
Geodesis and Cirles on Real Hypersurfaes of TypeA and B in a Complex Spae FormHyang Sook Kim, Gil Sang Lee and Yong-Soo Pyo
AbstratWe denote by Mn() a omplex spae form with the metri of onstantholomorphi setional urvature 4 and M a real hypersurfae in Mn(). Wewill give haraterizations of homogeneous real hypersurfaes of type A and Bby observing the shape of geodesis and irles on M as urves in Mn().Mathematis Subjet Classi�ation: 53C40Key words: omplex spe form, homogeneous real hypersurfae of type A and B,shape operator, geodesis, irle.1 IntrodutionWe denote by Mn() a omplete and simply onneted omplex n-dimensionalK�ahlerian manifold of onstant holomorphi setional urvature 4, whih is alleda omplex spae form. Suh an Mn() is bi-holomorphially isometri to a omplexprojetive spae PnC, a omplex Eulidean spae Cn or a omplex hyperboli spaeHnC, aording as  > 0,  = 0 or  < 0.In this paper, we onsider a real hypersurfaeM inMn();  6= 0. Typial examplesof M in PnC are the six model spaes of type A1; A2; B; C;D and E (f. Theorem Ain x2), and the ones of M in HnC are the four model spaes of type A0; A1; A2 and B(f. Theorem B in x2), whih are all given as orbits under ertain Lie subgroups of thegroup onsisting of all isometries of PnC or HnC. Denote by (�; �; �; g) the almostontat metri struture of M indued from the almost omplex struture of Mn()and A the shape operator of M . Eigenvalues and einvetors of A are alled prinipalurvatures and prinipal vetors, respetively.Many di�erential geometers have studied M from various points of view. For ex-ample, Berndt [1℄ and Takagi [13℄ investigated the homogeneity of M . Kimura [7℄proved that if all prinipal urvatures are onstant and � is prinipal vetor, thenM in PnC is ongruent to one of model spaes. Moreover, it is very interesting toharaterize homogeneous real hypersurfaes of Mn(). There are many harateri-zations of homogeneous ones of type A sine these examples have a lot of beautifulgeometri properties, where type A means type A1 or A2 in PnC and type A0; A1Balkan Journal of Geometry and Its Appliations, Vol.2, No.2, 1997, pp. 79-89Balkan Soiety of Geometers, Geometry Balkan Press



80 H.S. Kim, G.S.Lee, Y.S.Pyoor A2 in HnC. Okumura [11℄ and Montiel-Romero [10℄ proved the fat in PnC andHnC, respetively that M satis�es A� = �A if and only if M is loally ongruent totype A. Also Maeda [9℄ gave a haraterization of type A in PnC (f. Theorem E inx2). However, until now there are few results about haraterizations of type B. Kim,Pyo and Ki-Nakagawa [5℄ haraterized a real hypersurfae of type B in Mn() (f.Theorem F in x2).Reently, Maeda-Ogiue [8℄ investigated a geodesi hypersphere (i.e. type A1 inPnC) by observing the shape of geodesis on M as urves in PnC. Motivated bythis result, we are interested in haraterizing M of type A in Mn() by observinggeodesis on M , and we will investigate irles on M of type B in Mn().The purpose of this paper is to give haraterizations of homogeneous real hyper-surfaes of type A and B by studing geodesis and irles on M as urves in Mn().2 PreliminariesWe begin with realling the basi properties of a real hypersurfae M of a omplexspae form Mn(). Let N be a unit normal vetor �eld on M . The Riemannian on-netions er in Mn() and r in M are related by(2:1) erXY = rXY + g(AX; Y )Nand(2:2) erXN = �AX;where g denotes the indued Riemannian metri on M . Let J the almost omplexstruture of Mn(). For a vetor �eld X on M , the images of X and N under thetransformation J an be represented asJX = �X + �(X)N ; JN = ��;where � de�nes a skew-symmetri transformation on the tangent bundle TM of M ,while � and � denote a 1-form and a vetor �eld on M , respetively. Moreover, it isseen that g(�;X) = �(X). By the properties of the almost omplex struture J , theset (�; �; �; g) of tensors satis�es�2 = �I + � 
 � ; �� = 0 ; �(�X) = 0 ; �(�) = 1and g(�X; �Y ) = g(X;Y )� �(X)�(Y );where I denotes the identity transformation. Aordingly, this set (�, �, �, g) de�nesthe almost ontat metri struture on M . Furthermore, the ovariant derivatives ofthe struture tensors are given by(2:3) (rX�)Y = �(Y )AX � g(AX; Y )�;(2:4) rX� = �AX:



Geodesis and Cirles on Real Hypersurfaes 81Sine the ambient spae is of onstant holomorphi setional urvature 4, the equa-tion of Codazzi is given as follows(2:5) (rXA)Y � (rY A)X = f�(X)�Y � �(Y )�X � 2g(�X; Y )�g:It is well-known that there exist no totally umbilial real hypersurfaes in Mn(). So,a real hypersurfae M of Mn() is said to be totally �-umbilial if its shape operatorA satis�es AX = aX + b�(X)�for some smooth funtions a and b on M .In the following, we use the same terminology and notations as the above unlessotherwise stated. Now we quote the following in order to prove our results.Theorem A ([13℄). Let M be a homogeneous real hypersurfae of PnC. Then M isa tube of radius r over one of the following K�ahler submanifolds:(A1 ) a hyperplane Pn�1C, where 0 < r < �2 ,(A2 ) a totally geodesi PkC (1 � k � n� 2), where 0 < r < �2 ,(B ) a omplex quadrati Qn�1, where 0 < r < �4 ,(C ) P1C� P(n�1)=2C, where 0 < r < �4 and n(� 5) is odd,(D ) a omplex Grassmann G2;5C, where 0 < r < �4 and n = 9,(E ) a Hermitian symmetri spae SO(10)=U(5),where 0 < r < �4 and n = 15 .Theorem B ([1℄). Let M be a real hypersurfae of HnC. Then M has onstantprinipal urvatures and � is prinipal if and only if M is loally ongruent to one ofthe following:(A0) a horosphere in HnC,(A1) a geodesi hypersphere H0C or a tube over a hyperplane Hn�1C,(A2) a tube over a totally geodesi HkC (1 � k � n� 2),(B) a tube over a totally real hyperboli spae HnR.Theorem C ([10℄, [11℄). Let M be a real hypersurfae of Mn(). Then M satis�esA� = �A if and only if M is loally ongruent to one of type A1 and A2 when  > 0,and of type A0; A1 and A2 when  < 0.Theorem D ([10℄, [14℄). Let M be a real hypersurfae of Mn(). Then M is totally�-umbilial if and only if M is loally ongruent to one of type A1 when  > 0, andof type A0 and A1 when  < 0.Theorem E ([3℄, [9℄. Let M be a real hypersurfae of Mn(). Then the following areequivalent:(1) M is loally ongruent to one of type A,(2) (rXA)Y = �fg(�X; Y )� + �(Y )�Xg for any vetor �elds X and Y on M .Theorem F ([5℄). Let M be a real hypersurfae of Mn(). Then the following areequivalent:(1) M is loally ongruent to type B,(2) (rXA)Y = kf2�(X)(A���A)Y +�(Y )(A��3�A)X +g((A��3�A)X;Y )�gfor any vetor �elds X and Y on M and k 2 R.



82 H.S. Kim, G.S.Lee, Y.S.PyoProposition A ([4℄, [9℄). Let M be a real hypersurfae of Mn(),  6= 0. If � isprinipal, then the orresponding prinipal urvature � is loally onstant.Here we onsider the ase where the struture vetor � is prinipal, namely, A� =��. It follows from (2.5) that(2:6) 2A�A = 2�+ �(A� + �A)and hene, if AX = �X for any vetor �eld X orthogonal to �, then we get(2�� �)A�X = (��+ 2)�X:Aordingly, it turns out that in the ase where �2+ 6= 0, �X is also prinipal vetorwith prinipal urvature � = (��+ 2)=(2�� �), that is, we obtain(2:7) A�X = ��X;2�� � 6= 0; � = (��+ 2)=(2�� �):Finally, we reall the de�nition of helies in Riemannian geometry.A smooth urve  = (s) in a Riemannian manifold parametrized by its arlength s is alled a helix of proper order d if there exists an orthonormal frame fV1 =_; : : : ; Vdg along  and positive onstants k1; : : : ; kd�1 whih satisfyr _iVj(s) = �kj�1Vj�1(s) + kjVj+1(s); j = 1; : : : ; d;where V0 = Vd+1 = 0. The onstants kj (1 � j � d � 1) and the orthonormal framefV1; : : : ; Vdg are alled the urvatures and the Frenet frame of , respetively. And asmooth urve is alled a helix of order d if it is a helix of proper order r (� d).Note that a helix of order 1 is nothing but a geodesi, and a helix of order 2 is alleda irle. That is, a smooth urve  = (s) in a Riemannian manifold parametrized byits ar length s is alled a irle if there exists a �eld Y = Y (s) of unit vetors along whih satis�es r _ _ = kY and r _Y = �k _ for some positive onstant k whih isalled the urvature of . Moreover, for an arbitrary point x, an arbitrary orthonormalpair (u; v) of vetors at x and an arbitrary positive number k, there exists a uniqueirle  = (s) with (0) = x, _(0) = u and Y (0) = v.3 Real hypersurfaes of type AWe denote by Mn() a omplex spae form with the metri of onstant holomorphisetional urvature 4 and M a real hypersurfae in Mn();  6= 0. In this setion,we are onerned with homogeneous real hypersurfaes of type A. Then, aording toTakagi's lassi�ation theorem [13℄ and Berndt's one [1℄, the prinipal urvatures andtheir multipliities of type A in Mn() are given as follows:In the ase  > 0,(i) type A1 has two distint onstant prinipal urvatures � = 2 ot 2r with mul-tipliity 1 and � = ot r with multipliity 2n� 2,(ii) type A2 has three distint onstant prinipal urvatures � = 2 ot 2r withmultipliity 1, � = � tan r with multipliity 2k and � = ot r with multipliity 2(n�k � 1), where 1 � k � n� 1.



Geodesis and Cirles on Real Hypersurfaes 83In the ase  < 0,(i) type A0 has two distint onstant prinipal urvatures � = 2 with multipliity1 and � = 1 with multipliity 2n� 2,(ii) type A1 has two distint onstant prinipal urvatures � = 2 oth (2r) withmultipliity 1 and � = tanh(r) if 0 < � < 1 or � = oth(r) if � > 1 with multipliity2n� 2,(iii) type A2 has three distint onstant prinipal urvatures � = 2 oth(2r) withmultipliity 1, � = tanh(r) with multipliity 2k and � = oth(r) with multipliity2(n� k � 1), where 1 � k � n� 1.The following disussion in the ase  > 0 is partially indebted to Maeda andOgiue [8℄:First of all, we prove the followingLemma 3.1 LetM be a real hypersurfae of type A inMn(),  6= 0. Take orthonormalvetors (v1; v2; : : : ; v2n�2) orthogonal to � at an arbitrary point p of M in suh away that (v1; v2; : : : ; v2k) (resp. (v2k+1; v2k+2; : : : ; v2n�2)) are prinipal vetors withprinipal urvature � (resp. �). Then (v1; v2; : : : ; v2n�2) satisfy the following:(1) All geodesis i on M with i(0) = p and _i(0) = vi(1 � i � 2k) are irles of the urvature � in Mn().(2) All geodesis i on M with i(0) = p and _i(0) = vi(2k + 1 � i � 2n� 2) are irles of the urvature � in Mn().Proof. Let i = i(s) (1 � i � 2n � 2) be geodesis on M with i(0) = p and_i(0) = vi. Then, taking aount of (2.4) and Theorem C, we haver _i(g( _i; �)) = g( _i;r _i�) = g( _i; �A _i) = g( _i; A� _i) = �g(�A _i; _i) = 0:This implies that eah _i (1 � i � 2n � 2) is perpendiular to � sine g( _i(0); �) =g(vi; �) = 0:Thus, owing to Theorem E, we getr _i k A _i � � _i k2= 2g((r _iA) _i; A _i � � _i) = 0;where 1 � i � 2k. Sine A _i(0) � � _i(0) = Avi � �vi = 0; we obtain A _i � � _i =0 (1 � i � 2k). Here we note that k = n� 1 in type A1 when  > 0, and in type A0and A1 when  < 0. Therefore, we see from (2.1) and (2.2) thater _i _i = g(A _i; _i)N = g(� _i; _i)N = �Nand er _iN = �A _i = �� _i:This implies that i (1 � i � 2k) are irles of the urvature � and the Frenet framef _i; Ng in Mn().Similarly in the ase where M is of type A2, we an show that i (2k + 1 � i �2n� 2) are irles of the urvature � and the Frenet frame f _i; Ng in Mn().Theorem 3.2. Let M be a real hypersurfae of Mn(),  6= 0. Then M is loallyongruent to one of type A1 when  > 0, and of type A0 and A1 when  < 0 ifand only if there exist orthonormal vetors (v1; v2; : : : ; v2n�2) orthogonal to � at anarbitrary point p of M suh that all geodesis i = i(s) on M through p in thediretion vi + vj (1 � i � j � 2n� 2) are irles in Mn().



84 H.S. Kim, G.S.Lee, Y.S.PyoProof. Let M be loally ongruent to one of type A1 when  > 0, and of type A0and A1 when  < 0. Then Lemma 3.1 shows that, for an arbitrary unit vetor X?�at p 2M , a geodesi  = (s) with (0) = p and _(0) = X is a irle in Mn(). Thusthere exist orthonormal vetors (v1; v2; : : : ; v2n�2) orthogonal to � at an arbitrarypoint p of M suh that all geodesis i = i(s) on M through p in the diretion vi(1 � i � 2n� 2) are irles in Mn().Conversely, let i = i(s) (1 � i � 2n� 2) be geodesis on M with i(0) = p and_i(0) = vi. Then by suh assumption that all geodesis i = i(s) on M through p inthe diretion vi (1 � i � 2n� 2) are irles in Mn(), they satisfy(3:1) er2_i _i = �k2i _ifor some positive onstants ki.On the other hand, from (2.1) and (2.2) it follows that(3:2) er2_i _i = g((r _iA) _i; _i)N � g(A _i; _i)A _i:Comparing the tangential omponents of (3.1) with (3.2), we haveg(A _i; _i)A _i = k2i _iso that we get g(Avi; vi)Avi = k2i vi;whih implies(3:3) Avi = �kivi (1 � i � 2n� 2):Thus we obtain(3:4) g(Avi; vj) = 0 (1 � i < j � 2n� 2)beause vetors (v1; v2; : : : ; v2n�2) are orthonormal.Let ij = ij(s) (1 � i < j � 2n � 2) be geodesis on M with ij(0) = p and_ij(0) = (vi + vj)=p2. Then by the same argument as the above we haveg(A(vi + vj); (vi + vj))A(vi + vj) = 2k2ij(vi + vj)for some positive onstants kij . Hene we getg(A(vi + vj); (vi � vj)) = 0 (1 � i < j � 2n� 2):Therefore, ombining this with (3.4) we haveg(Avi; vi) = g(Avj ; vj) (1 � i; j � 2n� 2):This, together with (3.3), implies that AX = kX for all X ortogonal to � and forsome onstant k.Moreover, � is also prinipal beause g(A�;X) = g(�; AX) = g(�; kX) = 0 for allX ? �.



Geodesis and Cirles on Real Hypersurfaes 85Thus we see that M is �-umbili at p and hene M is totally �-umbili in Mn()sine p is arbitrary. Therefore, owing to Theorem D, it follows that M is loallyongruent to one of type A1 when  > 0, and of type A0 and A1 when  < 0.Theorem 3.3. Let M be a real hypersurfae of Mn(),  6= 0. Then M is loallyongruent to one of type A1 and type A2 with r = �=4 when  > 0, and of type A0and A1 when  < 0 if and only if there exist orthonormal vetors (v1; v2; : : : ; v2n�2)orthogonal to � at an arbitrary point p of M suh that all geodesis i = i(s) on Mwith i(0) = p and _i(0) = vi (1 � i � 2n � 2) are irles in Mn() with the sameurvature.Proof Let M be loally ongruent to one of type A1 and type A2 with r = �=4 when > 0, and of type A0 and A1 when  < 0. By Lemma 3.1, there exist orthonormalvetors (v1; v2; : : : ; v2n�2) orthogonal to � at an arbitrary point p of M suh that allgeodesis i = i(s) on M with i(0) = p and _i(0) = vi (1 � i � 2n� 2) are irlesin Mn() with the same urvature �.Conversely, let i = i(s) (1 � i � 2n� 2) be geodesis on M with i(0) = p and_i(0) = vi. Then by assumption that all geodesis i = i(s) on M through p in thediretion vi (1 � i � 2n�2) are irles in Mn() with the same urvature k, the sameargument as one in the proof of Theorem 3.2 givesg(Avi; vi)Avi = k2vi (1 � i � 2n� 2);where k is a positive onstant. Then we get(3:5) Avi = kvi or Avi = �kvi (1 � i � 2n� 2):Thus we obtain the fat that � is prinipal beause g(A�; vi) = g(�; Avi) = g(�;�kvi) =0 for 1 � i � 2n� 2. Therefore M is a real hypersurfae in Mn() with at most threedistint onstant prinipal urvatures k;�k and �, where we have used PropositionA. Consequently, M is loally ongruent to one of homogeneous real hypersurfaesof type A1, A2 and B when  > 0, and of type A0, A1, A2 and B when  < 0. Butthe shape operators of homogeneous real hypersurfaes of type A2 of radius r(6= �=4)and B when  > 0, and of type A2 and B when  < 0 do not satisfy (3.5). That is,M is loally ongruent to one of type A1 and type A2 with r = �=4 when  > 0, andof type A0 and A1 when  < 0.Replaing geodesis in Lemma 3.1 by irles, we have the followingLemma 3.4. Let M be a real hypersurfae of type A in Mn(),  6= 0. Take orthonor-mal vetors (v1; v2; : : : ; v2n�2) orthogonal to � at an arbitrary point p of M in suh away that (v1; v2; : : : ; v2k) (resp. (v2k+1; v2k+2; : : : ; v2n�2)) are prinipal vetors withprinipal urvature � (resp. �). Then (v1; v2; : : : ; v2n�2) satisfy the following:(1) All irles i of an arbitrary urvature in M with i(0) = p,_i(0) = vi and the Frenet frame f _i; �g (1 � i � 2k) are irles ofthe urvature � and the Frenet frame f _i; Ng in Mn().(2) All irles i of an arbitrary urvature in M with i(0) = p,_i(0) = vi and the Frenet frame f _i; �g (2k + 1 � i � 2n� 2) areirles of the urvature � and the Frenet frame f _i; Ng in Mn().Proof. Let i = i(s) (1 � i � 2n� 2) be irles on M with i(0) = p and _i(0) = vi.Then, from the assumption that all i have the Frenet frame f _i; �g, it follows thateah _i (1 � i � 2n� 2) is perpendiular to �.



86 H.S. Kim, G.S.Lee, Y.S.PyoThus, owing to Theorem E, we getr _i k A _i � � _i k2 = 2g((r _iA) _i +A(r _i _i)� �r _i _i; A _i � � _i)= 2g((r _iA) _i +A(mi�)� �mi�; A _i � � _i)= 2g((r _iA) _i + (�� �)mi�; A _i � � _i) = 0;where eah mi is the urvature of _i (1 � i � 2k). Sine A _i(0)�� _i(0) = Avi��vi =0, we obtain A _i � � _i = 0 (1 � i � 2k). Therefore, we see from (2.1) and (2.2) thater _i _i = g(A _i; _i)N = g(� _i; _i)N = �Nand er _iN = �A _i = �� _i:This implies that i (1 � i � 2k) are irles of the urvature � and the Frenet framef _i; Ng in Mn(). Here we note that k = n � 1 in type A1 when  > 0, and in typeA0 and A1 when  < 0.Similarly in the ase where M is of type A2, we an show that i (2k + 1 � i �2n� 2) are irles of the urvature � and the Frenet frame f _i; Ng in Mn().4 Real hypersurfaes of type BWe denote by Mn() a omplex spae form with the metri of onstant holomorphisetional urvature 4 and M a real hypersurfae in Mn();  6= 0. In this setion,we are onerned with homogeneous real hypersurfaes of type B. Then, aordingto Takagi's lassi�ation theorem [13℄ and Berndt's one [1℄, the prinipal urvaturesand their multipliities of type B in Mn() are given as follows:(i) In the ase  > 0, type B has three distint onstant prinipal urvatures� = 2 ot 2r with multipliity 1, � = � tan(r � �=4) with multipliity n � 1 and� = ot(r � �=4) with multipliity n� 1.(ii) In the ase  < 0, type B has three distint onstant prinipal urvatures� = 2 tanh(2r) with multipliity 1, � = tanh(r) with multipliity n�1 and � = oth(r)with multipliity n� 1.Then we �rst have the followingLemma 4.1. Let M be a real hypersurfae of type B in Mn(),  6= 0. Take orthonor-mal vetors (v1; v2; : : : ; v2n�2) orthogonal to � at an arbitrary point p of M in suha way that (v1; v2; : : : ; vn�1) (resp. (vn; vn+1; : : : ; v2n�2)) are prinipal vetors withprinipal urvature � (resp. �). Then (v1; v2; : : : ; v2n�2) satisfy the following:(1) All irles i of an arbitrary urvature in M with i(0) = p,_i(0) = vi and the Frenet frame f _i; �g (1 � i � n� 1) are irlesof the urvature � and the Frenet frame f _i; Ng in Mn().(2) All irles i of an arbitrary urvature in M with i(0) = p,_i(0) = vi and the Frenet frame f _i; �g (n � i � 2n� 2) areirles of the urvature � and the Frenet frame f _i; Ng in Mn().Proof. Let i = i(s) (1 � i � 2n�2) be irles on M with i(0) = p and _i(0) = vi.Then, from the assumption that all i have the Frenet frame f _i; �g, it follows thateah _i (1 � i � 2n� 2) is perpendiular to �.Thus, owing to Theorem F, we get



Geodesis and Cirles on Real Hypersurfaes 87r _i k A _i � � _i k2 = 2g((r _iA) _i +A(r _i _i)� �r _i _i; A _i � � _i) == 2g((r _iA) _i +A(ki�)� �ki�; A _i � � _i) == 2g((r _iA) _i + (�� �)ki�; A _i � � _i) = 0;where eah ki is the urvature of i (1 � i � n�1). Sine A _i(0)�� _i(0) = Avi��vi =0, we obtain A _i � � _i = 0 (1 � i � n � 1). Therefore, we see from (2.1) and (2.2)that er _i _i = g(A _i; _i)N = g(� _i; _i)N = �Nand er _iN = �A _i = �� _i:This implies that i (1 � i � n � 1) are irles of the urvature � and the Frenetframe f _i; Ng in Mn().Similarly we an show that i (n � i � 2n� 2) are irles of the urvature � andthe Frenet frame f _i; Ng in Mn().Theorem 4.2. Let M be a real hypersurfae of Mn(),  6= 0. Then M is loallyongruent to one of type A and B if and only if there exist orthonormal vetors(v1; v2; : : : ; v2n�2) orthogonal to � at an arbitrary point p of M suh that all irlesi = i(s) in M with i(0) = p, _i(0) = vi and the Frenet frame f _i; �g (1 � i �2n � 2) are irles in Mn() of the same urvature i (1 � i � 2k) or the same onej (2k + 1 � j � 2n� 2).Proof. Let M be loally ongruent to one of type A and B in Mn().First of all, let M be of type A in Mn() and let i = i(s) (1 � i � 2n � 2) beirles in M with i(0) = p, _i(0) = vi and the Frenet frame f _i; �g. Then, owingto Lemma 3.4, there exist orthonormal vetors (v1; v2; : : : ; v2n�2) orthogonal to � atan arbitrary point p of M suh that these irles i = i(s) (1 � i � 2n � 2) areirles in Mn() of the same urvature i = � (1 � i � 2k) or the same one j = �(2k + 1 � j � 2n� 2).Next, let M be of type B in Mn(). Then by Lemma 4.1, there exist orthonormalvetors (v1; v2; : : : ; v2n�2) orthogonal to � at an arbitrary point p of M suh thatall irles i = i(s) in M with i(0) = p, _i(0) = vi and the Frenet frame f _i; �g(1 � i � 2n� 2) are irles in Mn() of the same urvature i = � (1 � i � n� 1) orthe same one j = � (n � j � 2n� 2).Conversely, assume that there exist orthonormal vetors (v1; v2; : : : ; v2n�2) or-thogonal to � at an arbitrary point p of M suh that all irles i = i(s) in M withi(0) = p, _i(0) = vi and the Frenet frame f _i; �g (1 � i � 2n�2) are irles inMn()of the same urvature i (1 � i � 2k) or the same one j (2k+1 � j � 2n� 2). Thenthe same argument as one in the proof of Theorem 3.2 givesg(Avi; vi)Avi = i2vi (1 � i � 2k)and g(Avj ; vj)Avj = j2vj (2k + 1 � j � 2n� 2);where i and j are positive onstants. Then we get(4:1) Avi = �ivi and Avj = �jvj (1 � i � 2k; 2k + 1 � j � 2n� 2):Thus, by means of (4.1), we obtain the fat that � is prinipal beause g(A�; vi) =g(�; Avi) = 0 for (1 � i � 2n�2). ThereforeM is a real hypersurfae inMn() with at
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