + Ært (T aas � nT asa℄, forx1 = 1; x3 = 0; x2 = x4 = n1� n2 ; x5 = x6 = 1n2 � 1 :2) 
rst = Ærs(x2T aat + 11� n2T ata) + Ært (�nx2T aas + n1� n2T asa), forx1 = x3 = 0; x5 = 11� n2 ; x4 = nn2 � 1 ; x6 = �nx2;3) 
 = 0, for x1 = x2 = x3 = x4 = x5 = x6 = 0;4) 
rst = T rst+Ærsx2T aat�Ært (1+nx2)T aas, for x1 = 1, x3 = x4 = x5 = 0, nx2+x6+1 =0; 5) 
rst = 12(T rst + T rts)� 12(n+ 1)(T aat + T ata)(Ærs + Ært ), forx1 = x3 = 12 ; x2 = x4 = x5 = x6 = � 12(n+ 1) ;6) 
rst = 12(T rst+T rts)+Ærs [x2T aat+ 12(1� n)T ata℄+Ært [�(12 +nx2)T aas+ 12(n� 1)T asa℄;for x1 = x3 = 12 ; nx2 + x6 + 12 = 0; x4 = �x5 = 12(n� 1) ;7) 
rst = 12(T rst+T rts)+Ærs [x2T aat+ 12(1 + n)T ata℄+Ært [�(12 +nx2)T aas+ 12(n+ 1)T asa℄;for x1 = �x3 = 12 ; x6 = �nx2 � 12 ; x4 = x5 = 12(n+ 1) ;8) 
rst = T rst + Ærs( n1� n2T aat � nx4T ata) + +Ært ( 1n2 � 1T aas + x4T ata), forx1 = 1; x3 = 0; x2 = n1� n2 ; x6 = 1n2 � 1 ; x5 = �nx4:9) 
rst = T rst + Ærs(1� nx4)T aat ++Ærtx4T ata), forx1 = x3 = 0; x2 = x6 = 0; x5 = 1� nx4:Proof. 
 is a traeless tensor i�(1:9) ( (x1 + x6 + nx2)T aat + (x3 + x4 + nx5)T ata = 0(x1 + nx4 + x5)T ata + (x3 + nx6 + x2)T aat = 0:This system with the unknowns T aat; T ata is ompatible. We study all the ases of thetheorem 1.2.



Family of Projetive Projetions on Tensors and Connetions 147I0 a) The system (1.9) is equivalent to T aat = T ata = 0. We get II, 1);b) We obtain the ase IX, 1);) 1) x4 = �nx5.1.1. 1 + x6 + nx2 = 0. In this ase we �nd IX, 4) and 8);1.2. T aat = 0 and 1 + x6 + nx2 6= 0. We get I, 2).2) If x4 6= �nx5 we obtain VI.I. a) We get IX, 3);b) The system (1.9) is equivalent to T ata = T aat = 0. We get II, 2);) 1) If x4 + nx5 6= 0, then we obtain V.;2) x4 + nx5 = 0. If T aat = 0 and x6 + nx2 6= 0, then we get I, 1).If x6 + nx2 = 0, then we arrive at IX, 2) and 9).II. a) The system beomes T ata + T aat = 0. We obtain III, 1);b) (1.9) is identi satis�ed and we have IX, 5);) (1.9) is equivalent with T ata = T aat = 0. We get II, 3);d) (1.9) beomes T ata = T aat and we obtain IV, 1)e) 1) 12 + x4 + nx5 = 0. We get I, 3) for T aat = 0 and IX, 6) for 12 + x6 + nx2 = 0.2) If 12 + x4 + nx5 6= 0, then we �nd VII.II0. a) The system (1.9) is equivalent to T ata = T aat. We get the ase IV, 2), a);b) (1.9) beomes T ata = T aat = 0: We have the ase II, 4);) (1.9) is equivalent with T ata = T aat. We get the ase IV, 2), b);d) (1.9) beomes T ata = �T aat. We get the ase III, 2);e) 1) x4 + nx5 = 12;1.1. If T aat = 0, we get I, 4);1.2. If x6 + nx2 = �12, then we get the ase IX, 7);2) If x4 + nx5 6= �12, we get VIII.Remark 1.1. a) If T is a traeless tensor, then 
 = PT is a traeless tensor, for anyprojetive projetion P .b) The theorem " Let V be a real n-dimensional vetor spae, where n � 2 and letA = (Aikl) 2 T 12 (V ). Then there exist a unique traeless tensor B = (Bikl) 2 T 12 (V )and unique 1-forms C = (Ck); D = (Dk) 2 �1(V ), suh that Aikl = Bikl+ÆilDk+ÆikCl,where Cl = 1n2 � 1(nAttl �Atlt; Dk = 1n2 � 1(�Attk + nAtkt);Bikl = Aikl � 1n2 � 1 [Æik(nAttl �Atlt) + Æil(�Attk + nAtkt)℄; "proved by Krupka in [4℄, is a partiular ase of ours (IX, 1). Its trae deompositionproblem orresponds to the ase x1 = 1; x3 = 0 for our projetive projetions.2 Family of projetive projetions on aÆneonnetionsLet M be a di�erentiable n-dimensional manifold and T 12 M be the bundle of (1,2)-tensor �elds over M . The previous projetion P extends to a global projetion �eld



148 C.Udri�ste and I.E.Hiri�aon T 12 M denoted also by P whose extended oeÆients x1; :::; x6 are salar �elds.Some of the salar �elds x1; ::; x6 are arbitrary funtions, others depend on the thesearbitrary funtions, and some of them are onstant funtions.Denote with A12(M) the set of all geometrial objets of type (1; 2) whose di�ereneis a (1; 2)-tensor �eld. The set A12(M) is an aÆne vetor spae modelled on the vetorspae T 12 (M). Obviously, the set C of all aÆne onnetions onM and T 12 (M) are aÆnesubspaes of A12(M). Any projetion on T 12 (M) indues a projetion on A12(M).Let � = f�ijkg be an aÆne onnetion onM . The projetive projetions P of The-orem 1.2 work on C by the rule � = P� = (P ba rst�ab). They produe almost projetiveonnetions � i� x1 + x3 = 1. Otherwise (x1 + x3 = 0), the image P (C) onsists ofgeometrial objets �elds � of type (1,2) whih are not onnetions; partiularly thetorsion tensor 12(�ijk � �ikj) is the image of � by the projetive projetion P havingthe oeÆients x1 = 12 ; x3 = �12 ; x2 = x4 = x5 = x6 = 0:Theorem 2.1. Let x1 = 1; x3 = 0. The images of the projetive projetions P on Consist of the almost projetive onnetions�rst = �rst + Ærs t + Ært's;where 's and  t are de�ned bya) For x2 = x4 = x5 = x6 = 0,  t = 't = 0;b) For x2 = �x4 n1� n2 ; x5 = x6 = 1n2 � 1 ; t = 1n2 � 1(�n�aat + �ata); 's = 1n2 � 1(�aas � n�asa);) x5 = �; x6 = �; ��+ �+ 1n �2 � 4��; �; � 2 R; x2 = �; x4 = � solutions ofthe equation z2 + 1n(� + �+ 1)z + �� = 0, t = ��aat + ��ata; 's = ��asa + ��aas:Remark. The geometrial objets 's and  t are not 1-forms.Corollary 2.1. Let x1 = 1; x3 = 0 and P the orresponding projetive projetionsating on symmetri aÆne onnetions. The images of P onsist of the almost pro-jetive onnetions �rst = �rst + Ærs t + Ært's;where  t and 's are related to �t = �aat in the following ways:Case b) )  t = 't = � 1n+ 1�t.Case a) )  s = 's = 0:Case ) )  t = (�+ �)�t; 's = (� + �)�s.In partiular, for the ase ) with �+� = �+� = � 1n+ 1 and for the ase b) we�nd the Thomas projetive onnetion [11℄



Family of Projetive Projetions on Tensors and Connetions 149�rst = �rst � 1n+ 1(Ærs�t + Ært�s);orresponding to the projetionP ba rst = ÆraÆbsÆt � 1n+ 1ÆbaÆrsÆt � 1n+ 1ÆbaÆsÆrt :Theorem 2.10. Let x1 = x3 = 0. The images of the projetive projetions P on Consist of the objets of type (1,2)�rst = Ærs t + Ært's;where 's and  t are de�ned bya) for x2 = x5 = x4 = x6 = 0,  t = 't = 0b) for x2 = x4 = nn2 � 1 ; x5 = x6 = 11� n2 ; t = 1n2 � 1(n�aat � �ata); 's = 1n2 � 1(n�asa � �aas);) for x5 = ��; x6 = ��; �1� �� �n �2 � 4��; �; � 2 R; x2 = ��; x4 = ��solutions of the equation z2 � 1n(1� �� �)z + �� = 0, t = ���aat � ��ata;  s = ���asa � ��aas:Theorem 2.2. Let x1 = x3 = 12 . The images of the projetive projetions P on Consist of the almost projetive onnetions�rst = 12(�rst + �rts) + Ærs t + Ært's;where 's and  t are de�ned bya)for x2 = x4 = x5 = x6 = 0;  t = 't = 0;b) for x2 = x4 = x5 = x6 = � 12(n+ 1),  t = 't = � 12(n+ 1)(�aat + �ata);) for x2 = x4 = �x5 = �x6 = 12(n� 1) ; t = �'t = 12(n� 1)(�aat � �ata);d) for x2 = x4 = 1n2 � 1 ; x5 = x6 = n1� n2 , t = 1n2 � 1(�aat � n�ata); 's = 1n2 � 1(�asa � n�aas);



150 C.Udri�ste and I.E.Hiri�ae) for x5 = �; x6 = �; � 1n (�+ �)� 1�2 � 1 + 4��; �; � 2 R; x2 = �; x4 = �solutions of the equation z2 + 1n (�+ �)z + ��+ 12n(� + �) = 0, t = ��aat + ��ata; 's = ��asa + ��aas:Corollary 2.2. Let x1 = x3 = 12 and P the orresponding projetive projetions work-ing on symmetri onnetions. The images of P onsist of the next almost projetiveonnetionsa) x2 = x4 = x5 = x6 = 0) �rst = �rstb) x2 = x4 = x5 = x6 = � 12(n+ 1) ) �rst = �rst � 1n+ 1(Ærs�t + Ært�s)) x2 = x4 = �x5 = �x6 = 12(n� 1) ) �rst = �rst;d) x2 = x4 = 1n2 � 1 ; x5 = x6 = n1� n2 ) �rst = �rst � 1n+ 1(Ærs�t + Ært�s).e) x5 = �; x6 = �; x2 = �; x4 = �; �; �; �; � 2 R, satisfyingn(�+ �) + �+ � = 0; �� = �12(�+ �) + �� )) �rst = �rst + Ærs(�+ �)�t + Ært (� + �)�s):Remark 2.1. In partiular, the ase e) � + � = � + � = � 1n+ 1 and the ases b)and d) produe the Thomas projetive onnetion.Theorem 2.20. Let x1 = 12 ; x3 = �12 . The images of the projetive projetions P onC onsist of the objets of type (1,2)�rst = 12(�rst � �rts) + Ærs t + Ært's;where 's and  t are de�ned by:a) for x2 = x4 = 0; x5 = x6 = 0,  t = 't = 0;b) for x2 = x4 = x5 = x6 = 12(n+ 1) ; 't =  t = 12(n+ 1)(�aat + �ata);) for x2 = x4 = �x5 = �x6 = 12(1� n) ; t = �'t = 12(1� n) (�aat � �ata);d) for x2 = x4 = 11� n2 ; x5 = x6 = nn2 � 1 ; t = 11� n2 (�aat � n�ata); 's = 11� n2 (�asa � n�aas);e) for x5 = ��; x6 = ��; � 1n (�+ �) + 1�2 � 1 + 4��; �; � 2 R; x2 = ��; x4 =�� solutions of the equations z2 + 1n(� + �)z � 12n(�+ �) + �� = 0; t = ���aat � ��ata; 's = ���asa � ��aas:



Family of Projetive Projetions on Tensors and Connetions 1513 Almost projetive transformations ofonnetionsLetM be a �nite dimensional di�erentiable manifold endowed with the aÆne onne-tion �. The lass �� of the almost projetive transformations (apt) of the onnetion� is de�ned by [3℄, [9℄ �� = � + � 
 I + I 
 �;where �; � 2 ^1(M).Theorem 3.1. For eah onnetion � and eah projetive projetion P in Theorems2.1, 2.2, 2.10, 2.20 there exists a lass of onnetions �� satisfying the ommutativediagram � apt�! ��P # # P� = ��;where � = P�; �� = P ��. This diagram reets also the invariane of � with respetto �� (the gauge invariane of � with respet to the projetive group).Proof. We �x a projetive projetion P = (P ba rst) by (x1; :::; x6). Sine��ab = �ab + �bÆa + �Æabit is enough to prove that there exist the 1-forms � = (�b); � = (�) suh thatP ba rst(�bÆa + �Æab ) = [(x1 + nx4 + x6)�s + (x3 + x4 + nx6)�s℄Ært++[(x2 + x3 + nx5)�t + (x1 + nx2 + x5)�t℄Ærs = 0:This ondition is equivalent to the linear system� (x1 + nx4 + x6)�s + (x3 + x4 + nx6)�s = 0(x2 + x3 + nx5)�s + (x1 + nx2 + x5)�s = 0;with 2n unknows (�1; :::; �n; �1; :::; �n) and with 2n equations. The determinant of thematrix of this linear system is� = �[(x1 + nx4 + x6)(x1 + nx2 + x5)� (x2 + x3 + nx5)(x3 + x4 + nx6)℄n:For eah (x1; :::; x6) in Theorems 2.1, 2.2, 2.10, 2.20 one proves that � is as a rule zero,exepting few ases in whih � 6= 0. In other words the preeding linear system is asa rule ompatible undetermined, exepting few ases in whih � = 0; � = 0.In the sequel we suppose that � is a symmetri onnetion, and we identify the on-netion � with the indued ovariant derivative r. The lass of the almost projetivetransformations of r is haraterized by�rXY = rXY + �(X)Y + �(Y )X; 8X;Y 2 X (M); �; � 2 ^1(M):The urvature tensor �elds �R of �r and R of r are related by�R(X;Y )Z = R(X;Y )Z � C(Y; Z)X + C(X;Z)Y + d�(X;Y )Z;



152 C.Udri�ste and I.E.Hiri�awhere C(X;Y ) = (rX�)(Y )� �(X)�(Y ):Let (M; g) be a Riemannian spae. Denote by gij the omponents of the metrig, and by Rijkl the omponents of the urvature tensor �eld. Introdue the symbolsR �R and Q(g;R) by(3:1) (R �R)hijklm = �RshlmRsijk �RsilmRhsjk �RsjlmRhisk �RsklmRhijs;Q(g;R)hijklm = �gmhRlijk + ghlRmijk � gmiRhljk + gilRhmjk��gjmRhilk + gjlRhimk � gkmRhijl + gklRhijm:Pseudo-symmetri manifolds [2℄, i.e., Riemannian spaes (M; g) for whih the �elds(�) R �R; Q(g;R) are linearly dependent at every point of the manifold, onstitute ageneralization of spaes of onstant setional urvature, along the line of loally sym-metri and semi-symmetri spaes R � R = 0, studied by Szabo in [8℄), onseutively.The linear dependene of the �elds (�) is equivalent to(��) R �R = LQ(g;R) on U = fx 2M jR 6= R(1) at xg;where R(1)hijk = kn(n� 1)(�gikgjh + gijgkh);k being the salar urvature. Similarly to (3.1) we an de�ne Q(g;A);R �A; Q(D;A), where D;A are tensors of type (0,2).Let us onsider the square matrix whose entries are Rijkl , where ij indiate therows and kl indiate the olums. The rank of this symmetri matrix will be denotedby q(x). Obviously q(x) � n(n� 1)2 ; 8x 2M ([10℄).Theorem 3.2. Let r be the Levi-Civita onnetion of the Riemannian spae (M; g)and �r its almost projetive transformation�rXY = rXY + �(X)Y + �(Y )X;suh that � is a losed 1-form and C = fg; f 2 F(M). If �r is a metrique onnetion(i.e. there exists �g 2 T 02 (M), symmetri and positive de�nite suh that �r�g = 0) and(M; g) is a pseudo-symmetri manifold with L a onstant funtion, then(3:2) (f + L) ��g � 1nTrae(�g)g� = 0holds on the open set U .Proof. Beause �r�g = 0, we get�gij;k = 2�k�gij + �i�gkj + �j�gik;where the omma denotes ovariant di�erentiation with respet to the Levi-Civitaonnetion. The seond ovariant derivative is(3:3) �gij;kl = 2�k;l + �i;l�gkj + �j;l�gik + 2�k(2�l�gij + �i�glj + �j�gil)++�i(2�l�gkj ++�k�glj + �j�gkl) + �j(2�l�gik + �i�glk + �k�gil):



Family of Projetive Projetions on Tensors and Connetions 153From (3.3) we get�gij;kl � �gij;lk = �gkj(�i;l � �i�l) + �gik(�j;l � �j�l)� �glj(�i;k � �k�i)� �gil(�j;k � �j�k);whih is equivalent to (R � �g)ijkl = �Q(C; �g)ijkl = �Q(g; f�g)ijkl .Using the Theorem 1 of [2℄ we �nd(f + L) ��g � 1nTrae(�g)g� = 0 on U:Proposition 3.1. In the same hypothesis of the Theorem 3.2, if moreover (U; g) isnot onformally related to (U; �g), then ( �R � �R)hijklm = 0 holds on U .Proof. ( �R � �R)hijklm = �Rrijk �Rhrlm � �Rhrkl �Rrilm � �Rhirk �Rrjlm � �Rhijr �Rrklm:This relation is equivalent to( �R � �R)hijklm = (L+ f)Q(g;R)hijklm:Using (3.2) we �nd L = �f and hene ( �R � �R)hijklm = 0 on the set U .Proposition 3.2. In the same hypothesis of the previous Proposition, if moreover �ris a symmetri onnetion and the rank of the matrix ( �Rijkl) is q(x) = n(n� 1)2 , then(U ; �g) has onstant urvature.Proof. The proposition is a diret onsequene of the Proposition 3.1 and Theorem2 of [10℄.Remark 3.1. If � = �, then �r is the Levi-Civita onnetion assoiated to �g and hene(M; g) and (M; �g) are speial geodesially related spaes. The Theorem 3.2 generalizesthe Theorem 2 of [2℄. In this speial ase (U ; g) has also onstant urvature.Theorem 3.3. Let �r be the almost projetive transformation of the Levi-Civita on-netion of the Riemannian spae (M; g),�rXY = rXY + �(X)Y + �(Y )Xsuh that � is a losed 1-form and � a losed, non vanishing 1-form. If (M; g) is anEinstein spae and �r-reurrent (i.e. �rX �R = !(X) �R, ! being a 1-form, and �R theurvature tensor �eld), then the two onnetions are at projetive (i.e. the projetiveurvature tensor W ijkl = Rijkl + 1n� 1(ÆikSjl� ÆilSjk) is 0 and also �W ijkl = 0, where Sis the Rii tensor �eld).Proof. The projetive urvature tensor �eld is invariant with respet to this speialalmost projetive transformation of onnetions. The relations �Rijkl;r = !r �Rijkl and�Sjl;r = !r �Sjl imply(3:4) W ijkl;r = !rW ijkl :The relation (3.4) is equivalent to(3:5) Wijkl;r + gir�sW sjkl � �kWijrl � �lWijkr � �jWirkl = (!r + 2�r)Wijkl :Beause (M; g) is an Einstein spae, we have Wijkl +Wjikl = 0. From (3.5) we get



154 C.Udri�ste and I.E.Hiri�a(3:6) gir�sW sjkl + gjr�sW sikl � �jWirkl � �iWjrkl = 0Contrating with gir in (3.6) we obtain(3:7) �sW sjkl = 0:From (3.6) and (3.7) we get �jWirkl + �iWjrkl = 0 and hene W = �W = 0.Theorem 3.3. Let �r be the almost projetive transformation of the aÆne onnetionr, �rXY = rXY + k�(X)Y + �(Y )X; k 2 Z n n�1; n2o ;� being a losed 1-form. If r and �r are projetive reurrent so that rXW =�(X)W; �rX �W = �(X) �W , � being a 1-form, then the two onnetions r; �r are atprojetive.Proof. From the relation(3:8) ( �rU �W )(X;Y )Z = (rUW )(X;Y )Z + �(W (X;Y )Z)U � �(X)W (U; Y )Z���(Y )W (X;U)Z � �(Z)W (X;Y )U � 2k�(U)W (X;Y )Zwe obtain(3:9) 2k�(U)W (X;Y )Z + �(X)W (U;X)Z + �(Y )W (X;U)Z++�(Z)W (X;Y )U = �(W (X;Y ); Z)U:If f�ig � ^1(M) and fXig � X (M) are dual loal bases, let us take U = Xi in (3.9).Contrating the resulting formula with �i we get(3:10) (n� 2k)�(W (X;Y )Z) = 0:From (3.9) and (3.10) it follows(3:11) 2k�(U)W (X;Y )Z+ �(X)W (U;X)Z+ �(Y )W (X;U)Z+ �(Z)W (X;Y )U = 0:Taking U = Z = X in (3.11) we have(3:12) 2(k + 1)�(X)W (X;Y )X = 0:There is T 2 X (M) so that �(T ) 6= 0 and hene W (T; Y )T = 0. Using (3.11) we getW (X;Y )Z = 0.Remark 3.2. If we suppose that M is endowed with two aÆne onnetions r; �rand A = �r � r, we an onstrut the deformation algebra U(M; �r;r) onsideringX ? Y = A(X;Y ). An element X 2 U(M; �r;r) is alled a harateristi vetor�eld if there exists � 2 F(M) suh that A(X;X) = �X and is alled an almostprinipal vetor �eld if there are f 2 F(M) and ! 2 ^1(M) suh that A(Z;X) =fZ + !(Z)X; 8X;Z 2 X (M) [7℄.Theorem 3.4. Let �r be the almost projetive transformation of the aÆne onnetionr, �r = r + I 
 � + � 
 I, �; � being arbitrary 1-forms. All the elements of thedeformation algebra U(M;r; �r; ) are harateristi vetor �elds and almost prinipalvetor �elds.Aknowledgements. A version of this paper was presented at the First Confer-ene of Balkan Soiety of Geometers, Politehnia University of Buharest, September23-27, 1996.
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