Family of Projective Projections on Tensors and Connections

C.Udrişte and I.E. Hirică

Abstract

$\S 1$ finds the explicit expressions for all projective projections on the set of (1,2)-tensors. $\S 2$ analyses the action of extended projective projections on the set of connections and shows that in particular one gets the classical Thomas connection. $\S 3$ gives properties of the almost projective transformations of connections.

Mathematics Subject Classification: 15A72, 53A55, 53B10
Key words: projective projections, tensor space decomposition, connection space decomposition

Introduction

The theory of invariant decompositions of tensors and connections using global projections built with the Kronecker δ-tensor or the δ-tensor together with the Riemannian metric, almost complex structure, almost contact structure etc have been initiated by the first author in 1975. It was discussed by letters (1976-1977) with Prof.Dr. Lieven Vanhecke and was orally communicated as remarks at different Conferences in Geometry. A part of this theory is detailed in this paper on (1,2)-tensors and connections, but of course it can be generalized for (p, q)-tensors. The most interesting generalization is to apply the theory for the curvature (1,3)-tensor, and to relate the projection on connections with the projection on the corresponding curvature tensors, but this subject will be developed in another paper.

As was remarked by Krupka [4], [6] whose invariant trace decompositions are special cases of ours, the results can be applied in the representation theory of the orthogonal group, developed by Weyl [12]. Extensive literature on this subject can be found from different perspectives. For examples, N.Bokan [1] considers the case of a torsion free connection on a space endowed with a positive definite metric and finds a decomposition of the underlying tensor space, invariant with respect to the group $\mathrm{SO}(\mathrm{n})$.

[^0]
1 Family of projective projections on (1,2)-tensors

Let V be a real n-dimensional vector space, where $n \geq 2, T_{2}^{1}(V)=\left\{T_{b c}^{a}\right\}$ be the vector space of all tensors T of type (1,2), δ_{j}^{i} be the symbol of Kronecker, $I=\left\{\delta_{a}^{r} \delta_{s}^{b} \delta_{t}^{c}\right\}$ be the identity on $T_{2}^{1}(V)$.

A projection $P=\left\{P_{a}^{b c} \begin{array}{c}r\end{array}\right\}$ on $T_{2}^{1}(V)$ of the form

$$
P_{a}^{b c} \underset{s t}{r}=x_{1} \delta_{a}^{r} \delta_{s}^{b} \delta_{t}^{c}+x_{2} \delta_{a}^{b} \delta_{s}^{r} \delta_{t}^{c}+x_{3} \delta_{a}^{r} \delta_{s}^{c} \delta_{t}^{b}+x_{4} \delta_{a}^{c} \delta_{s}^{b} \delta_{t}^{r}+x_{5} \delta_{a}^{c} \delta_{s}^{r} \delta_{t}^{b}+x_{6} \delta_{a}^{b} \delta_{s}^{c} \delta_{t}^{r}
$$

is called a projective projection. The adjective "projective" is justified by the fact that there exist induced projections P which transform a symmetric connection into the Thomas projective connection (see Section 2).

Of course, P is a projection iff $P^{2}=P$ or $P_{a}^{b c} \underset{s t}{r} P_{r}^{s t}{ }_{j k}^{i}=P_{a}^{b c} \underset{j k}{i}$, i.e.,

$$
\left\{\begin{array}{l}
x_{1}^{2}+x_{3}^{2}=x_{1} \tag{1.1}\\
2 x_{1} x_{2}+n x_{2}^{2}+x_{2} x_{5}+x_{3} x_{5}+x_{2} x_{6}+x_{3} x_{6}+n x_{5} x_{6}=x_{2} \\
2 x_{1} x_{3}=x_{3} \\
2 x_{1} x_{4}+x_{3} x_{6}+n x_{4}^{2}+x_{4} x_{6}+x_{3} x_{5}+x_{4} x_{5}+n x_{5} x_{6}=x_{4} \\
2 x_{1} x_{5}+x_{2} x_{3}+x_{2} x_{4}+x_{3} x_{4}+n x_{4} x_{5}+n x_{2} x_{5}+x_{5}^{2}=x_{5} \\
2 x_{1} x_{6}+x_{2} x_{3}+x_{2} x_{4}+n x_{2} x_{6}+x_{3} x_{4}+n x_{4} x_{6}+x_{6}^{2}=x_{6}
\end{array}\right.
$$

This algebraic system is easily obtained via the simplified expression $P=x_{1} I_{1}+$ $\ldots+x_{6} I_{6}$, the condition $P^{2}=P$ and the table of compositions

$* *$	I_{1}	I_{2}	I_{3}	I_{4}	I_{5}	I_{6}
I_{1}	I_{1}	I_{2}	I_{3}	I_{4}	I_{5}	I_{6}
I_{2}	I_{2}	$n I_{2}$	I_{6}	I_{6}	I_{2}	$n I_{6}$
I_{3}	I_{3}	I_{5}	I_{1}	I_{6}	I_{2}	I_{4}
I_{4}	I_{4}	I_{5}	I_{5}	$n I_{4}$	$n I_{5}$	I_{4}
I_{5}	I_{5}	$n I_{5}$	I_{4}	I_{4}	I_{5}	$n I_{4}$
I_{6}	I_{6}	I_{2}	I_{2}	$n I_{6}$	$n I_{2}$	I_{6}

If $P=\left\{P_{a}^{b c} \underset{s t}{r}\right\}$ is a projective projection, then its supplement $Q=I-P$ is also a projective projection. That in way the following theorem is true.
Theorem 1.1.. If $\left(x_{1}^{0}, \ldots, x_{6}^{0}\right)$ is a solution for the algebraic system (1.1), then ($1-$ $\left.x_{1}^{0},-x_{2}^{0}, \ldots,-x_{6}^{0}\right)$ is also a solution.

The projective projection P belongs to the class of invariant tensors studied by D.Krupka and J.Janyska [5] (a tensor $T \in T_{r}^{r}(V)$ being invariant iff $A \circ T=T$, for any $A \in G L(V))$.

Let us solve the system (1.1). For that reason we start with

$$
\left\{\begin{array}{l}
x_{1}^{2}+x_{3}^{2}=x_{1} \tag{1.2}\\
2 x_{1} x_{3}=x_{3}
\end{array}\right.
$$

This system is equivalent to

$$
\left\{\begin{array} { l }
{ x _ { 1 } + x _ { 3 } = 0 } \tag{1.3}\\
{ 2 x _ { 1 } x _ { 3 } = x _ { 3 } }
\end{array} \quad \text { or } \quad (1 . 4) \quad \left\{\begin{array}{l}
x_{1}+x_{3}=1 \\
2 x_{1} x_{3}=x_{3}
\end{array}\right.\right.
$$

From (1.3) we obtain $\left\{\begin{array}{l}x_{1}=0 \\ x_{3}=0\end{array}\right.$ or $\left\{\begin{array}{l}x_{1}=\frac{1}{2} \\ x_{3}=-\frac{1}{2} .\end{array}\right.$. The supplementary solutions $\left\{\begin{array}{l}x_{1}=1 \\ x_{3}=0\end{array}\right.$ or $\left\{\begin{array}{l}x_{1}=\frac{1}{2} \\ x_{3}=\frac{1}{2} .\end{array}\right.$ are obtained from (1.4). We solve the initial system (1.1) for $x_{1}=0, x_{3}=0$ and for $x_{1}=x_{3}=\frac{1}{2}$. The other two cases are obtained taking supplementary solutions for the system (1.1).
I. In the case $x_{1}=x_{3}=0$, from (1.1) we get the system

$$
\left\{\begin{array}{l}
x_{2}\left(1-n x_{2}-x_{5}\right)=x_{6}\left(x_{2}+n x_{5}\right) \tag{1.5}\\
x_{5}\left(1-n x_{2}-x_{5}\right)=x_{4}\left(x_{2}+n x_{5}\right) \\
x_{4}\left(1-n x_{4}-x_{6}\right)=x_{5}\left(x_{4}+n x_{6}\right) \\
x_{6}\left(1-n x_{4}-x_{6}\right)=x_{2}\left(x_{4}+n x_{6}\right)
\end{array}\right.
$$

Multiplying the first equation with the third equation and the second equation with the fourth equation, we get

$$
\left\{\begin{array}{l}
x_{2} x_{4}\left(1-n x_{2}-x_{5}\right)\left(1-n x_{4}-x_{6}\right)=x_{5} x_{6}\left(x_{2}+n x_{6}\right)\left(x_{4}+n x_{6}\right) \tag{1.6}\\
x_{5} x_{6}\left(1-n x_{2}-x_{5}\right)\left(1-n x_{4}-x_{6}\right)=x_{2} x_{4}\left(x_{2}+n x_{5}\right)\left(x_{4}+n x_{6}\right) .
\end{array}\right.
$$

A). We study the case $x_{2} x_{4}-x_{5} x_{6} \neq 0$. From (1.5) we obtain

$$
\left\{\begin{array} { l }
{ n x _ { 2 } + x _ { 5 } = 1 } \\
{ x _ { 2 } + n x _ { 5 } = 0 }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
x_{4}+n x_{6}=0 \\
x_{6}+n x_{4}=1
\end{array}\right.\right.
$$

We get the solution

$$
\left\{\begin{aligned}
x_{2} & =x_{4}=-\frac{n}{1-n^{2}} \\
x_{5} & =x_{6}=\frac{1}{1-n^{2}}
\end{aligned}\right.
$$

B). We study the case $x_{2} x_{4}=x_{5} x_{6}$.

B1). Let $x_{2} x_{4}=x_{5} x_{6} \neq 0$. The system (1.6) implies

$$
\left(1-n x_{2}-x_{5}\right)\left(1-n x_{4}-x_{6}\right)=\left(x_{2}+n x_{5}\right)\left(x_{4}+n x_{6}\right)
$$

We find the system

$$
\left\{\begin{array}{l}
n\left(x_{2}+x_{4}\right)+x_{5}+x_{6}=1 \\
x_{2} x_{4}=x_{5} x_{6} .
\end{array}\right.
$$

B2). Let $x_{2} x_{4}=x_{5} x_{6}=0$.
a) If $x_{2}=x_{5}=0$, then (1.5) becomes $\left\{\begin{array}{l}x_{4}\left(1-n x_{4}-x_{6}\right)=0 \\ x_{6}\left(1-n x_{4}-x_{6}\right)=0 .\end{array}\right.$ We get $x_{2}=$ $x_{4}=x_{5}=x_{6}=0$ or $\left\{\begin{array}{l}x_{2}=x_{5}=0 \\ 1=n x_{4}+x_{6} .\end{array}\right.$
b) If $x_{2}=x_{6}=0$, then (1.5) implies $\left\{\begin{array}{l}x_{5}\left(1-x_{5}-n x_{4}\right)=0 \\ x_{4}\left(1-x_{5}-n x_{4}\right)=0 .\end{array}\right.$ We find $x_{2}=x_{4}=$ $x_{5}=x_{6}=0$ or $\left\{\begin{array}{l}x_{2}=x_{6}=0 \\ 1=n x_{4}+x_{5} .\end{array}\right.$
c) If $x_{4}=x_{5}=0$, then (1.5) becomes $\left\{\begin{array}{l}x_{2}\left(1-n x_{2}-x_{6}\right)=0 \\ x_{6}\left(1-n x_{2}-x_{6}\right)=0 .\end{array}\right.$ Consequently $x_{2}=x_{4}=x_{5}=x_{6}=0$ or $\left\{\begin{array}{l}x_{4}=x_{5}=0 \\ 1=n x_{2}+x_{6} .\end{array}\right.$
d) If $x_{4}=x_{6}=0$, then (1.5) gives $\left\{\begin{array}{l}x_{2}\left(1-n x_{2}-x_{5}\right)=0 \\ x_{5}\left(1-n x_{2}-x_{5}\right)=0 .\end{array}\right.$ We get $x_{2}=x_{4}=$ $x_{5}=x_{6}=0$ or $\left\{\begin{array}{l}x_{4}=x_{6}=0 \\ 1=n x_{2}+x_{5} .\end{array}\right.$
II. The case $x_{1}=x_{3}=\frac{1}{2}$. From (1.1) we get

$$
\left\{\begin{array}{l}
n x_{2}^{2}+x_{2} x_{5}+\frac{1}{2} x_{5}+\frac{1}{2} x_{6}+x_{2} x_{6}+n x_{5} x_{6}=0 \tag{1.7}\\
n x_{4}^{2}+x_{4} x_{6}+\frac{1}{2} x_{5}+\frac{1}{2} x_{6}+x_{4} x_{6}+n x_{5} x_{6}=0 \\
\frac{1}{2} x_{2}+\frac{1}{2} x_{4}+x_{2} x_{4}+n x_{4} x_{5}+n x_{2} x_{5}+x_{5}^{2}=0 \\
\frac{1}{2} x_{2}+\frac{1}{2} x_{4}+x_{2} x_{4}+n x_{2} x_{6}+n x_{4} x_{6}+x_{6}^{2}=0
\end{array}\right.
$$

From the first two equations of the system (1.7) we obtain

$$
\left(x_{2}-x_{4}\right)\left[\left(x_{2}+x_{4}\right) n+x_{5}+x_{6}\right]=0
$$

From the last equations of the system (1.7) we obtain $\left(x_{5}-x_{6}\right)\left[\left(x_{2}+x_{4}\right) n+x_{5}+x_{6}\right]=0$.
Let

$$
\left\{\begin{array}{l}
x_{2}=x_{4} \\
x_{5}=x_{6}
\end{array}\right.
$$

From the first equation and the third equation of (1.7)

$$
\left\{\begin{array}{l}
n x_{2}^{2}+2 x_{2} x_{5}+x_{5}+n x_{5}^{2}=0 \\
x_{2}^{2}+2 n x_{2} x_{5}+x_{2}+x_{5}^{2}=0
\end{array}\right.
$$

we get $\left(x_{2}-x_{5}\right)\left[(n-1)\left(x_{2}-x_{5}\right)-1\right]=0$. If $x_{2}=x_{5}$, then $x_{2}\left[(2 n+2) x_{2}+1\right]=0$.
We obtain

$$
\left(1.8_{1}\right)\left\{\begin{array}{l}
x_{2}=x_{4}=0 \\
x_{5}=x_{6}=0
\end{array}\right.
$$

or

$$
\begin{equation*}
x_{2}=x_{4}=x_{5}=x_{6}=-\frac{1}{2(n+1)} \tag{2}
\end{equation*}
$$

If $x_{2}=x_{5}+\frac{1}{n-1}$, then we obtain the solution

$$
\left\{\begin{array} { l }
{ x _ { 2 } = x _ { 4 } = \frac { 1 } { 2 (n - 1) } } \\
{ x _ { 5 } = x _ { 6 } = \frac { 1 } { 2 (1 - n) } }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
x_{2}=x_{4}=\frac{1}{n^{2}-1} \\
x_{5}=x_{6}=\frac{n}{1-n^{2}}
\end{array}\right.\right.
$$

The system

$$
\left\{\begin{array}{l}
n\left(x_{2}+x_{4}\right)+x_{5}+x_{6}=0 \\
n x_{2}^{2}+x_{2} x_{5}+\frac{1}{2} x_{6}+\frac{1}{2} x_{5}+x_{2} x_{6}+n x_{5} x_{6}=0 \\
\frac{1}{2} x_{2}+\frac{1}{2} x_{4}+x_{2} x_{4}+n x_{4} x_{5}+n x_{2} x_{5}+x_{5}^{2}=0
\end{array}\right.
$$

is equivalent to

$$
\left\{\begin{array}{l}
n\left(x_{2}+x_{4}\right)+x_{5}+x_{6}=0 \\
x_{5} x_{6}=\frac{1}{2}\left(x_{2}+x_{4}\right)+x_{2} x_{4} .
\end{array}\right.
$$

Theorem 1.2. The solutions of the quadratic system (1.1) and hence the set of all projective projections P on $T_{2}^{1}(V)$ are given by
I.
a) $x_{1}=x_{2}=x_{3}=x_{4}=x_{5}=x_{6}=0$.
b) $x_{1}=0, x_{3}=0, x_{2}=x_{4}=\frac{n}{n^{2}-1}, x_{5}=x_{6}=\frac{1}{1-n^{2}}$;
c) $x_{1}=x_{3}=0, x_{2} x_{4}=x_{5} x_{6}, 1=n\left(x_{2}+x_{4}\right)+x_{5}+x_{6}$.

Introducing the parameters $x_{5}=\lambda, x_{6}=\mu$ and imposing the condition $\left(\frac{\lambda+\mu-1}{n}\right)^{2} \geq$ $4 \lambda \mu, \lambda, \mu \in \mathbf{R}$, the values $x_{2}=\alpha, x_{4}=\beta$ are solutions of the equation $z^{2}+\frac{1}{n}(\lambda+$ $\mu-1) z+\lambda \mu=0$.

The supplementary solutions for I are
\mathbf{I}^{\prime}.
a) $x_{1}=1, x_{3}=x_{2}=x_{4}=x_{5}=x_{6}=0$;
b) $x_{1}=1, x_{3}=0, x_{2}=x_{4}=\frac{n}{1-n^{2}}, x_{5}=x_{6}=\frac{1}{n^{2}-1}$;
c) $x_{1}=1, x_{3}=0, x_{2} x_{4}=x_{5} x_{6},-1=n\left(x_{2}+x_{4}\right)+x_{5}+x_{6}$.

Denoting $x_{5}=\lambda, x_{6}=\mu$, and imposing the condition $\left(\frac{\lambda+\mu+1}{n}\right)^{2} \geq$ $4 \lambda \mu, \lambda, \mu \in \mathbf{R}$, the values $x_{2}=\alpha, x_{4}=\beta$ are solutions of the equation $z^{2}+\frac{1}{n}(\lambda+$ $\mu+1) z+\lambda \mu=0$.
II.
a) $x_{1}=x_{3}=\frac{1}{2}, x_{2}=x_{4}=x_{5}=x_{6}=0$;
b) $x_{1}=x_{3}=\frac{1}{2}, x_{2}=x_{4}=x_{5}=x_{6}=-\frac{1}{2(n+1)}$;
c) $x_{1}=x_{3}=\frac{1}{2}, x_{2}=x_{4}=-x_{5}=-x_{6}=\frac{1}{2(n-1)}$;
d) $x_{1}=x_{3}=\frac{1}{2}, x_{2}=x_{4}=\frac{1}{n^{2}-1}, x_{5}=x_{6}=\frac{n}{1-n^{2}}$.
e) $x_{1}=x_{3}=\frac{1}{2}, n\left(x_{2}+x_{4}\right)+x_{5}+x_{6}=0, x_{5} x_{6}=\frac{1}{2}\left(x_{2}+x_{4}\right)+x_{2} x_{4}$.

With $x_{5}=\lambda, x_{6}=\mu,\left[\frac{1}{n}(\lambda+\mu)-1\right]^{2} \geq 1+4 \lambda \mu, \lambda, \mu \in \mathbf{R}$, the values $x_{2}=$ $\alpha, x_{4}=\beta$ are solutions of the equation $z^{2}+\frac{1}{n}(\lambda+\mu) z+\lambda \mu+\frac{1}{2 n}(\lambda+\mu)=0$.

The supplementary solutions for II are
II'
a) $x_{1}=-x_{3}=\frac{1}{2}, x_{2}=x_{4}=x_{5}=x_{6}=0$;
b) $x_{1}=-x_{3}=\frac{1}{2}, x_{2}=x_{4}=x_{5}=x_{6}=\frac{1}{2(n+1)}$;
c) $x_{1}=-x_{3}=\frac{1}{2}, x_{2}=x_{4}=-x_{5}=-x_{6}=\frac{1}{2(1-n)}$;
d) $x_{1}=-x_{3}=\frac{1}{2}, x_{2}=x_{4}=\frac{1}{1-n^{2}}, x_{5}=x_{6}=\frac{n}{n^{2}-1}$.
e) $x_{1}=-x_{3}=\frac{1}{2}, n\left(x_{2}+x_{4}\right)+x_{5}+x_{6}=0, x_{5} x_{6}=-\frac{1}{2}\left(x_{2}+x_{4}\right)+x_{2} x_{4}$.

With $x_{5}=\lambda, x_{6}=\mu, \quad\left[\frac{1}{n}(\lambda+\mu)+1\right]^{2} \geq 1+4 \lambda \mu, \lambda, \mu \in \mathbf{R}$, the values $x_{2}=$ $\alpha, x_{4}=\beta$ are solutions of the equation $z^{2}+\frac{1}{n}(\lambda+\mu) z+\lambda \mu-\frac{1}{2 n}(\lambda+\mu)=0$.

The images of a (1,2)-tensor by the precedent projections are obvious and contain the following generalizations of the results of Krupka [4].
Theorem 1.3. Let $T=\left(T_{b c}^{a}\right) \in T_{2}^{1}(V)$. There exists an infinity of projective projections $P=\left(\begin{array}{ll}P_{a}^{b c} & r\end{array}\right)$ such that $\Omega=P T=\left(P_{a}^{b c} \begin{array}{l}r \\ \text { rt }\end{array} T_{b c}^{a}\right)$ is a traceless tensor (i.e. $\left.\Omega_{s t}^{s}=\Omega_{t s}^{s}=0\right)$.
I. $T_{a t}^{a}=0$.

1) $\Omega=0$ for $x_{1}=x_{3}=x_{4}=x_{5}=0, n x_{2}+x_{6}=1$;
2) $\Omega_{s t}^{r}=T_{s t}^{r}-\frac{1}{1-n^{2}}\left(T_{t a}^{a} \delta_{s}^{r}-n T_{s a}^{a} \delta_{t}^{r}\right)$ for
$x_{1}=1, x_{3}=0, x_{6}+n x_{2}=0, x_{4}=\frac{n}{1-n^{2}}, x_{5}=\frac{1}{n^{2}-1} ;$
3) $\Omega_{s t}^{r}=\frac{1}{2}\left(T_{s t}^{r}+T_{t s}^{r}\right)+\delta_{s}^{r} x_{5} T_{t a}^{a}-\delta_{t}^{r} T_{s a}^{a}\left(\frac{1}{2}+n x_{5}\right)$, for $x_{1}=x_{3}=\frac{1}{2}, \frac{1}{2}+x_{4}+n x_{5}=$
$0, n\left(x_{2}+x_{4}\right)+x_{5}+x_{6}=0, x_{5} x_{6}=\frac{1}{2}\left(x_{2}+x_{4}\right)+x_{2} x_{4}, \frac{1}{2}+x_{6}+n x_{2} \neq 0 ;$
4) $\Omega_{s t}^{r}=\frac{1}{2}\left(T_{s t}^{r}-T_{t s}^{r}\right)+x_{5} \delta_{s}^{r} T_{t a}^{a}+\left(\frac{1}{2}-n x_{5}\right) \delta_{t}^{r} T_{s a}^{a}$, for $x_{1}=-x_{3}=\frac{1}{2} ;-\frac{1}{2}+x_{4}+n x_{5}=$ $0, n\left(x_{2}+x_{4}\right)+x_{5}+x_{6}=0, x_{5} x_{6}=-\frac{1}{2}\left(x_{2}+x_{4}\right)+x_{2} x_{4}, \frac{1}{2}+x_{6}+n x_{2} \neq 0$.
II. $T_{a t}^{a}=T_{t a}^{a}=0$.
5) $\Omega=T$, for $x_{1}=1, x_{2}=x_{3}=x_{4}=x_{5}=x_{6}=0$;
6) $\Omega=0$, for $x_{1}=x_{3}=0, x_{2}=x_{4}=\frac{n}{n^{2}-1}, x_{5}=x_{6}=\frac{1}{1-n^{2}}$;
7) $\Omega_{s t}^{r}=\frac{1}{2}\left(T_{s t}^{r}+T_{t s}^{r}\right)$, for $x_{1}=x_{3}=\frac{1}{2}, x_{2}=x_{4}=-x_{5}=-x_{6}=\frac{1}{2(n-1)}$;
8) $\Omega_{s t}^{r}=\frac{1}{2}\left(T_{s t}^{r}-T_{t s}^{r}\right)$, for $x_{1}=-x_{3}=\frac{1}{2}, x_{2}=x_{4}=x_{5}=x_{6}=\frac{1}{2(n+1)}$.
III. $T_{a t}^{a}=-T_{t a}^{a}$.
9) $\Omega_{s t}^{r}=\frac{1}{2}\left(T_{s t}^{r}+T_{t s}^{r}\right)$, for $x_{1}=x_{3}=\frac{1}{2}, x_{2}=x_{4}=x_{5}=x_{6}=0$;
10) $\Omega_{s t}^{r}=\frac{1}{2}\left(T_{s t}^{r}-T_{t s}^{r}\right)+\frac{1}{1-n}\left(\delta_{s}^{r} T_{a t}^{a}-\delta_{t}^{r} T_{a s}^{a}\right)$, for $x_{1}=-x_{3}=\frac{1}{2}, x_{5}=x_{6}=$ $\frac{n}{n^{2}-1}, x_{2}=x_{4}=\frac{1}{1-n^{2}}$.
IV. $T_{a t}^{a}=T_{t a}^{a}$.
11) $\Omega_{s t}^{r}=\frac{1}{2}\left(T_{s t}^{r}+T_{t s}^{r}\right)-\frac{1}{n+1}\left(\delta_{s}^{r} T_{a t}^{a}+\delta_{t}^{r} T_{a s}^{a}\right)$, for $x_{1}=x_{3}=\frac{1}{2}, x_{2}=x_{4}=$ $\frac{1}{n^{2}-1}, x_{5}=x_{6}=\frac{n}{1-n^{2}}$;
12) $\Omega_{s t}^{r}=\frac{1}{2}\left(T_{s t}^{r}-T_{t s}^{r}\right)$, for
a) $x_{1}=-x_{3}=\frac{1}{2}, x_{2}=x_{4}=x_{5}=x_{6}=0$;
b) $x_{1}=-x_{3}=\frac{1}{2}, x_{2}=x_{4}=-x_{5}=-x_{6}=\frac{1}{2(1-n)}$;
V. $T_{t a}^{a}=-\frac{x_{6}+n x_{2}}{x_{4}+n x_{5}} T_{a t}^{a} \Rightarrow \Omega=0$, for

$$
x_{4} \neq-n x_{5} \quad x_{2} x_{4}=x_{5} x_{6}, 1=n\left(x_{2}+x_{4}\right)+x_{5}+x_{6} .
$$

VI.

$$
T_{t a}^{a}=-\frac{1+x_{6}+n x_{2}}{x_{4}+n x_{5}} T_{a t}^{a} \Rightarrow \Omega_{s t}^{r}=T_{s t}^{r}-\frac{x_{4}}{x_{4}+n x_{5}} T_{a s}^{a} \delta_{t}^{r}-\frac{x_{5}}{x_{4}+n x_{5}} T_{a t}^{a} \delta_{s}^{r}
$$

for

$$
x_{4} \neq-n x_{5}, x_{2} x_{4}=x_{5} x_{6},-1=n\left(x_{2}+x_{4}\right)+x_{5}+x_{6} .
$$

VII.

$$
\begin{gathered}
T_{t a}^{a}=-\frac{1+2 x_{6}+2 n x_{2}}{1+2 x_{4}+2 n x_{5}} T_{a t}^{a} \\
\Omega_{s t}^{r}=\frac{1}{2}\left(T_{s t}^{r}+T_{t s}^{r}\right)+\frac{x_{6}+x_{2}}{1+2 x_{4}+2 n x_{5}} T_{a s}^{a} \delta_{t}^{r}-\frac{x_{4}+x_{5}}{1+2 x_{4}+2 n x_{5}} T_{a t}^{a} \delta_{s}^{r}
\end{gathered}
$$

for
$x_{1}=x_{3}=\frac{1}{2}, n\left(x_{2}+x_{4}\right)+x_{5}+x_{6}=0, x_{5} x_{6}=\frac{1}{2}\left(x_{2}+x_{4}\right)+x_{2} x_{4}, x_{4}+n x_{5} \neq-\frac{1}{2}$.
VIII.

$$
\begin{gathered}
T_{t a}^{a}=-\frac{1+2 x_{6}+2 n x_{2}}{1+2 x_{4}+2 n x_{5}} T_{a t}^{a} \\
\Omega_{s t}^{r}=\frac{1}{2}\left(T_{s t}^{r}-T_{t s}^{r}\right)+\frac{x_{4}-x_{5}}{-1+2 x_{4}+2 n x_{5}}\left(T_{a t}^{a} \delta_{s}^{r}-T_{a s}^{a} \delta_{t}^{r}\right),
\end{gathered}
$$

for
$x_{1}=\frac{1}{2}, x_{3}=-\frac{1}{2}, n\left(x_{2}+x_{4}\right)+x_{5}+x_{6}=0, x_{5} x_{6}=-\frac{1}{2}\left(x_{2}+x_{4}\right)+x_{2} x_{4}, x_{4}+n x_{5} \neq \frac{1}{2}$.
IX. For any T having arbitrary traces one gets

1) $\Omega_{s t}^{r}=T_{s t}^{r}+\frac{1}{n^{2}-1}\left[\delta_{s}^{r}\left(-n T_{a t}^{a}+T_{t a}^{a}\right)+\delta_{t}^{r}\left(T_{a s}^{a}-n T_{s a}^{a}\right]\right.$, for

$$
x_{1}=1, x_{3}=0, x_{2}=x_{4}=\frac{n}{1-n^{2}}, x_{5}=x_{6}=\frac{1}{n^{2}-1} .
$$

2) $\Omega_{s t}^{r}=\delta_{s}^{r}\left(x_{2} T_{a t}^{a}+\frac{1}{1-n^{2}} T_{t a}^{a}\right)+\delta_{t}^{r}\left(-n x_{2} T_{a s}^{a}+\frac{n}{1-n^{2}} T_{s a}^{a}\right)$, for

$$
x_{1}=x_{3}=0, x_{5}=\frac{1}{1-n^{2}}, x_{4}=\frac{n}{n^{2}-1}, x_{6}=-n x_{2}
$$

3) $\Omega=0$, for $x_{1}=x_{2}=x_{3}=x_{4}=x_{5}=x_{6}=0$;
4) $\Omega_{s t}^{r}=T_{s t}^{r}+\delta_{s}^{r} x_{2} T_{a t}^{a}-\delta_{t}^{r}\left(1+n x_{2}\right) T_{a s}^{a}$, for $x_{1}=1, x_{3}=x_{4}=x_{5}=0, n x_{2}+x_{6}+1=$
$0 ;$
5) $\Omega_{s t}^{r}=\frac{1}{2}\left(T_{s t}^{r}+T_{t s}^{r}\right)-\frac{1}{2(n+1)}\left(T_{a t}^{a}+T_{t a}^{a}\right)\left(\delta_{s}^{r}+\delta_{t}^{r}\right)$, for

$$
x_{1}=x_{3}=\frac{1}{2}, x_{2}=x_{4}=x_{5}=x_{6}=-\frac{1}{2(n+1)}
$$

6) $\Omega_{s t}^{r}=\frac{1}{2}\left(T_{s t}^{r}+T_{t s}^{r}\right)+\delta_{s}^{r}\left[x_{2} T_{a t}^{a}+\frac{1}{2(1-n)} T_{t a}^{a}\right]+\delta_{t}^{r}\left[-\left(\frac{1}{2}+n x_{2}\right) T_{a s}^{a}+\frac{1}{2(n-1)} T_{s a}^{a}\right]$, for

$$
x_{1}=x_{3}=\frac{1}{2}, n x_{2}+x_{6}+\frac{1}{2}=0, x_{4}=-x_{5}=\frac{1}{2(n-1)}
$$

7) $\Omega_{s t}^{r}=\frac{1}{2}\left(T_{s t}^{r}+T_{t s}^{r}\right)+\delta_{s}^{r}\left[x_{2} T_{a t}^{a}+\frac{1}{2(1+n)} T_{t a}^{a}\right]+\delta_{t}^{r}\left[-\left(\frac{1}{2}+n x_{2}\right) T_{a s}^{a}+\frac{1}{2(n+1)} T_{s a}^{a}\right]$,
for

$$
x_{1}=-x_{3}=\frac{1}{2}, x_{6}=-n x_{2}-\frac{1}{2}, x_{4}=x_{5}=\frac{1}{2(n+1)}
$$

8) $\Omega_{s t}^{r}=T_{s t}^{r}+\delta_{s}^{r}\left(\frac{n}{1-n^{2}} T_{a t}^{a}-n x_{4} T_{t a}^{a}\right)++\delta_{t}^{r}\left(\frac{1}{n^{2}-1} T_{a s}^{a}+x_{4} T_{t a}^{a}\right)$, for

$$
x_{1}=1, x_{3}=0, x_{2}=\frac{n}{1-n^{2}}, x_{6}=\frac{1}{n^{2}-1}, x_{5}=-n x_{4}
$$

9) $\left.\Omega_{s t}^{r}=T_{s t}^{r}+\delta_{s}^{r}\left(1-n x_{4}\right) T_{a t}^{a}++\delta_{t}^{r} x_{4} T_{t a}^{a}\right)$, for

$$
x_{1}=x_{3}=0, x_{2}=x_{6}=0, x_{5}=1-n x_{4}
$$

Proof. Ω is a traceless tensor iff

$$
\left\{\begin{array}{l}
\left(x_{1}+x_{6}+n x_{2}\right) T_{a t}^{a}+\left(x_{3}+x_{4}+n x_{5}\right) T_{t a}^{a}=0 \tag{1.9}\\
\left(x_{1}+n x_{4}+x_{5}\right) T_{t a}^{a}+\left(x_{3}+n x_{6}+x_{2}\right) T_{a t}^{a}=0
\end{array}\right.
$$

This system with the unknowns $T_{a t}^{a}, T_{t a}^{a}$ is compatible. We study all the cases of the theorem 1.2.
\mathbf{I}^{\prime} a) The system (1.9) is equivalent to $T_{a t}^{a}=T_{t a}^{a}=0$. We get II, 1);
b) We obtain the case IX, 1);
c) 1) $x_{4}=-n x_{5}$.
1.1. $1+x_{6}+n x_{2}=0$. In this case we find IX, 4) and 8);
1.2. $T_{a t}^{a}=0$ and $1+x_{6}+n x_{2} \neq 0$. We get I, 2).
2) If $x_{4} \neq-n x_{5}$ we obtain VI.
I. a) We get IX, 3);
b) The system (1.9) is equivalent to $T_{t a}^{a}=T_{a t}^{a}=0$. We get II, 2);
c) 1) If $x_{4}+n x_{5} \neq 0$, then we obtain V.;
2) $x_{4}+n x_{5}=0$. If $T_{a t}^{a}=0$ and $x_{6}+n x_{2} \neq 0$, then we get I, 1).

If $x_{6}+n x_{2}=0$, then we arrive at IX, 2) and 9).
II. a) The system becomes $T_{t a}^{a}+T_{a t}^{a}=0$. We obtain III, 1);
b) (1.9) is identic satisfied and we have IX, 5);
c) (1.9) is equivalent with $T_{t a}^{a}=T_{a t}^{a}=0$. We get II, 3);
d) (1.9) becomes $T_{t a}^{a}=T_{a t}^{a}$ and we obtain IV, 1)
e) 1) $\frac{1}{2}+x_{4}+n x_{5}=0$. We get I, 3) for $T_{a t}^{a}=0$ and IX, 6) for $\frac{1}{2}+x_{6}+n x_{2}=0$.
2) If $\frac{1}{2}+x_{4}+n x_{5} \neq 0$, then we find VII.
$\mathbf{I I}^{\prime}$. a) The system (1.9) is equivalent to $T_{t a}^{a}=T_{a t}^{a}$. We get the case IV, 2), a);
b) (1.9) becomes $T_{t a}^{a}=T_{a t}^{a}=0$. We have the case II, 4);
c) (1.9) is equivalent with $T_{t a}^{a}=T_{a t}^{a}$. We get the case IV, 2), b);
d) (1.9) becomes $T_{t a}^{a}=-T_{a t}^{a}$. We get the case III, 2);
e) 1) $x_{4}+n x_{5}=\frac{1}{2}$;
1.1. If $T_{a t}^{a}=0$, we get I, 4);
1.2. If $x_{6}+n x_{2}=-\frac{1}{2}$, then we get the case IX, 7);
2) If $x_{4}+n x_{5} \neq-\frac{1}{2}$, we get VIII.

Remark 1.1. a) If T is a traceless tensor, then $\Omega=P T$ is a traceless tensor, for any projective projection P.
b) The theorem " Let V be a real n-dimensional vector space, where $n \geq 2$ and let $A=\left(A_{k l}^{i}\right) \in T_{2}^{1}(V)$. Then there exist a unique traceless tensor $B=\left(B_{k l}^{i}\right) \in T_{2}^{1}(V)$ and unique 1-forms $C=\left(C_{k}\right), D=\left(D_{k}\right) \in \Lambda^{1}(V)$, such that $A_{k l}^{i}=B_{k l}^{i}+\delta_{l}^{i} D_{k}+\delta_{k}^{i} C_{l}$, where

$$
\begin{aligned}
C_{l} & =\frac{1}{n^{2}-1}\left(n A_{t l}^{t}-A_{l t}^{t}, D_{k}=\frac{1}{n^{2}-1}\left(-A_{t k}^{t}+n A_{k t}^{t}\right),\right. \\
B_{k l}^{i} & =A_{k l}^{i}-\frac{1}{n^{2}-1}\left[\delta_{k}^{i}\left(n A_{t l}^{t}-A_{l t}^{t}\right)+\delta_{l}^{i}\left(-A_{t k}^{t}+n A_{k t}^{t}\right)\right],
\end{aligned}
$$

proved by Krupka in [4], is a particular case of ours (IX, 1). Its trace decomposition problem corresponds to the case $x_{1}=1, x_{3}=0$ for our projective projections.

2 Family of projective projections on affine connections

Let M be a differentiable n-dimensional manifold and $\mathcal{T}_{2}^{1} M$ be the bundle of (1,2)tensor fields over M. The previous projection P extends to a global projection field
on $\mathcal{T}_{2}^{1} M$ denoted also by P whose extended coefficients x_{1}, \ldots, x_{6} are scalar fields. Some of the scalar fields x_{1}, \ldots, x_{6} are arbitrary functions, others depend on the these arbitrary functions, and some of them are constant functions.

Denote with $\mathcal{A}_{2}^{1}(M)$ the set of all geometrical objects of type $(1,2)$ whose difference is a $(1,2)$-tensor field. The set $\mathcal{A}_{2}^{1}(M)$ is an affine vector space modelled on the vector space $\mathcal{T}_{2}^{1}(M)$. Obviously, the set \mathcal{C} of all affine connections on M and $\mathcal{T}_{2}^{1}(M)$ are affine subspaces of $\mathcal{A}_{2}^{1}(M)$. Any projection on $\mathcal{T}_{2}^{1}(M)$ induces a projection on $\mathcal{A}_{2}^{1}(M)$.

Let $\Gamma=\left\{\Gamma_{j k}^{i}\right\}$ be an affine connection on M. The projective projections P of Theorem 1.2 work on \mathcal{C} by the rule $\Pi=P \Gamma=\left(P_{a}^{b c r} s t \Gamma_{b c}^{a}\right)$. They produce almost projective connections Π iff $x_{1}+x_{3}=1$. Otherwise $\left(x_{1}+x_{3}=0\right)$, the image $P(\mathcal{C})$ consists of geometrical objects fields Π of type (1,2) which are not connections; particularly the torsion tensor $\frac{1}{2}\left(\Gamma_{j k}^{i}-\Gamma_{k j}^{i}\right)$ is the image of Γ by the projective projection P having the coefficients

$$
x_{1}=\frac{1}{2}, x_{3}=-\frac{1}{2}, x_{2}=x_{4}=x_{5}=x_{6}=0
$$

Theorem 2.1. Let $x_{1}=1, x_{3}=0$. The images of the projective projections P on \mathcal{C} consist of the almost projective connections

$$
\Pi_{s t}^{r}=\Gamma_{s t}^{r}+\delta_{s}^{r} \psi_{t}+\delta_{t}^{r} \varphi_{s}
$$

where φ_{s} and ψ_{t} are defined by
a) For $x_{2}=x_{4}=x_{5}=x_{6}=0, \psi_{t}=\varphi_{t}=0$;
b) For $x_{2}=-x_{4} \frac{n}{1-n^{2}}, x_{5}=x_{6}=\frac{1}{n^{2}-1}$,

$$
\psi_{t}=\frac{1}{n^{2}-1}\left(-n \Gamma_{a t}^{a}+\Gamma_{t a}^{a}\right), \varphi_{s}=\frac{1}{n^{2}-1}\left(\Gamma_{a s}^{a}-n \Gamma_{s a}^{a}\right) ;
$$

c) $x_{5}=\lambda, x_{6}=\mu,\left(\frac{\lambda+\mu+1}{n}\right)^{2} \geq 4 \lambda \mu, \lambda, \mu \in \mathbf{R}, x_{2}=\alpha, x_{4}=\beta$ solutions of the equation $z^{2}+\frac{1}{n}(\lambda+\mu+1) z+\lambda \mu=0$,

$$
\psi_{t}=\alpha \Gamma_{a t}^{a}+\lambda \Gamma_{t a}^{a}, \varphi_{s}=\beta \Gamma_{s a}^{a}+\mu \Gamma_{a s}^{a} .
$$

Remark. The geometrical objects φ_{s} and ψ_{t} are not 1-forms.
Corollary 2.1. Let $x_{1}=1, x_{3}=0$ and P the corresponding projective projections acting on symmetric affine connections. The images of P consist of the almost projective connections

$$
\Pi_{s t}^{r}=\Gamma_{s t}^{r}+\delta_{s}^{r} \psi_{t}+\delta_{t}^{r} \varphi_{s}
$$

where ψ_{t} and φ_{s} are related to $\Gamma_{t}=\Gamma_{a t}^{a}$ in the following ways:
Case b) $\Rightarrow \psi_{t}=\varphi_{t}=-\frac{1}{n+1} \Gamma_{t}$.
Case a) $\Rightarrow \psi_{s}=\varphi_{s}=0$.
Case c) $\Rightarrow \psi_{t}=(\alpha+\lambda) \Gamma_{t}, \varphi_{s}=(\beta+\mu) \Gamma_{s}$.
In particular, for the case c) with $\alpha+\lambda=\beta+\mu=-\frac{1}{n+1}$ and for the case b) we find the Thomas projective connection [11]

$$
\Pi_{s t}^{r}=\Gamma_{s t}^{r}-\frac{1}{n+1}\left(\delta_{s}^{r} \Gamma_{t}+\delta_{t}^{r} \Gamma_{s}\right)
$$

corresponding to the projection

$$
P_{a}^{b c} \underset{s t}{r}=\delta_{a}^{r} \delta_{s}^{b} \delta_{t}^{c}-\frac{1}{n+1} \delta_{a}^{b} \delta_{s}^{r} \delta_{t}^{c}-\frac{1}{n+1} \delta_{a}^{b} \delta_{s}^{c} \delta_{t}^{r}
$$

Theorem 2.1'. Let $x_{1}=x_{3}=0$. The images of the projective projections P on \mathcal{C} consist of the objects of type $(1,2)$

$$
\Pi_{s t}^{r}=\delta_{s}^{r} \psi_{t}+\delta_{t}^{r} \varphi_{s}
$$

where φ_{s} and ψ_{t} are defined by
a) for $x_{2}=x_{5}=x_{4}=x_{6}=0$,

$$
\psi_{t}=\varphi_{t}=0
$$

b) for $x_{2}=x_{4}=\frac{n}{n^{2}-1}, x_{5}=x_{6}=\frac{1}{1-n^{2}}$,

$$
\psi_{t}=\frac{1}{n^{2}-1}\left(n \Gamma_{a t}^{a}-\Gamma_{t a}^{a}\right), \varphi_{s}=\frac{1}{n^{2}-1}\left(n \Gamma_{s a}^{a}-\Gamma_{a s}^{a}\right) ;
$$

c) for $x_{5}=-\lambda, x_{6}=-\mu,\left(\frac{1-\lambda-\mu}{n}\right)^{2} \geq 4 \lambda \mu, \lambda, \mu \in \mathbf{R}, x_{2}=-\alpha, x_{4}=-\beta$
solutions of the equation $z^{2}-\frac{1}{n}(1-\lambda-\mu) z+\lambda \mu=0$,

$$
\psi_{t}=-\alpha \Gamma_{a t}^{a}-\lambda \Gamma_{t a}^{a}, \psi_{s}=-\beta \Gamma_{s a}^{a}-\mu \Gamma_{a s}^{a} .
$$

Theorem 2.2. Let $x_{1}=x_{3}=\frac{1}{2}$. The images of the projective projections P on \mathcal{C} consist of the almost projective connections

$$
\Pi_{s t}^{r}=\frac{1}{2}\left(\Gamma_{s t}^{r}+\Gamma_{t s}^{r}\right)+\delta_{s}^{r} \psi_{t}+\delta_{t}^{r} \varphi_{s}
$$

where φ_{s} and ψ_{t} are defined by
a) for $x_{2}=x_{4}=x_{5}=x_{6}=0, \psi_{t}=\varphi_{t}=0$;
b) for $x_{2}=x_{4}=x_{5}=x_{6}=-\frac{1}{2(n+1)}, \psi_{t}=\varphi_{t}=-\frac{1}{2(n+1)}\left(\Gamma_{a t}^{a}+\Gamma_{t a}^{a}\right)$;
c) for $x_{2}=x_{4}=-x_{5}=-x_{6}=\frac{1}{2(n-1)}$,

$$
\psi_{t}=-\varphi_{t}=\frac{1}{2(n-1)}\left(\Gamma_{a t}^{a}-\Gamma_{t a}^{a}\right) ;
$$

d) for $x_{2}=x_{4}=\frac{1}{n^{2}-1}, x_{5}=x_{6}=\frac{n}{1-n^{2}}$,

$$
\psi_{t}=\frac{1}{n^{2}-1}\left(\Gamma_{a t}^{a}-n \Gamma_{t a}^{a}\right), \varphi_{s}=\frac{1}{n^{2}-1}\left(\Gamma_{s a}^{a}-n \Gamma_{a s}^{a}\right) ;
$$

e) for $x_{5}=\lambda, x_{6}=\mu,\left[\frac{1}{n}(\lambda+\mu)-1\right]^{2} \geq 1+4 \lambda \mu, \quad \lambda, \mu \in \mathbf{R}, x_{2}=\alpha, x_{4}=\beta$ solutions of the equation $z^{2}+\frac{1}{n}(\lambda+\mu) z+\lambda \mu+\frac{1}{2 n}(\lambda+\mu)=0$,

$$
\psi_{t}=\alpha \Gamma_{a t}^{a}+\lambda \Gamma_{t a}^{a}, \quad \varphi_{s}=\beta \Gamma_{s a}^{a}+\mu \Gamma_{a s}^{a} .
$$

Corollary 2.2. Let $x_{1}=x_{3}=\frac{1}{2}$ and P the corresponding projective projections working on symmetric connections. The images of P consist of the next almost projective connections
a) $x_{2}=x_{4}=x_{5}=x_{6}=0 \Rightarrow \Pi_{s t}^{r}=\Gamma_{s t}^{r}$
b) $x_{2}=x_{4}=x_{5}=x_{6}=-\frac{1}{2(n+1)} \Rightarrow \Pi_{s t}^{r}=\Gamma_{s t}^{r}-\frac{1}{n+1}\left(\delta_{s}^{r} \Gamma_{t}+\delta_{t}^{r} \Gamma_{s}\right)$
c) $x_{2}=x_{4}=-x_{5}=-x_{6}=\frac{1}{2(n-1)} \Rightarrow \Pi_{s t}^{r}=\Gamma_{s t}^{r}$;
d) $x_{2}=x_{4}=\frac{1}{n^{2}-1}, x_{5}=x_{6}=\frac{n}{1-n^{2}} \Rightarrow \Pi_{s t}^{r}=\Gamma_{s t}^{r}-\frac{1}{n+1}\left(\delta_{s}^{r} \Gamma_{t}+\delta_{t}^{r} \Gamma_{s}\right)$.
e) $x_{5}=\lambda, x_{6}=\mu, x_{2}=\alpha, x_{4}=\beta, \quad \alpha, \beta, \lambda, \mu \in \mathbf{R}$, satisfying

$$
\begin{gathered}
n(\alpha+\beta)+\lambda+\mu=0, \quad \lambda \mu=-\frac{1}{2}(\alpha+\beta)+\alpha \beta \Rightarrow \\
\left.\Rightarrow \Pi_{s t}^{r}=\Gamma_{s t}^{r}+\delta_{s}^{r}(\lambda+\alpha) \Gamma_{t}+\delta_{t}^{r}(\beta+\mu) \Gamma_{s}\right) .
\end{gathered}
$$

Remark 2.1. In particular, the case e) $\lambda+\alpha=\beta+\mu=-\frac{1}{n+1}$ and the cases b) and d) produce the Thomas projective connection.
Theorem 2.2'. Let $x_{1}=\frac{1}{2}, x_{3}=-\frac{1}{2}$. The images of the projective projections P on \mathcal{C} consist of the objects of type $(1,2)$

$$
\Pi_{s t}^{r}=\frac{1}{2}\left(\Gamma_{s t}^{r}-\Gamma_{t s}^{r}\right)+\delta_{s}^{r} \psi_{t}+\delta_{t}^{r} \varphi_{s}
$$

where φ_{s} and ψ_{t} are defined by:
a) for $x_{2}=x_{4}=0, x_{5}=x_{6}=0, \psi_{t}=\varphi_{t}=0$;
b) for $x_{2}=x_{4}=x_{5}=x_{6}=\frac{1}{2(n+1)}, \varphi_{t}=\psi_{t}=\frac{1}{2(n+1)}\left(\Gamma_{a t}^{a}+\Gamma_{t a}^{a}\right)$;
c) for $x_{2}=x_{4}=-x_{5}=-x_{6}=\frac{1}{2(1-n)}$,

$$
\psi_{t}=-\varphi_{t}=\frac{1}{2(1-n)}\left(\Gamma_{a t}^{a}-\Gamma_{t a}^{a}\right)
$$

d) for $x_{2}=x_{4}=\frac{1}{1-n^{2}}, x_{5}=x_{6}=\frac{n}{n^{2}-1}$,

$$
\psi_{t}=\frac{1}{1-n^{2}}\left(\Gamma_{a t}^{a}-n \Gamma_{t a}^{a}\right), \varphi_{s}=\frac{1}{1-n^{2}}\left(\Gamma_{s a}^{a}-n \Gamma_{a s}^{a}\right)
$$

e) for $x_{5}=-\lambda, x_{6}=-\mu,\left[\frac{1}{n}(\lambda+\mu)+1\right]^{2} \geq 1+4 \lambda \mu, \lambda, \mu \in \mathbf{R}, x_{2}=-\lambda, x_{4}=$ $-\beta$ solutions of the equations $z^{2}+\frac{1}{n}(\lambda+\mu) z-\frac{1}{2 n}(\lambda+\mu)+\lambda \mu=0$,

$$
\psi_{t}=-\alpha \Gamma_{a t}^{a}-\lambda \Gamma_{t a}^{a}, \varphi_{s}=-\beta \Gamma_{s a}^{a}-\mu \Gamma_{a s}^{a} .
$$

3 Almost projective transformations of connections

Let M be a finite dimensional differentiable manifold endowed with the affine connection Γ. The class $\bar{\Gamma}$ of the almost projective transformations (apt) of the connection Γ is defined by [3], [9]

$$
\bar{\Gamma}=\Gamma+\eta \otimes I+I \otimes \xi
$$

where $\eta, \xi \in \wedge^{1}(M)$.
Theorem 3.1. For each connection Γ and each projective projection P in Theorems 2.1, 2.2, 2.1', 2.2' there exists a class of connections $\bar{\Gamma}$ satisfying the commutative diagram

where $\Pi=P \Gamma, \bar{\Pi}=P \bar{\Gamma}$. This diagram reflects also the invariance of Π with respect to $\bar{\Gamma}$ (the gauge invariance of Π with respect to the projective group).
Proof. We fix a projective projection $P=\left(P_{a}^{b c} \begin{array}{l}r \\ \text { r }\end{array}\right)$ by $\left(x_{1}, \ldots, x_{6}\right)$. Since

$$
\bar{\Gamma}_{b c}^{a}=\Gamma_{b c}^{a}+\eta_{b} \delta_{c}^{a}+\xi_{c} \delta_{b}^{a}
$$

it is enough to prove that there exist the 1-forms $\eta=\left(\eta_{b}\right), \xi=\left(\xi_{c}\right)$ such that

$$
\begin{gathered}
P_{a s t}^{b c r}\left(\eta_{b} \delta_{c}^{a}+\xi_{c} \delta_{b}^{a}\right)=\left[\left(x_{1}+n x_{4}+x_{6}\right) \eta_{s}+\left(x_{3}+x_{4}+n x_{6}\right) \xi_{s}\right] \delta_{t}^{r}+ \\
+\left[\left(x_{2}+x_{3}+n x_{5}\right) \eta_{t}+\left(x_{1}+n x_{2}+x_{5}\right) \xi_{t}\right] \delta_{s}^{r}=0 .
\end{gathered}
$$

This condition is equivalent to the linear system

$$
\left\{\begin{array}{l}
\left(x_{1}+n x_{4}+x_{6}\right) \eta_{s}+\left(x_{3}+x_{4}+n x_{6}\right) \xi_{s}=0 \\
\left(x_{2}+x_{3}+n x_{5}\right) \eta_{s}+\left(x_{1}+n x_{2}+x_{5}\right) \xi_{s}=0
\end{array}\right.
$$

with $2 n$ unknows $\left(\eta_{1}, \ldots, \eta_{n}, \xi_{1}, \ldots, \xi_{n}\right)$ and with $2 n$ equations. The determinant of the matrix of this linear system is

$$
\Delta=-\left[\left(x_{1}+n x_{4}+x_{6}\right)\left(x_{1}+n x_{2}+x_{5}\right)-\left(x_{2}+x_{3}+n x_{5}\right)\left(x_{3}+x_{4}+n x_{6}\right)\right]^{n}
$$

For each $\left(x_{1}, \ldots, x_{6}\right)$ in Theorems $2.1,2.2,2.1^{\prime}, 2.2^{\prime}$ one proves that Δ is as a rule zero, excepting few cases in which $\Delta \neq 0$. In other words the preceding linear system is as a rule compatible undetermined, excepting few cases in which $\eta=0, \xi=0$.

In the sequel we suppose that Γ is a symmetric connection, and we identify the connection Γ with the induced covariant derivative ∇. The class of the almost projective transformations of ∇ is characterized by

$$
\bar{\nabla}_{X} Y=\nabla_{X} Y+\eta(X) Y+\xi(Y) X, \quad \forall X, Y \in \mathcal{X}(M), \quad \eta, \xi \in \wedge^{1}(M)
$$

The curvature tensor fields \bar{R} of $\bar{\nabla}$ and R of ∇ are related by

$$
\bar{R}(X, Y) Z=R(X, Y) Z-C(Y, Z) X+C(X, Z) Y+d \eta(X, Y) Z
$$

where

$$
C(X, Y)=\left(\nabla_{X} \xi\right)(Y)-\xi(X) \xi(Y)
$$

Let (M, g) be a Riemannian space. Denote by $g_{i j}$ the components of the metric g, and by $R_{i j k l}$ the components of the curvature tensor field. Introduce the symbols $R \cdot R$ and $Q(g, R)$ by

$$
\begin{align*}
& (R \cdot R)_{h i j k l m}=-R_{h l m}^{s} R_{s i j k}-R_{i l m}^{s} R_{h s j k}-R_{j l m}^{s} R_{h i s k}-R_{k l m}^{s} R_{h i j s} \\
& Q(g, R)_{h i j k l m}=-g_{m h} R_{l i j k}+g_{h l} R_{m i j k}-g_{m i} R_{h l j k}+g_{i l} R_{h m j k}- \tag{3.1}\\
& -g_{j m} R_{h i l k}+g_{j l} R_{h i m k}-g_{k m} R_{h i j l}+g_{k l} R_{h i j m}
\end{align*}
$$

Pseudo-symmetric manifolds [2], i.e., Riemannian spaces (M, g) for which the fields (*) $R \cdot R, Q(g, R)$ are linearly dependent at every point of the manifold, constitute a generalization of spaces of constant sectional curvature, along the line of locally symmetric and semi-symmetric spaces $R \cdot R=0$, studied by Szabo in [8]), consecutively.

The linear dependence of the fields $(*)$ is equivalent to

$$
\begin{equation*}
R \cdot R=L Q(g, R) \quad \text { on } \quad U=\{x \in M \mid R \neq R(1) \quad \text { at } \quad x\}, \tag{**}
\end{equation*}
$$

where

$$
R(1)_{h i j k}=\frac{k}{n(n-1)}\left(-g_{i k} g_{j h}+g_{i j} g_{k h}\right)
$$

k being the scalar curvature. Similarly to (3.1) we can define $Q(g, A)$,
$R \cdot A, Q(D, A)$, where D, A are tensors of type $(0,2)$.
Let us consider the square matrix whose entries are $R_{i j k l}$, where $i j$ indicate the rows and $k l$ indicate the colums. The rank of this symmetric matrix will be denoted by $q(x)$. Obviously $q(x) \leq \frac{n(n-1)}{2}, \forall x \in M([10])$.
Theorem 3.2. Let ∇ be the Levi-Civita connection of the Riemannian space (M, g) and $\bar{\nabla}$ its almost projective transformation

$$
\bar{\nabla}_{X} Y=\nabla_{X} Y+\eta(X) Y+\xi(Y) X
$$

such that η is a closed 1-form and $C=f g, f \in \mathcal{F}(M)$. If $\bar{\nabla}$ is a metrique connection (i.e. there exists $\bar{g} \in \mathcal{T}_{2}^{0}(M)$, symmetric and positive definite such that $\bar{\nabla} \bar{g}=0$) and (M, g) is a pseudo-symmetric manifold with L a constant function, then

$$
\begin{equation*}
(f+L)\left[\bar{g}-\frac{1}{n} \operatorname{Trace}(\bar{g}) g\right]=0 \tag{3.2}
\end{equation*}
$$

holds on the open set U.
Proof. Because $\bar{\nabla} \bar{g}=0$, we get

$$
\bar{g}_{i j, k}=2 \eta_{k} \bar{g}_{i j}+\xi_{i} \bar{g}_{k j}+\xi_{j} \bar{g}_{i k}
$$

where the comma denotes covariant differentiation with respect to the Levi-Civita connection. The second covariant derivative is

$$
\begin{align*}
& \bar{g}_{i j, k l}=2 \eta_{k, l}+\xi_{i, l} \bar{g}_{k j}+\xi_{j, l} \bar{g}_{i k}+2 \eta_{k}\left(2 \xi_{l} \bar{g}_{i j}+\xi_{i} \bar{g}_{l j}+\xi_{j} \bar{g}_{i l}\right)+ \tag{3.3}\\
& +\xi_{i}\left(2 \eta_{l} \bar{g}_{k j}++\xi_{k} \bar{g}_{l j}+\xi_{j} \bar{g}_{k l}\right)+\xi_{j}\left(2 \eta_{l} \bar{g}_{i k}+\xi_{i} \bar{g}_{l k}+\xi_{k} \bar{g}_{i l}\right) .
\end{align*}
$$

From (3.3) we get

$$
\bar{g}_{i j, k l}-\bar{g}_{i j, l k}=\bar{g}_{k j}\left(\xi_{i, l}-\xi_{i} \xi_{l}\right)+\bar{g}_{i k}\left(\xi_{j, l}-\xi_{j} \xi_{l}\right)-\bar{g}_{l j}\left(\xi_{i, k}-\xi_{k} \xi_{i}\right)-\bar{g}_{i l}\left(\xi_{j, k}-\xi_{j} \xi_{k}\right),
$$

which is equivalent to $(R \cdot \bar{g})_{i j k l}=-Q(C, \bar{g})_{i j k l}=-Q(g, f \bar{g})_{i j k l}$.
Using the Theorem 1 of [2] we find

$$
(f+L)\left[\bar{g}-\frac{1}{n} \operatorname{Trace}(\bar{g}) g\right]=0 \quad \text { on } \quad U .
$$

Proposition 3.1. In the same hypothesis of the Theorem 3.2, if moreover (U, g) is not conformally related to (U, \bar{g}), then $(\bar{R} \cdot \bar{R})_{i j k l m}^{h}=0$ holds on U.
Proof.

$$
(\bar{R} \cdot \bar{R})_{i j k l m}^{h}=\bar{R}_{i j k}^{r} \bar{R}_{r l m}^{h}-\bar{R}_{r k l}^{h} \bar{R}_{i l m}^{r}-\bar{R}_{i r k}^{h} \bar{R}_{j l m}^{r}-\bar{R}_{i j r}^{h} \bar{R}_{k l m}^{r} .
$$

This relation is equivalent to

$$
(\bar{R} \cdot \bar{R})_{i j k l m}^{h}=(L+f) Q(g, R)_{i j k l m}^{h}
$$

Using (3.2) we find $L=-f$ and hence $(\bar{R} \cdot \bar{R})_{i j k l m}^{h}=0$ on the set U.
Proposition 3.2. In the same hypothesis of the previous Proposition, if moreover $\bar{\nabla}$ is a symmetric connection and the rank of the matrix $\left(\bar{R}_{i j k l}\right)$ is $q(x)=\frac{n(n-1)}{2}$, then (\mathcal{U}, \bar{g}) has constant curvature.
Proof. The proposition is a direct consequence of the Proposition 3.1 and Theorem 2 of [10].
Remark 3.1. If $\eta=\xi$, then $\bar{\nabla}$ is the Levi-Civita connection associated to \bar{g} and hence (M, g) and (M, \bar{g}) are special geodesically related spaces. The Theorem 3.2 generalizes the Theorem 2 of [2]. In this special case (\mathcal{U}, g) has also constant curvature.
Theorem 3.3. Let $\bar{\nabla}$ be the almost projective transformation of the Levi-Civita connection of the Riemannian space (M, g),

$$
\bar{\nabla}_{X} Y=\nabla_{X} Y+\eta(X) Y+\xi(Y) X
$$

such that η is a closed 1-form and ξ a closed, non vanishing 1-form. If (M, g) is an Einstein space and $\bar{\nabla}$-recurrent (i.e. $\bar{\nabla}_{X} \bar{R}=\omega(X) \bar{R}, \omega$ being a 1-form, and \bar{R} the curvature tensor field), then the two connections are flat projective (i.e. the projective curvature tensor $W_{j k l}^{i}=R_{j k l}^{i}+\frac{1}{n-1}\left(\delta_{k}^{i} S_{j l}-\delta_{l}^{i} S_{j k}\right)$ is 0 and also $\bar{W}_{j k l}^{i}=0$, where S is the Ricci tensor field).
Proof. The projective curvature tensor field is invariant with respect to this special almost projective transformation of connections. The relations $\bar{R}_{j k l ; r}^{i}=\omega_{r} \bar{R}_{j k l}^{i}$ and $\bar{S}_{j l ; r}=\omega_{r} \bar{S}_{j l}$ imply

$$
\begin{equation*}
W_{j k l ; r}^{i}=\omega_{r} W_{j k l}^{i} \tag{3.4}
\end{equation*}
$$

The relation (3.4) is equivalent to

$$
\begin{equation*}
W_{i j k l, r}+g_{i r} \xi_{s} W_{j k l}^{s}-\xi_{k} W_{i j r l}-\xi_{l} W_{i j k r}-\xi_{j} W_{i r k l}=\left(\omega_{r}+2 \eta_{r}\right) W_{i j k l} \tag{3.5}
\end{equation*}
$$

Because (M, g) is an Einstein space, we have $W_{i j k l}+W_{j i k l}=0$. From (3.5) we get

$$
\begin{equation*}
g_{i r} \xi_{s} W_{j k l}^{s}+g_{j r} \xi_{s} W_{i k l}^{s}-\xi_{j} W_{i r k l}-\xi_{i} W_{j r k l}=0 \tag{3.6}
\end{equation*}
$$

Contracting with $g^{i r}$ in (3.6) we obtain

$$
\begin{equation*}
\xi_{s} W_{j k l}^{s}=0 \tag{3.7}
\end{equation*}
$$

From (3.6) and (3.7) we get $\xi_{j} W_{i r k l}+\xi_{i} W_{j r k l}=0$ and hence $W=\bar{W}=0$.
Theorem 3.3. Let $\bar{\nabla}$ be the almost projective transformation of the affine connection ∇,

$$
\bar{\nabla}_{X} Y=\nabla_{X} Y+k \xi(X) Y+\xi(Y) X, \quad k \in \mathbf{Z} \backslash\left\{-1, \frac{n}{2}\right\}
$$

ξ being a closed 1-form. If ∇ and $\bar{\nabla}$ are projective recurrent so that $\nabla_{X} W=$ $\mu(X) W, \bar{\nabla}_{X} \bar{W}=\mu(X) \bar{W}, \mu$ being a 1-form, then the two connections $\nabla, \bar{\nabla}$ are flat projective.
Proof. From the relation

$$
\begin{align*}
& \left(\bar{\nabla}_{U} \bar{W}\right)(X, Y) Z=\left(\nabla_{U} W\right)(X, Y) Z+\xi(W(X, Y) Z) U-\xi(X) W(U, Y) Z- \\
& -\xi(Y) W(X, U) Z-\xi(Z) W(X, Y) U-2 k \xi(U) W(X, Y) Z \tag{3.8}
\end{align*}
$$

we obtain

$$
\begin{align*}
2 k \xi(U) W & (X, Y) Z+\xi(X) W(U, X) Z+\xi(Y) W(X, U) Z+ \tag{3.9}\\
& +\xi(Z) W(X, Y) U=\xi(W(X, Y), Z) U
\end{align*}
$$

If $\left\{\lambda^{i}\right\} \subset \wedge^{1}(M)$ and $\left\{X_{i}\right\} \subseteq \mathcal{X}(M)$ are dual local bases, let us take $U=X_{i}$ in (3.9). Contracting the resulting formula with λ^{i} we get

$$
\begin{equation*}
(n-2 k) \xi(W(X, Y) Z)=0 \tag{3.10}
\end{equation*}
$$

From (3.9) and (3.10) it follows

$$
\begin{equation*}
2 k \xi(U) W(X, Y) Z+\xi(X) W(U, X) Z+\xi(Y) W(X, U) Z+\xi(Z) W(X, Y) U=0 \tag{3.11}
\end{equation*}
$$

Taking $U=Z=X$ in (3.11) we have

$$
\begin{equation*}
2(k+1) \xi(X) W(X, Y) X=0 \tag{3.12}
\end{equation*}
$$

There is $T \in \mathcal{X}(M)$ so that $\xi(T) \neq 0$ and hence $W(T, Y) T=0$. Using (3.11) we get $W(X, Y) Z=0$.
Remark 3.2. If we suppose that M is endowed with two affine connections $\nabla, \bar{\nabla}$ and $A=\bar{\nabla}-\nabla$, we can construct the deformation algebra $\mathcal{U}(M, \bar{\nabla}, \nabla)$ considering $X \star Y=A(X, Y)$. An element $X \in \mathcal{U}(M, \bar{\nabla}, \nabla)$ is called a characteristic vector field if there exists $\lambda \in \mathcal{F}(M)$ such that $A(X, X)=\lambda X$ and is called an almost principal vector field if there are $f \in \mathcal{F}(M)$ and $\omega \in \wedge^{1}(M)$ such that $A(Z, X)=$ $f Z+\omega(Z) X, \forall X, Z \in \mathcal{X}(M)[7]$.
Theorem 3.4. Let $\bar{\nabla}$ be the almost projective transformation of the affine connection $\nabla, \bar{\nabla}=\nabla+I \otimes \xi+\eta \otimes I, \eta, \xi$ being arbitrary 1-forms. All the elements of the deformation algebra $\mathcal{U}(M, \nabla, \bar{\nabla}$,$) are characteristic vector fields and almost principal$ vector fields.

Acknowledgements. A version of this paper was presented at the First Conference of Balkan Society of Geometers, Politehnica University of Bucharest, September 23-27, 1996.

References

[1] N.Bokan, On the complete decomposition of curvature tensor of Riemannian manifolds with symmetric connection, Rendiconti del Circ. Mat. di Palermo, II, 39(1990), 331-380.
[2] R.Deszcz and M.Hotlos, Notes on pseudo-symmetric manifolds admitting special geodesic mappings, Soochow J.Math., 15(1989), 19-27.
[3] S.Ianus, L.Nicolescu, I.Popovici, D.Smaranda, I.Teodorescu, Conexiuni pe varietăţi diferenţiabile, Tipografia Universităţii Bucureşti, 1980.
[4] D.Krupka, The trace decomposition of tensors of type (1,2) and (1,3), In Eds: L.Tamassy, J.Szenthe, New Developments in Differential Geometry; Proceedings of the Colloquium on Differential Geometry, Debrecen, July 26-30, 1994; Mathematics and Its Applications, 350, Kluwer Academic Publishers, 1996, 243-253.
[5] D.Krupka and J.Janyska, Lectures on Differential Invariants, Univerzita J.E. Purkyne Brne, 1990.
[6] D.Krupka, The trace decomposition problem, Beitrage zur Algebra und Geometrie, 36(1995), 2, 303-315.
[7] L.Nicolescu, C.Udrişte, On the deformation algebra of two affine connections, Bull. Math. Soc. Sci. Math. Romania, 20(68), 3-4(1976), 313-323.
[8] Z.I.Szabo, Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R=0$. I. The local version, J.Diff. Geom., 17(1982), 531-582.
[9] I. Teodorescu, Sur les connexion presque-projective d'une variété différentiable, Bull. Math. Soc. Sci. Math. Romania, 1980.
[10] C.Udrişte, On the Riemann curvature tensor, Bull. Math. Soc. Sci. Math. Romania, Tome 16(64), 4(1972), 471-476.
[11] Gh.Vrănceanu, Lecţii de geometrie diferenţială, II, E.D.P. Bucureşti, 1964.
[12] H.Weyl, The Classical Groups, Princeton, 1946.
University Politehnica of Bucharest
Department of Mathematics I
Splaiul Independentei 313
77206 Bucharest, Romania
e-mail:udriste@mathem.pub.ro

University of Bucharest
Faculty of Mathematics Department of Geometry 14 Academiei St.
70109, Bucharest 1, Romania e-mail:ihirica@geo.math.unibuc.ro

[^0]: Balkan Journal of Geometry and Its Applications, Vol.2, No.2, 1997, pp. 139-156
 (C)Balkan Society of Geometers, Geometry Balkan Press

