Higher order Osserman pseudo-Riemannian manifolds of neutral signature $(2,2)$

Cătălin Şterbeţi

Abstract

In this paper we construct a family of pseudo-Riemannian metrics of neutral signature $(2,2)$ which leads to k-Osserman manifolds for all k admissible. For these manifolds the generalized Jacobi operator is 2-nilpotent. Conditions for locally symmetry on the considered manifolds are established.

Mathematics Subject Classification: 53A45, 53C35, 53C50.
Key words: generalized Jacobi operator, locally symmetric.
Let (M, g) be a pseudo-Riemannian manifold of signature (p, q) and dimension $n=p+q$. Let $R(\cdot, \cdot)$ be the Riemannian curvature operator. The Jacobi operator $J(X): Y \rightarrow R(Y, X) X$ is a self-adjoint operator and it plays an important role in the study of geodesic variations.

Let $S^{ \pm}(M)$ be the pseudo-sphere bundles of unit spacelike $(+)$ and timelike $(-)$ vectors for the manifold (M, g). Then (M, g) is said to be spacelike Osserman (respectively timelike Osserman) if the eigenvalues of $J(\cdot)$ are constant on $S^{+}(M, g)$ (respectively on $S^{-}(M, g)$). The notions spacelike Osserman and timelike Osserman are equivalent and if (M, g) is either of them, then (M, g) is said to be Osserman.

In this paper we study the higher order Jacobi operator, which was first defined by Stanilov and Videv ([9]) in the Riemannian setting. This definition was extended to semi-Riemannian geometry in [6]. Let π be a nondegenerate k-plane in $T_{p} M$, with orthonormal basis $\left\{e_{1}, \ldots, e_{k}\right\}$, where (M, g) is a pseudo-Riemannian manifold of signature (p, q). The generalized Jacobi operator is defined by

$$
J_{R}(\pi)=\sum_{i=1}^{k} g\left(e_{i}, e_{i}\right) R\left(\cdot, e_{i}\right) e_{i}
$$

We say that a pair of integers (r, s) is an admissible pair for $T_{p} M$ if $0 \leq r \leq p$, $0 \leq s \leq q$ and $1 \leq s+r \leq p+q-1$. This means that the Grassmannian $G r_{(r, s)}\left(T_{p} M\right)$ of all non-degenerate planes in $T_{p} M$ of signature (r, s) is non-empty and does not consist of a single point.

Let (r, s) be an admissible pair. We say that (M, g) is Ossermann of type (r, s) in $p \in M$ if the eigenvalues of the operator $J_{R}(\pi)$ do not depend on the choice of plane $\pi \in G r_{(r, s)}\left(T_{p} M\right)$.
P. Gilkey shows that if (M, g) is Osserman of type (r, s) then it is Osserman of type (\tilde{r}, \tilde{s}) for all admissible pairs (\tilde{r}, \tilde{s}) satisfying $r+s=\tilde{r}+\tilde{s}([3],[4])$. Thus, only the dimension $k=r+s$ of planes π is relevant and we simply talk about k-Osserman. A semi-Riemannian manifold (M, g) is said to be a k-Osserman manifold if for all points $p \in M,(M, g)$ is k-Osserman in p with the eigenvalue structure of $J_{R_{p}}(\cdot)$ independent of the chosen point p.

Let $M=\mathbf{R}^{4}$ with coordinates $(x, y)=\left(x^{1}, x^{2}, y^{1}, y^{2}\right)$. Then $\mathcal{X}=\operatorname{Span}\left\{\partial_{1}^{x}, \partial_{2}^{x}\right\}$ and $\mathcal{Y}=\operatorname{Span}\left\{\partial_{1}^{y}, \partial_{2}^{y}\right\}$ define two distributions of $T M$. The splitting $T M=\mathcal{X} \bigoplus \mathcal{Y}$ is just the usual splitting $T \mathbf{R}^{4}=T \mathbf{R}^{2} \bigoplus T \mathbf{R}^{2}$. We define a semi-Riemannian metric of neutral signature $(2,2)$ by setting

$$
\begin{align*}
g_{\left(f_{1}, f_{2}, h\right)} & =y^{1} f_{1}\left(x^{1}\right) d x^{1} \otimes d x^{1}+y^{2} f_{2}\left(x^{2}\right) d x^{2} \otimes d x^{2}+ \\
& +h\left(x^{1}, x^{2}\right)\left[d x^{1} \otimes d x^{2}+d x^{2} \otimes d x^{1}\right]+ \tag{0.1}\\
& +a\left[d x^{1} \otimes d y^{1}+d y^{1} \otimes d x^{1}+d x^{2} \otimes d y^{2}+d y^{2} \otimes d x^{2}\right]
\end{align*}
$$

where $a \in \mathbf{R}^{*}$ and f_{1}, f_{2}, h are smooth real valued functions. The coefficients of $g_{\left(f_{1}, f_{2}, h\right)}$ depend on x and y. Furthermore, the distribution \mathcal{Y} is totally isotropic with respect to $g_{\left(f_{1}, f_{2}, h\right)}$.

Lemma 1 The only nonvanishing covariant derivatives are given by

$$
\begin{align*}
\nabla \partial_{1}^{x} \partial_{1}^{x} & =-\frac{1}{2 a} f_{1}\left(x^{1}\right) \partial_{1}^{x}+\left[\frac{1}{2 a} y^{1} f_{1}^{\prime}\left(x^{1}\right)+\frac{y^{1}}{2 a^{2}} f_{1}^{2}\left(x^{1}\right)\right] \partial_{1}^{y}+ \\
& +\left[\frac{1}{a} \frac{\partial h}{\partial x^{1}}\left(x^{1}, x^{2}\right)+\frac{1}{2 a^{2}} f_{1}\left(x^{1}\right) h\left(x^{1}, x^{2}\right)\right] \partial_{2}^{y}, \\
\nabla \partial_{2}^{x} \partial_{2}^{x} & =-\frac{1}{2 a} f_{2}\left(x^{2}\right) \partial_{2}^{x}+\left[\frac{1}{2 a^{2}} f_{2}\left(x^{2}\right) h\left(x^{1}, x^{2}\right)+\frac{1}{a} \frac{\partial h}{\partial x^{2}}\left(x^{1}, x^{2}\right)\right] \partial_{1}^{y}+ \tag{0.2}\\
& +\left[\frac{1}{2 a} y^{2} f_{2}^{\prime}\left(x^{2}\right)+\frac{y^{2}}{2 a^{2}} f_{2}^{2}\left(x^{2}\right)\right] \partial_{2}^{y}, \\
\nabla \partial_{1}^{x} \partial_{1}^{y} & =\frac{1}{2 a} f_{1} \partial_{1}^{y}, \\
\nabla \partial_{2}^{x} \partial_{2}^{y} & =\frac{1}{2 a} f_{2} \partial_{2}^{y} .
\end{align*}
$$

From (0.1) we have the following:
Proposition 1 The only nonvanishing components of the curvature tensor of $\left(\mathbf{R}^{4}, g_{\left(f_{1}, f_{2}, h\right)}\right)$ are given by

$$
\begin{align*}
& R\left(\partial_{1}^{x}, \partial_{2}^{x}\right) \partial_{1}^{x}=-\frac{1}{a}\left[\frac{\partial^{2} h}{\partial x^{1} \partial x^{2}}+\frac{1}{2 a} f_{2} \frac{\partial h}{\partial x^{1}}+\frac{1}{2 a} f_{1} \frac{\partial h}{\partial x^{2}}+\frac{1}{4 a^{2}} f_{1} f_{2} h\right] \partial_{2}^{y} \tag{0.3}\\
& R\left(\partial_{1}^{x}, \partial_{2}^{x}\right) \partial_{2}^{x}=\frac{1}{a}\left[\frac{\partial^{2} h}{\partial x^{1} \partial x^{2}}+\frac{1}{2 a} f_{2} \frac{\partial h}{\partial x^{1}}+\frac{1}{2 a} f_{1} \frac{\partial h}{\partial x^{2}}+\frac{1}{4 a^{2}} f_{1} f_{2} h\right] \partial_{2}^{y}
\end{align*}
$$

Theorem 1 Let $p \geq 2$. Then $\left(M, g_{\left(f_{1}, f_{2}, h\right)}\right)$ is k-Osserman for every admissible k.
Proof. Let be X_{1}, X_{2}, X_{3} coordinate vector fields. By proposition $1, J\left(X_{1}\right) X_{3}=$ $R\left(X_{3}, X_{1}\right) X_{1}=0$ if $X_{1} \in \mathcal{Y}$. Thus $\mathcal{Y} \subset \operatorname{Ker}\left(J\left(X_{1}\right)\right)$. Furthermore, $\operatorname{range}\left(J\left(X_{2}\right)\right) \subset$ $\operatorname{span}\left\{R\left(\partial_{i}^{x}, \partial_{j}^{x}\right) \partial_{k}^{x}\right\} \subset \mathcal{Y}$. Thus $J\left(X_{1}\right) J\left(X_{2}\right)=0$.
If $\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$ is an orthonormal basis for $\pi \in G r_{(r, s)}\left(M, g_{\left(f_{1}, f_{2}, h\right)}\right)$, then we have

$$
J(\pi)^{2}=\sum_{i, j=1}^{k} g_{\left(f_{1}, f_{2}, h\right)}\left(X_{i}, X_{i}\right) g_{\left(f_{1}, f_{2}, h\right)}\left(X_{j}, X_{j}\right) J\left(X_{i}\right) J\left(X_{j}\right)=0
$$

Theorem 2 Let $p \geq 2$. The manifold $\left(\mathbf{R}^{4}, g_{\left(f_{1}, f_{2}, h\right)}\right)$ is a locally symmetric space if and only if the functions f_{1}, f_{2}, h are solutions of the following partial differential equations in \mathbf{R}^{2} :

$$
\begin{equation*}
\frac{\partial \Phi}{\partial x^{k}}+\frac{f_{k}}{2 a} \Phi=0, k=1,2 \tag{0.4}
\end{equation*}
$$

where we note

$$
\Phi\left(x^{1}, x^{2}\right)=\frac{1}{a}\left[\frac{\partial^{2} h}{\partial x^{1} \partial x^{2}}+\frac{1}{2 a} f_{2} \frac{\partial h}{\partial x^{1}}+\frac{1}{2 a} f_{1} \frac{\partial h}{\partial x^{2}}+\frac{1}{4 a^{2}} f_{1} f_{2} h\right]
$$

Proof. If we take in account this notation, we obtain by (0.3)

$$
R\left(\partial_{1}^{x}, \partial_{2}^{x}\right) \partial_{k}^{x}=(-1)^{k} \Phi\left(x^{1}, x^{2}\right) \partial_{3-k}^{y}, k=1,2
$$

Let $X_{k}=\alpha_{i}^{k} \partial_{i}^{x}, k=\overline{1,4}, i=\overline{1,4}$. The condition $\nabla_{X_{1}} R\left(X_{2}, X_{3}\right) X_{4}=0$ leads to

$$
\nabla_{\alpha_{i}^{1} \partial_{i}^{x}} R\left(\alpha_{j}^{2} \partial_{j}^{x}, \alpha_{l}^{3} \partial_{l}^{x}\right) \alpha_{s}^{4} \partial_{s}^{x}=0, i, j, k, s=\overline{1,4}
$$

Equivalently,

$$
\begin{gathered}
\alpha_{2}^{1} \alpha_{1}^{2} \alpha_{2}^{3} \alpha_{1}^{4} \nabla_{\partial_{2}^{x}} R\left(\partial_{1}^{x}, \partial_{2}^{x}\right) \partial_{1}^{x}+\alpha_{1}^{1} \alpha_{1}^{2} \alpha_{2}^{3} \alpha_{2}^{4} \nabla_{\partial_{1}^{x}} R\left(\partial_{1}^{x}, \partial_{2}^{x}\right) \partial_{2}^{x}+ \\
+\alpha_{2}^{1} \alpha_{2}^{2} \alpha_{1}^{3} \alpha_{1}^{4} \nabla_{\partial_{2}^{x}} R\left(\partial_{2}^{x}, \partial_{1}^{x}\right) \partial_{1}^{x}+\alpha_{1}^{1} \alpha_{2}^{2} \alpha_{1}^{3} \alpha_{2}^{4} \nabla_{\partial_{1}^{x}} R\left(\partial_{2}^{x}, \partial_{1}^{x}\right) \partial_{2}^{x}=0
\end{gathered}
$$

But

$$
\begin{gathered}
\nabla_{\partial_{1}^{x}} R\left(\partial_{1}^{x}, \partial_{2}^{x}\right) \partial_{2}^{x}=-\nabla_{\partial_{1}^{x}} R\left(\partial_{2}^{x}, \partial_{1}^{x}\right) \partial_{2}^{x}=\nabla_{\partial_{1}^{x}} \Phi \partial_{1}^{y}=\left(\frac{\partial \Phi}{\partial x^{1}}+\frac{f_{1}}{2 a} \Phi\right) \partial_{1}^{y} \\
\nabla_{\partial_{2}^{x}} R\left(\partial_{1}^{x}, \partial_{2}^{x}\right) \partial_{1}^{x}=-\nabla_{\partial_{2}^{x}} R\left(\partial_{2}^{x}, \partial_{1}^{x}\right) \partial_{1}^{x}=-\left(\frac{\partial \Phi}{\partial x^{2}}+\frac{f_{2}}{2 a} \Phi\right) \partial_{2}^{y}
\end{gathered}
$$

The proof is complete.
Corollary 1 If $h\left(x^{1}, x^{2}\right) \equiv C$ (h is a constant function), the conditions (0.4) for locally symmetry becames

$$
\left\{\begin{array}{l}
f_{1}^{\prime}\left(x^{1}\right) f_{2}\left(x^{2}\right)+\frac{1}{2 a} f_{1}^{2}\left(x^{1}\right) f_{2}\left(x^{2}\right)=0 \tag{0.5}\\
f_{2}^{\prime}\left(x^{2}\right) f_{1}\left(x^{1}\right)+\frac{1}{2 a} f_{2}^{2}\left(x^{2}\right) f_{1}\left(x^{1}\right)=0
\end{array}\right.
$$

References

[1] N. Blazic, N. Bokan, Z. Rakic, Osserman pseudo-Riemannian manifolds of signature (2, 2), J. Austral. Math. Soc. 71 (2001), 367-395
[2] E. Garcia-Rio, D.N. Kupeli, M.E. Vazquez Abal, R. Vazquez Lorentzo, Nonsymmetric Osserman psudo-Riemannian manifolds, Proc. Amer. Math. Soc. 126 (1998), 2771-2778
[3] P. Gilkey, Geometric propeties of natural operators defined by the Riemannian curvature tensor, World Scientific Press (2001), ISBN 981-02-04752-4
[4] P. Gilkey, Generalized Osserman manifolds, Abh. Math. Sem. Univ. Hamburg 68 (1998), 125-127
[5] P. Gilkey, R. Ivanova, T. Zhang, Higher order Jordan Osserman pseudoRiemannian manifolds, preprint http://arXiv.org/abs/math.DG0205269
[6] P. Gilkey, G. Stanilov, V. Videv, Pseudo-Riemannian manifolds whose generalized Jacobi operator has constant characteristic polynomial, J. Geom. 62 (1998), 144-153
[7] I.E. Hirică, L. Nicolescu, S. Leiko, G. Pripoae, Geometrie diferenţială. Probleme. Aplicaţii, Ed. Fundaţiei România de Mâine, Bucureşti, 1999
[8] R. Miron, M. Anastasiei, The Geometry of Lagrange Spaces: Theory and Applications, Fundamental Theories of Physics, no. 59, Kluwer Academic Publishers, 1994
[9] S. Stanilov, V. Videv, Four dimensional pointwise Ossermann manifolds, Abh. Math. Sem. Univ. Hamburg 68 (1998), 1-6
[10] P. Stavre, Capitole speciale de geometrie diferenţială. Varietăţi pseudoriemanniene, Ed. Radical, Craiova, 2001

Cătălin Şterbeţi
University of Craiova,Department of Applied Mathematics
Craiova, 1100, România
e-mail address: sterbetiro@yahoo.com

