Geodesics and Circles on Real Hypersurfaces of Type A and B in a Complex Space Form

Hyang Sook Kim, Gil Sang Lee and Yong-Soo Pyo

Abstract

We denote by $M_{n}(c)$ a complex space form with the metric of constant holomorphic sectional curvature $4 c$ and M a real hypersurface in $M_{n}(c)$. We will give characterizations of homogeneous real hypersurfaces of type A and B by observing the shape of geodesics and circles on M as curves in $M_{n}(c)$.

Mathematics Subject Classification: 53C40
Key words: complex spce form, homogeneous real hypersurface of type A and B, shape operator, geodesics, cirle.

1 Introduction

We denote by $M_{n}(c)$ a complete and simply connected complex n-dimensional Kählerian manifold of constant holomorphic sectional curvature $4 c$, which is called a complex space form. Such an $M_{n}(c)$ is bi-holomorphically isometric to a complex projective space $P_{n} \mathbf{C}$, a complex Euclidean space \mathbf{C}^{n} or a complex hyperbolic space $H_{n} \mathbf{C}$, according as $c>0, c=0$ or $c<0$.

In this paper, we consider a real hypersurface M in $M_{n}(c), c \neq 0$. Typical examples of M in $P_{n} \mathbf{C}$ are the six model spaces of type A_{1}, A_{2}, B, C, D and E (cf. Theorem A in $\S 2$), and the ones of M in $H_{n} \mathbf{C}$ are the four model spaces of type A_{0}, A_{1}, A_{2} and B (cf. Theorem B in §2), which are all given as orbits under certain Lie subgroups of the group consisting of all isometries of $P_{n} \mathbf{C}$ or $H_{n} \mathbf{C}$. Denote by (ϕ, ξ, η, g) the almost contact metric structure of M induced from the almost complex structure of $M_{n}(c)$ and A the shape operator of M. Eigenvalues and einvectors of A are called principal curvatures and principal vectors, respectively.

Many differential geometers have studied M from various points of view. For example, Berndt [1] and Takagi [13] investigated the homogeneity of M. Kimura [7] proved that if all principal curvatures are constant and ξ is principal vector, then M in $P_{n} \mathbf{C}$ is congruent to one of model spaces. Moreover, it is very interesting to characterize homogeneous real hypersurfaces of $M_{n}(c)$. There are many characterizations of homogeneous ones of type A since these examples have a lot of beautiful geometric properties, where type A means type A_{1} or A_{2} in $P_{n} \mathbf{C}$ and type A_{0}, A_{1}
or A_{2} in $H_{n} \mathbf{C}$. Okumura [11] and Montiel-Romero [10] proved the fact in $P_{n} \mathbf{C}$ and $H_{n} \mathbf{C}$, respectively that M satisfies $A \phi=\phi A$ if and only if M is locally congruent to type A. Also Maeda [9] gave a characterization of type A in $P_{n} \mathbf{C}$ (cf. Theorem E in $\S 2$). However, until now there are few results about characterizations of type B. Kim, Pyo and Ki-Nakagawa [5] characterized a real hypersurface of type B in $M_{n}(c)$ (cf. Theorem F in §2).

Recently, Maeda-Ogiue [8] investigated a geodesic hypersphere (i.e. type A_{1} in $P_{n} \mathbf{C}$) by observing the shape of geodesics on M as curves in $P_{n} \mathbf{C}$. Motivated by this result, we are interested in characterizing M of type A in $M_{n}(c)$ by observing geodesics on M, and we will investigate circles on M of type B in $M_{n}(c)$.

The purpose of this paper is to give characterizations of homogeneous real hypersurfaces of type A and B by studing geodesics and circles on M as curves in $M_{n}(c)$.

2 Preliminaries

We begin with recalling the basic properties of a real hypersurface M of a complex space form $M_{n}(c)$. Let N be a unit normal vector field on M. The Riemannian connections $\widetilde{\nabla}$ in $M_{n}(c)$ and ∇ in M are related by

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+g(A X, Y) N \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{\nabla}_{X} N=-A X \tag{2.2}
\end{equation*}
$$

where g denotes the induced Riemannian metric on M. Let J the almost complex structure of $M_{n}(c)$. For a vector field X on M, the images of X and N under the transformation J can be represented as

$$
J X=\phi X+\eta(X) N \quad, \quad J N=-\xi
$$

where ϕ defines a skew-symmetric transformation on the tangent bundle $T M$ of M, while η and ξ denote a 1 -form and a vector field on M, respectively. Moreover, it is seen that $g(\xi, X)=\eta(X)$. By the properties of the almost complex structure J, the set (ϕ, ξ, η, g) of tensors satisfies

$$
\phi^{2}=-I+\eta \otimes \xi, \quad \phi \xi=0, \quad \eta(\phi X)=0, \quad \eta(\xi)=1
$$

and

$$
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y)
$$

where I denotes the identity transformation. Accordingly, this set (ϕ, ξ, η, g) defines the almost contact metric structure on M. Furthermore, the covariant derivatives of the structure tensors are given by

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=\eta(Y) A X-g(A X, Y) \xi \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{X} \xi=\phi A X \tag{2.4}
\end{equation*}
$$

Since the ambient space is of constant holomorphic sectional curvature $4 c$, the equation of Codazzi is given as follows

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=c\{\eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi\} \tag{2.5}
\end{equation*}
$$

It is well-known that there exist no totally umbilical real hypersurfaces in $M_{n}(c)$. So, a real hypersurface M of $M_{n}(c)$ is said to be totally η-umbilical if its shape operator A satisfies

$$
A X=a X+b \eta(X) \xi
$$

for some smooth functions a and b on M.
In the following, we use the same terminology and notations as the above unless otherwise stated. Now we quote the following in order to prove our results.
Theorem A ([13]). Let M be a homogeneous real hypersurface of $P_{n} \mathbf{C}$. Then M is a tube of radius r over one of the following Kähler submanifolds:
$\left(A_{1}\right)$ a hyperplane $P_{n-1} \mathbf{C}$, where $0<r<\frac{\pi}{2}$,
(A_{2}) a totally geodesic $P_{k} \mathbf{C}(1 \leq k \leq n-2)$, where $0<r<\frac{\pi}{2}$,
(B) a complex quadratic Q_{n-1}, where $0<r<\frac{\pi}{4}$,
(C) $P_{1} \mathbf{C} \times P_{(n-1) / 2} \mathbf{C}$, where $0<r<\frac{\pi}{4}$ and $n(\geq 5)$ is odd,
(D) a complex Grassmann $G_{2,5} \mathbf{C}$, where $0<r<\frac{\pi}{4}$ and $n=9$,
(E) a Hermitian symmetric space $S O(10) / U(5)$,
where $0<r<\frac{\pi}{4}$ and $n=15$.
Theorem B ([1]). Let M be a real hypersurface of $H_{n} \mathbf{C}$. Then M has constant principal curvatures and ξ is principal if and only if M is locally congruent to one of the following:
$\left(A_{0}\right)$ a horosphere in $H_{n} \mathbf{C}$,
$\left(A_{1}\right)$ a geodesic hypersphere $H_{0} \mathbf{C}$ or a tube over a hyperplane $H_{n-1} \mathbf{C}$,
$\left(A_{2}\right)$ a tube over a totally geodesic $H_{k} \mathbf{C}(1 \leq k \leq n-2)$,
(B) a tube over a totally real hyperbolic space $H_{n} \mathbf{R}$.

Theorem C ([10], [11]). Let M be a real hypersurface of $M_{n}(c)$. Then M satisfies $A \phi=\phi A$ if and only if M is locally congruent to one of type A_{1} and A_{2} when $c>0$, and of type A_{0}, A_{1} and A_{2} when $c<0$.
Theorem D ([10], [14]). Let M be a real hypersurface of $M_{n}(c)$. Then M is totally η-umbilical if and only if M is locally congruent to one of type A_{1} when $c>0$, and of type A_{0} and A_{1} when $c<0$.
Theorem \mathbf{E} ([3], [9]. Let M be a real hypersurface of $M_{n}(c)$. Then the following are equivalent:
(1) M is locally congruent to one of type A,
(2) $\left(\nabla_{X} A\right) Y=-c\{g(\phi X, Y) \xi+\eta(Y) \phi X\}$ for any vector fields X and Y on M.

Theorem F ([5]). Let M be a real hypersurface of $M_{n}(c)$. Then the following are equivalent:
(1) M is locally congruent to type B,
(2) $\left(\nabla_{X} A\right) Y=k\{2 \eta(X)(A \phi-\phi A) Y+\eta(Y)(A \phi-3 \phi A) X+g((A \phi-3 \phi A) X, Y) \xi\}$
for any vector fields X and Y on M and $k \in \mathbf{R}$.

Proposition A ([4], [9]). Let M be a real hypersurface of $M_{n}(c), c \neq 0$. If ξ is principal, then the corresponding principal curvature α is locally constant.

Here we consider the case where the structure vector ξ is principal, namely, $A \xi=$ $\alpha \xi$. It follows from (2.5) that

$$
\begin{equation*}
2 A \phi A=2 c \phi+\alpha(A \phi+\phi A) \tag{2.6}
\end{equation*}
$$

and hence, if $A X=\lambda X$ for any vector field X orthogonal to ξ, then we get

$$
(2 \lambda-\alpha) A \phi X=(\alpha \lambda+2 c) \phi X .
$$

Accordingly, it turns out that in the case where $\alpha^{2}+c \neq 0, \phi X$ is also principal vector with principal curvature $\mu=(\alpha \lambda+2 c) /(2 \lambda-\alpha)$, that is, we obtain

$$
\begin{align*}
& A \phi X=\mu \phi X, \\
& 2 \lambda-\alpha \neq 0, \quad \mu=(\alpha \lambda+2 c) /(2 \lambda-\alpha) . \tag{2.7}
\end{align*}
$$

Finally, we recall the definition of helices in Riemannian geometry.
A smooth curve $\gamma=\gamma(s)$ in a Riemannian manifold parametrized by its arc length s is called a helix of proper order d if there exists an orthonormal frame $\left\{V_{1}=\right.$ $\left.\dot{\gamma}, \ldots, V_{d}\right\}$ along γ and positive constants k_{1}, \ldots, k_{d-1} which satisfy

$$
\nabla_{\dot{\gamma}_{i}} V_{j}(s)=-k_{j-1} V_{j-1}(s)+k_{j} V_{j+1}(s), \quad j=1, \ldots, d,
$$

where $V_{0}=V_{d+1}=0$. The constants $k_{j}(1 \leq j \leq d-1)$ and the orthonormal frame $\left\{V_{1}, \ldots, V_{d}\right\}$ are called the curvatures and the Frenet frame of γ, respectively. And a smooth curve is called a helix of order d if it is a helix of proper order $r(\leq d)$.

Note that a helix of order 1 is nothing but a geodesic, and a helix of order 2 is called a circle. That is, a smooth curve $\gamma=\gamma(s)$ in a Riemannian manifold parametrized by its arc length s is called a circle if there exists a field $Y=Y(s)$ of unit vectors along γ which satisfies $\nabla_{\dot{\gamma}} \dot{\gamma}=k Y$ and $\nabla_{\dot{\gamma}} Y=-k \dot{\gamma}$ for some positive constant k which is called the curvature of γ. Moreover, for an arbitrary point x, an arbitrary orthonormal pair (u, v) of vectors at x and an arbitrary positive number k, there exists a unique circle $\gamma=\gamma(s)$ with $\gamma(0)=x, \dot{\gamma}(0)=u$ and $Y(0)=v$.

3 Real hypersurfaces of type A

We denote by $M_{n}(c)$ a complex space form with the metric of constant holomorphic sectional curvature $4 c$ and M a real hypersurface in $M_{n}(c), c \neq 0$. In this section, we are concerned with homogeneous real hypersurfaces of type A. Then, according to Takagi's classification theorem [13] and Berndt's one [1], the principal curvatures and their multiplicities of type A in $M_{n}(c)$ are given as follows:

In the case $c>0$,
(i) type A_{1} has two distinct constant principal curvatures $\alpha=2 \cot 2 r$ with multiplicity 1 and $\lambda=\cot r$ with multiplicity $2 n-2$,
(ii) type A_{2} has three distinct constant principal curvatures $\alpha=2 \cot 2 r$ with multiplicity $1, \lambda=-\tan r$ with multiplicity $2 k$ and $\mu=\cot r$ with multiplicity $2(n-$ $k-1$), where $1 \leq k \leq n-1$.

In the case $c<0$,
(i) type A_{0} has two distinct constant principal curvatures $\alpha=2$ with multiplicity 1 and $\lambda=1$ with multiplicity $2 n-2$,
(ii) type A_{1} has two distinct constant principal curvatures $\alpha=2 \operatorname{coth}(2 r)$ with multiplicity 1 and $\lambda=\tanh (r)$ if $0<\lambda<1$ or $\lambda=\operatorname{coth}(r)$ if $\lambda>1$ with multiplicity $2 n-2$,
(iii) type A_{2} has three distinct constant principal curvatures $\alpha=2 \operatorname{coth}(2 r)$ with multiplicity $1, \lambda=\tanh (r)$ with multiplicity $2 k$ and $\mu=\operatorname{coth}(r)$ with multiplicity $2(n-k-1)$, where $1 \leq k \leq n-1$.

The following discussion in the case $c>0$ is partially indebted to Maeda and Ogiue [8]:

First of all, we prove the following
Lemma 3.1 Let M be a real hypersurface of type A in $M_{n}(c), c \neq 0$. Take orthonormal vectors $\left(v_{1}, v_{2}, \ldots, v_{2 n-2}\right)$ orthogonal to ξ at an arbitrary point p of M in such a way that $\left(v_{1}, v_{2}, \ldots, v_{2 k}\right)$ (resp. $\left(v_{2 k+1}, v_{2 k+2}, \ldots, v_{2 n-2}\right)$) are principal vectors with principal curvature λ (resp. μ). Then $\left(v_{1}, v_{2}, \ldots, v_{2 n-2}\right)$ satisfy the following:
(1) All geodesics γ_{i} on M with $\gamma_{i}(0)=p$ and $\dot{\gamma}_{i}(0)=v_{i}$
$(1 \leq i \leq 2 k)$ are circles of the curvature λ in $M_{n}(c)$.
(2) All geodesics γ_{i} on M with $\gamma_{i}(0)=p$ and $\dot{\gamma}_{i}(0)=v_{i}$

$$
(2 k+1 \leq i \leq 2 n-2) \text { are circles of the curvature } \mu \text { in } M_{n}(c) .
$$

Proof. Let $\gamma_{i}=\gamma_{i}(s)(1 \leq i \leq 2 n-2)$ be geodesics on M with $\gamma_{i}(0)=p$ and $\dot{\gamma}_{i}(0)=v_{i}$. Then, taking account of (2.4) and Theorem C, we have

$$
\nabla_{\dot{\gamma}_{i}}\left(g\left(\dot{\gamma}_{i}, \xi\right)\right)=g\left(\dot{\gamma}_{i}, \nabla_{\dot{\gamma}_{i}} \xi\right)=g\left(\dot{\gamma}_{i}, \phi A \dot{\gamma}_{i}\right)=g\left(\dot{\gamma}_{i}, A \phi \dot{\gamma}_{i}\right)=-g\left(\phi A \dot{\gamma}_{i}, \dot{\gamma}_{i}\right)=0
$$

This implies that each $\dot{\gamma}_{i}(1 \leq i \leq 2 n-2)$ is perpendicular to ξ since $g\left(\dot{\gamma}_{i}(0), \xi\right)=$ $g\left(v_{i}, \xi\right)=0$.

Thus, owing to Theorem E, we get

$$
\nabla_{\dot{\gamma}_{i}}\left\|A \dot{\gamma}_{i}-\lambda \dot{\gamma}_{i}\right\|^{2}=2 g\left(\left(\nabla_{\dot{\gamma}_{i}} A\right) \dot{\gamma}_{i}, A \dot{\gamma}_{i}-\lambda \dot{\gamma}_{i}\right)=0
$$

where $1 \leq i \leq 2 k$. Since $A \dot{\gamma}_{i}(0)-\lambda \dot{\gamma}_{i}(0)=A v_{i}-\lambda v_{i}=0$, we obtain $A \dot{\gamma}_{i}-\lambda \dot{\gamma}_{i}=$ $0(1 \leq i \leq 2 k)$. Here we note that $k=n-1$ in type A_{1} when $c>0$, and in type A_{0} and A_{1} when $c<0$. Therefore, we see from (2.1) and (2.2) that

$$
\widetilde{\nabla}_{\dot{\gamma}_{i}} \dot{\gamma}_{i}=g\left(A \dot{\gamma}_{i}, \dot{\gamma}_{i}\right) N=g\left(\lambda \dot{\gamma}_{i}, \dot{\gamma}_{i}\right) N=\lambda N
$$

and

$$
\tilde{\nabla}_{\dot{\gamma}_{i}} N=-A \dot{\gamma}_{i}=-\lambda \dot{\gamma}_{i}
$$

This implies that $\gamma_{i}(1 \leq i \leq 2 k)$ are circles of the curvature λ and the Frenet frame $\left\{\dot{\gamma}_{i}, N\right\}$ in $M_{n}(c)$.

Similarly in the case where M is of type A_{2}, we can show that $\gamma_{i}(2 k+1 \leq i \leq$ $2 n-2$) are circles of the curvature μ and the Frenet frame $\left\{\dot{\gamma}_{i}, N\right\}$ in $M_{n}(c)$.
Theorem 3.2. Let M be a real hypersurface of $M_{n}(c), c \neq 0$. Then M is locally congruent to one of type A_{1} when $c>0$, and of type A_{0} and A_{1} when $c<0$ if and only if there exist orthonormal vectors $\left(v_{1}, v_{2}, \ldots, v_{2 n-2}\right)$ orthogonal to ξ at an arbitrary point p of M such that all geodesics $\gamma_{i}=\gamma_{i}(s)$ on M through p in the direction $v_{i}+v_{j}(1 \leq i \leq j \leq 2 n-2)$ are circles in $M_{n}(c)$.

Proof. Let M be locally congruent to one of type A_{1} when $c>0$, and of type A_{0} and A_{1} when $c<0$. Then Lemma 3.1 shows that, for an arbitrary unit vector $X \perp \xi$ at $p \in M$, a geodesic $\gamma=\gamma(s)$ with $\gamma(0)=p$ and $\dot{\gamma}(0)=X$ is a circle in $M_{n}(c)$. Thus there exist orthonormal vectors $\left(v_{1}, v_{2}, \ldots, v_{2 n-2}\right)$ orthogonal to ξ at an arbitrary point p of M such that all geodesics $\gamma_{i}=\gamma_{i}(s)$ on M through p in the direction v_{i} $(1 \leq i \leq 2 n-2)$ are circles in $M_{n}(c)$.

Conversely, let $\gamma_{i}=\gamma_{i}(s)(1 \leq i \leq 2 n-2)$ be geodesics on M with $\gamma_{i}(0)=p$ and $\dot{\gamma}_{i}(0)=v_{i}$. Then by such assumption that all geodesics $\gamma_{i}=\gamma_{i}(s)$ on M through p in the direction $v_{i}(1 \leq i \leq 2 n-2)$ are circles in $M_{n}(c)$, they satisfy

$$
\begin{equation*}
\widetilde{\nabla}_{\dot{\gamma}_{i}}^{2} \dot{\gamma}_{i}=-k_{i}^{2} \dot{\gamma}_{i} \tag{3.1}
\end{equation*}
$$

for some positive constants k_{i}.
On the other hand, from (2.1) and (2.2) it follows that

$$
\begin{equation*}
\widetilde{\nabla}_{\dot{\gamma}_{i}}^{2} \dot{\gamma}_{i}=g\left(\left(\nabla_{\dot{\gamma}_{i}} A\right) \dot{\gamma}_{i}, \dot{\gamma}_{i}\right) N-g\left(A \dot{\gamma}_{i}, \dot{\gamma}_{i}\right) A \dot{\gamma}_{i} . \tag{3.2}
\end{equation*}
$$

Comparing the tangential components of (3.1) with (3.2), we have

$$
g\left(A \dot{\gamma}_{i}, \dot{\gamma}_{i}\right) A \dot{\gamma}_{i}=k_{i}^{2} \dot{\gamma}_{i}
$$

so that we get

$$
g\left(A v_{i}, v_{i}\right) A v_{i}=k_{i}^{2} v_{i}
$$

which implies

$$
\begin{equation*}
A v_{i}= \pm k_{i} v_{i} \quad(1 \leq i \leq 2 n-2) \tag{3.3}
\end{equation*}
$$

Thus we obtain

$$
\begin{equation*}
g\left(A v_{i}, v_{j}\right)=0 \quad(1 \leq i<j \leq 2 n-2) \tag{3.4}
\end{equation*}
$$

because vectors $\left(v_{1}, v_{2}, \ldots, v_{2 n-2}\right)$ are orthonormal.
Let $\gamma_{i j}=\gamma_{i j}(s)(1 \leq i<j \leq 2 n-2)$ be geodesics on M with $\gamma_{i j}(0)=p$ and $\dot{\gamma}_{i j}(0)=\left(v_{i}+v_{j}\right) / \sqrt{2}$. Then by the same argument as the above we have

$$
g\left(A\left(v_{i}+v_{j}\right),\left(v_{i}+v_{j}\right)\right) A\left(v_{i}+v_{j}\right)=2 k_{i j}^{2}\left(v_{i}+v_{j}\right)
$$

for some positive constants $k_{i j}$. Hence we get

$$
g\left(A\left(v_{i}+v_{j}\right),\left(v_{i}-v_{j}\right)\right)=0 \quad(1 \leq i<j \leq 2 n-2)
$$

Therefore, combining this with (3.4) we have

$$
g\left(A v_{i}, v_{i}\right)=g\left(A v_{j}, v_{j}\right) \quad(1 \leq i, j \leq 2 n-2)
$$

This, together with (3.3), implies that $A X=k X$ for all X ortogonal to ξ and for some constant k.

Moreover, ξ is also principal because $g(A \xi, X)=g(\xi, A X)=g(\xi, k X)=0$ for all $X \perp \xi$.

Thus we see that M is η-umbilic at p and hence M is totally η-umbilic in $M_{n}(c)$ since p is arbitrary. Therefore, owing to Theorem D , it follows that M is locally congruent to one of type A_{1} when $c>0$, and of type A_{0} and A_{1} when $c<0$.
Theorem 3.3. Let M be a real hypersurface of $M_{n}(c), c \neq 0$. Then M is locally congruent to one of type A_{1} and type A_{2} with $r=\pi / 4$ when $c>0$, and of type A_{0} and A_{1} when $c<0$ if and only if there exist orthonormal vectors $\left(v_{1}, v_{2}, \ldots, v_{2 n-2}\right)$ orthogonal to ξ at an arbitrary point p of M such that all geodesics $\gamma_{i}=\gamma_{i}(s)$ on M with $\gamma_{i}(0)=p$ and $\dot{\gamma}_{i}(0)=v_{i}(1 \leq i \leq 2 n-2)$ are circles in $M_{n}(c)$ with the same curvature.
Proof Let M be locally congruent to one of type A_{1} and type A_{2} with $r=\pi / 4$ when $c>0$, and of type A_{0} and A_{1} when $c<0$. By Lemma 3.1, there exist orthonormal vectors $\left(v_{1}, v_{2}, \ldots, v_{2 n-2}\right)$ orthogonal to ξ at an arbitrary point p of M such that all geodesics $\gamma_{i}=\gamma_{i}(s)$ on M with $\gamma_{i}(0)=p$ and $\dot{\gamma}_{i}(0)=v_{i}(1 \leq i \leq 2 n-2)$ are circles in $M_{n}(c)$ with the same curvature λ.

Conversely, let $\gamma_{i}=\gamma_{i}(s)(1 \leq i \leq 2 n-2)$ be geodesics on M with $\gamma_{i}(0)=p$ and $\dot{\gamma}_{i}(0)=v_{i}$. Then by assumption that all geodesics $\gamma_{i}=\gamma_{i}(s)$ on M through p in the direction $v_{i}(1 \leq i \leq 2 n-2)$ are circles in $M_{n}(c)$ with the same curvature k, the same argument as one in the proof of Theorem 3.2 gives

$$
g\left(A v_{i}, v_{i}\right) A v_{i}=k^{2} v_{i} \quad(1 \leq i \leq 2 n-2)
$$

where k is a positive constant. Then we get

$$
\begin{equation*}
A v_{i}=k v_{i} \quad \text { or } A v_{i}=-k v_{i} \quad(1 \leq i \leq 2 n-2) \tag{3.5}
\end{equation*}
$$

Thus we obtain the fact that ξ is principal because $g\left(A \xi, v_{i}\right)=g\left(\xi, A v_{i}\right)=g\left(\xi, \pm k v_{i}\right)=$ 0 for $1 \leq i \leq 2 n-2$. Therefore M is a real hypersurface in $M_{n}(c)$ with at most three distinct constant principal curvatures $k,-k$ and α, where we have used Proposition A. Consequently, M is locally congruent to one of homogeneous real hypersurfaces of type A_{1}, A_{2} and B when $c>0$, and of type A_{0}, A_{1}, A_{2} and B when $c<0$. But the shape operators of homogeneous real hypersurfaces of type A_{2} of radius $r(\neq \pi / 4)$ and B when $c>0$, and of type A_{2} and B when $c<0$ do not satisfy (3.5). That is, M is locally congruent to one of type A_{1} and type A_{2} with $r=\pi / 4$ when $c>0$, and of type A_{0} and A_{1} when $c<0$.

Replacing geodesics in Lemma 3.1 by circles, we have the following
Lemma 3.4. Let M be a real hypersurface of type A in $M_{n}(c), c \neq 0$. Take orthonormal vectors $\left(v_{1}, v_{2}, \ldots, v_{2 n-2}\right)$ orthogonal to ξ at an arbitrary point p of M in such a way that $\left(v_{1}, v_{2}, \ldots, v_{2 k}\right)$ (resp. $\left(v_{2 k+1}, v_{2 k+2}, \ldots, v_{2 n-2}\right)$) are principal vectors with principal curvature λ (resp. μ). Then $\left(v_{1}, v_{2}, \ldots, v_{2 n-2}\right)$ satisfy the following:
(1) All circles γ_{i} of an arbitrary curvature in M with $\gamma_{i}(0)=p$, $\dot{\gamma}_{i}(0)=v_{i}$ and the Frenet frame $\left\{\dot{\gamma}_{i}, \xi\right\}(1 \leq i \leq 2 k)$ are circles of the curvature λ and the Frenet frame $\left\{\dot{\gamma}_{i}, N\right\}$ in $M_{n}(c)$.
All circles γ_{i} of an arbitrary curvature in M with $\gamma_{i}(0)=p$, $\dot{\gamma}_{i}(0)=v_{i}$ and the Frenet frame $\left\{\dot{\gamma}_{i}, \xi\right\}(2 k+1 \leq i \leq 2 n-2)$ are circles of the curvature μ and the Frenet frame $\left\{\dot{\gamma}_{i}, N\right\}$ in $M_{n}(c)$.
Proof. Let $\gamma_{i}=\gamma_{i}(s)(1 \leq i \leq 2 n-2)$ be circles on M with $\gamma_{i}(0)=p$ and $\dot{\gamma}_{i}(0)=v_{i}$. Then, from the assumption that all γ_{i} have the Frenet frame $\left\{\dot{\gamma}_{i}, \xi\right\}$, it follows that each $\dot{\gamma}_{i}(1 \leq i \leq 2 n-2)$ is perpendicular to ξ.

Thus, owing to Theorem E, we get

$$
\begin{aligned}
\nabla_{\dot{\gamma}_{i}}\left\|A \dot{\gamma}_{i}-\lambda \dot{\gamma}_{i}\right\|^{2} & =2 g\left(\left(\nabla_{\dot{\gamma}_{i}} A\right) \dot{\gamma}_{i}+A\left(\nabla_{\dot{\gamma}_{i}} \dot{\gamma}_{i}\right)-\lambda \nabla_{\dot{\gamma}_{i}} \dot{\gamma}_{i}, A \dot{\gamma}_{i}-\lambda \dot{\gamma}_{i}\right) \\
& =2 g\left(\left(\nabla_{\gamma_{i}} A\right) \dot{\gamma}_{i}+A\left(m_{i} \xi\right)-\lambda m_{i} \xi, A \dot{\gamma}_{i}-\lambda \dot{\gamma}_{i}\right) \\
& =2 g\left(\left(\nabla_{\dot{\gamma}_{i}} A\right) \dot{\gamma}_{i}+(\alpha-\lambda) m_{i} \xi, A \dot{\gamma}_{i}-\lambda \dot{\gamma}_{i}\right)=0,
\end{aligned}
$$

where each m_{i} is the curvature of $\dot{\gamma}_{i}(1 \leq i \leq 2 k)$. Since $A \dot{\gamma}_{i}(0)-\lambda \dot{\gamma}_{i}(0)=A v_{i}-\lambda v_{i}=$ 0 , we obtain $A \dot{\gamma}_{i}-\lambda \dot{\gamma}_{i}=0(1 \leq i \leq 2 k)$. Therefore, we see from (2.1) and (2.2) that

$$
\widetilde{\nabla}_{\dot{\gamma}_{i}} \dot{\gamma}_{i}=g\left(A \dot{\gamma}_{i}, \dot{\gamma}_{i}\right) N=g\left(\lambda \dot{\gamma}_{i}, \dot{\gamma}_{i}\right) N=\lambda N
$$

and

$$
\widetilde{\nabla}_{\dot{\gamma}_{i}} N=-A \dot{\gamma}_{i}=-\lambda \dot{\gamma}_{i}
$$

This implies that $\gamma_{i}(1 \leq i \leq 2 k)$ are circles of the curvature λ and the Frenet frame $\left\{\dot{\gamma}_{i}, N\right\}$ in $M_{n}(c)$. Here we note that $k=n-1$ in type A_{1} when $c>0$, and in type A_{0} and A_{1} when $c<0$.

Similarly in the case where M is of type A_{2}, we can show that $\gamma_{i}(2 k+1 \leq i \leq$ $2 n-2$) are circles of the curvature μ and the Frenet frame $\left\{\dot{\gamma}_{i}, N\right\}$ in $M_{n}(c)$.

4 Real hypersurfaces of type B

We denote by $M_{n}(c)$ a complex space form with the metric of constant holomorphic sectional curvature $4 c$ and M a real hypersurface in $M_{n}(c), c \neq 0$. In this section, we are concerned with homogeneous real hypersurfaces of type B. Then, according to Takagi's classification theorem [13] and Berndt's one [1], the principal curvatures and their multiplicities of type B in $M_{n}(c)$ are given as follows:
(i) In the case $c>0$, type B has three distinct constant principal curvatures $\alpha=2 \cot 2 r$ with multiplicity $1, \lambda=-\tan (r-\pi / 4)$ with multiplicity $n-1$ and $\mu=\cot (r-\pi / 4)$ with multiplicity $n-1$.
(ii) In the case $c<0$, type B has three distinct constant principal curvatures $\alpha=2 \tanh (2 r)$ with multiplicity $1, \lambda=\tanh (r)$ with multiplicity $n-1$ and $\mu=\operatorname{coth}(r)$ with multiplicity $n-1$.

Then we first have the following
Lemma 4.1. Let M be a real hypersurface of type B in $M_{n}(c), c \neq 0$. Take orthonormal vectors $\left(v_{1}, v_{2}, \ldots, v_{2 n-2}\right)$ orthogonal to ξ at an arbitrary point p of M in such a way that $\left(v_{1}, v_{2}, \ldots, v_{n-1}\right)$ (resp. $\left.\left(v_{n}, v_{n+1}, \ldots, v_{2 n-2}\right)\right)$ are principal vectors with principal curvature λ (resp. μ). Then $\left(v_{1}, v_{2}, \ldots, v_{2 n-2}\right)$ satisfy the following:
(1) All circles γ_{i} of an arbitrary curvature in M with $\gamma_{i}(0)=p$, $\dot{\gamma}_{i}(0)=v_{i}$ and the Frenet frame $\left\{\dot{\gamma}_{i}, \xi\right\}(1 \leq i \leq n-1)$ are circles of the curvature λ and the Frenet frame $\left\{\overline{\dot{\gamma}_{i}}, N\right\}$ in $M_{n}(c)$.
(2) All circles γ_{i} of an arbitrary curvature in M with $\gamma_{i}(0)=p$, $\dot{\gamma}_{i}(0)=v_{i}$ and the Frenet frame $\left\{\dot{\gamma}_{i}, \xi\right\}(n \leq i \leq 2 n-2)$ are circles of the curvature μ and the Frenet frame $\left\{\dot{\gamma}_{i}, N\right\}$ in $M_{n}(c)$.
Proof. Let $\gamma_{i}=\gamma_{i}(s)(1 \leq i \leq 2 n-2)$ be circles on M with $\gamma_{i}(0)=p$ and $\dot{\gamma}_{i}(0)=v_{i}$. Then, from the assumption that all γ_{i} have the Frenet frame $\left\{\dot{\gamma}_{i}, \xi\right\}$, it follows that each $\dot{\gamma}_{i}(1 \leq i \leq 2 n-2)$ is perpendicular to ξ.

Thus, owing to Theorem F, we get

$$
\begin{aligned}
\nabla_{\dot{\gamma}_{i}}\left\|A \dot{\gamma}_{i}-\lambda \dot{\gamma}_{i}\right\|^{2} & =2 g\left(\left(\nabla_{\dot{\gamma}_{i}} A\right) \dot{\gamma}_{i}+A\left(\nabla_{\dot{\gamma}_{i}} \dot{\gamma}_{i}\right)-\lambda \nabla_{\dot{\gamma}_{i}} \dot{\gamma}_{i}, A \dot{\gamma}_{i}-\lambda \dot{\gamma}_{i}\right)= \\
& =2 g\left(\left(\nabla_{\dot{\gamma}_{i}} A\right) \dot{\gamma}_{i}+A\left(k_{i} \xi\right)-\lambda k_{i} \xi, A \dot{\gamma}_{i}-\lambda \dot{\gamma}_{i}\right)= \\
& =2 g\left(\left(\nabla_{\dot{\gamma}_{i}} A\right) \dot{\gamma}_{i}+(\alpha-\lambda) k_{i} \xi, A \dot{\gamma}_{i}-\lambda \dot{\gamma}_{i}\right)=0,
\end{aligned}
$$

where each k_{i} is the curvature of $\gamma_{i}(1 \leq i \leq n-1)$. Since $A \dot{\gamma}_{i}(0)-\lambda \dot{\gamma}_{i}(0)=A v_{i}-\lambda v_{i}=$ 0 , we obtain $A \dot{\gamma}_{i}-\lambda \dot{\gamma}_{i}=0 \quad(1 \leq i \leq n-1)$. Therefore, we see from (2.1) and (2.2) that

$$
\widetilde{\nabla}_{\dot{\gamma}_{i}} \dot{\gamma}_{i}=g\left(A \dot{\gamma}_{i}, \dot{\gamma}_{i}\right) N=g\left(\lambda \dot{\gamma}_{i}, \dot{\gamma}_{i}\right) N=\lambda N
$$

and

$$
\widetilde{\nabla}_{\dot{\gamma}_{i}} N=-A \dot{\gamma}_{i}=-\lambda \dot{\gamma}_{i}
$$

This implies that $\gamma_{i}(1 \leq i \leq n-1)$ are circles of the curvature λ and the Frenet frame $\left\{\dot{\gamma}_{i}, N\right\}$ in $M_{n}(c)$.

Similarly we can show that $\gamma_{i}(n \leq i \leq 2 n-2)$ are circles of the curvature μ and the Frenet frame $\left\{\dot{\gamma}_{i}, N\right\}$ in $M_{n}(c)$.
Theorem 4.2. Let M be a real hypersurface of $M_{n}(c), c \neq 0$. Then M is locally congruent to one of type A and B if and only if there exist orthonormal vectors $\left(v_{1}, v_{2}, \ldots, v_{2 n-2}\right)$ orthogonal to ξ at an arbitrary point p of M such that all circles $\gamma_{i}=\gamma_{i}(s)$ in M with $\gamma_{i}(0)=p, \dot{\gamma}_{i}(0)=v_{i}$ and the Frenet frame $\left\{\dot{\gamma}_{i}, \xi\right\} \quad(1 \leq i \leq$ $2 n-2)$ are circles in $M_{n}(c)$ of the same curvature $c_{i}(1 \leq i \leq 2 k)$ or the same one $c_{j}(2 k+1 \leq j \leq 2 n-2)$.
Proof. Let M be locally congruent to one of type A and B in $M_{n}(c)$.
First of all, let M be of type A in $M_{n}(c)$ and let $\gamma_{i}=\gamma_{i}(s)(1 \leq i \leq 2 n-2)$ be circles in M with $\gamma_{i}(0)=p, \dot{\gamma}_{i}(0)=v_{i}$ and the Frenet frame $\left\{\dot{\gamma}_{i}, \xi\right\}$. Then, owing to Lemma 3.4, there exist orthonormal vectors $\left(v_{1}, v_{2}, \ldots, v_{2 n-2}\right)$ orthogonal to ξ at an arbitrary point p of M such that these circles $\gamma_{i}=\gamma_{i}(s)(1 \leq i \leq 2 n-2)$ are circles in $M_{n}(c)$ of the same curvature $c_{i}=\lambda(1 \leq i \leq 2 k)$ or the same one $c_{j}=\mu$ $(2 k+1 \leq j \leq 2 n-2)$.

Next, let M be of type B in $M_{n}(c)$. Then by Lemma 4.1, there exist orthonormal vectors $\left(v_{1}, v_{2}, \ldots, v_{2 n-2}\right)$ orthogonal to ξ at an arbitrary point p of M such that all circles $\gamma_{i}=\gamma_{i}(s)$ in M with $\gamma_{i}(0)=p, \dot{\gamma}_{i}(0)=v_{i}$ and the Frenet frame $\left\{\dot{\gamma}_{i}, \xi\right\}$ $(1 \leq i \leq 2 n-2)$ are circles in $M_{n}(c)$ of the same curvature $c_{i}=\lambda(1 \leq i \leq n-1)$ or the same one $c_{j}=\mu(n \leq j \leq 2 n-2)$.

Conversely, assume that there exist orthonormal vectors $\left(v_{1}, v_{2}, \ldots, v_{2 n-2}\right)$ orthogonal to ξ at an arbitrary point p of M such that all circles $\gamma_{i}=\gamma_{i}(s)$ in M with $\gamma_{i}(0)=p, \dot{\gamma}_{i}(0)=v_{i}$ and the Frenet frame $\left\{\dot{\gamma}_{i}, \xi\right\}(1 \leq i \leq 2 n-2)$ are circles in $M_{n}(c)$ of the same curvature $c_{i}(1 \leq i \leq 2 k)$ or the same one $c_{j}(2 k+1 \leq j \leq 2 n-2)$. Then the same argument as one in the proof of Theorem 3.2 gives

$$
g\left(A v_{i}, v_{i}\right) A v_{i}=c_{i}^{2} v_{i} \quad(1 \leq i \leq 2 k)
$$

and

$$
g\left(A v_{j}, v_{j}\right) A v_{j}=c_{j}^{2} v_{j} \quad(2 k+1 \leq j \leq 2 n-2)
$$

where c_{i} and c_{j} are positive constants. Then we get

$$
\begin{equation*}
A v_{i}= \pm c_{i} v_{i} \text { and } A v_{j}= \pm c_{j} v_{j}(1 \leq i \leq 2 k, 2 k+1 \leq j \leq 2 n-2) \tag{4.1}
\end{equation*}
$$

Thus, by means of (4.1), we obtain the fact that ξ is principal because $g\left(A \xi, v_{i}\right)=$ $g\left(\xi, A v_{i}\right)=0$ for $(1 \leq i \leq 2 n-2)$. Therefore M is a real hypersurface in $M_{n}(c)$ with at
most five distinct constant principal curvatures $c_{i},-c_{i}, c_{j},-c_{j}$ and α, where we have used Proposition A. Consequently, M is locally congruent to one of homogeneous real hypersurfaces of type A_{1}, A_{2}, B, C, D and E when $c>0$, and of type A_{0}, A_{1}, A_{2} and B when $c<0$. But the shape operators of homogeneous real hypersurfaces of type C, D and E when $c>0$ do not satisfy (4.1). That is, M is locally congruent to one of type A and B in $M_{n}(c)$.

Acknowledgements. This paper was supported by YAKSOO research Foundation and TGRC-KOSEF

References

[1] J.Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J. reine angew. Math., vol 395, 132-141, 1989.
[2] T.E.Cecil and P.J.Ryan, Focal sets and real hypersurfaces in complex projetive space, Trans. Amer. Math. Soc., vol 269, 481-499, 1982.
[3] Y.W.Choe, Characterization of certain real hypersurfaces of a complex space form, Nihonkai Math. J., vol 6, 97-114, 1995.
[4] U-H.Ki and Y.J.Suh, On real hypersurfaces of complex space form, Math. J. Okayama Univ., vol 32, 207-221, 1990.
[5] U-H.Ki, H.S.Kim and H.Nakagawa, A characterization of a real hypersurface of type B, Tsukuba J. Math., vol 14, 9-26, 1990.
[6] H.S.Kim and R.Takagi, Certain real hypersurfaces in a complex space form, Kyungpook Math. J., vol 35, 591-606, 1996.
[7] M.Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc., vol 296, 137-149, 1986.
[8] M.Kon, Pseudo-Einstein real hypersurfaces in complex space form, J. Diff. Geom., vol 14, 339-354, 1979.
[9] S.Maeda and K.Ogiue, Characterizations of geodesic hypersurfaces in a complex projective space by observing the extrinsic shape of geodesics, Math.Z., vol 225, 537-542, 1997.
[10] Y.Maeda, On real hypersurfaces of a complex projective space, J. Math. Soc. Japan, vol 28, 529-540, 1976.
[11] S.Montiel and A.Romero, On some real hypersurfaces of a complex hyperbolic space, Geometriae Dedicata, vol 20, 245-261, 1986.
[12] M.Okumura, On some real hypersurfaces of a complex projective space Trans. Amer. Math. Soc., vol 212, 355-364, 1975.
[13] M.Okumura, Compact real hypersurfaces of a complex projective space J. Diff. Geom., vol 12, 595-598, 1977.
[14] R.Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math., vol 10, 495-506, 1973.
[15] R.Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J. Math. Soc. Japan, vol 27, 43-53, 507-516, 1975
[16] C.Udrişte, Almost coquaternion hypersurfaces, Rev. Roum. Math. Pures Appl. 15, 9 (1970), 1545-1551.

Department of Mathematics
Inje University
Kimhae 621-749, Korea
E-mail:mathkim@ijnc.inje.ac.kr
Department of Applied Mathematics
Pukyong National University
Pusan 608-737, Korea

