A convergence criterion for monotone global dynamical systems

Constantin Bota

Abstract

Generalizing the notion of monotone dynamical system presented in [6], the new concept of monotone global dynamical system is defined in [5]. In this note is proved that the convergence criterion ([6]) for a monotone dynamical system also works for the monotone global dynamical systems in which the partial order relation on the vector bundle is fiberwise defined.

Mathematics Subject Classification: 37B99, 54H20. Key words: dynamical system, periodic orbits, equilibrium vectors.

1 Preliminaries

In [6], H. L. Smith has considered some particular topics concerning a structure (X, K, ϕ) , where

- X is a Banach space;
- *K* is a convex, pointed, closed and with non-empty interior cone, which determines a partial order relation on *X*;
- ϕ is a semi-flow on X, i.e. a continuous map $\phi: X \times \mathbb{R}^+ \to X$ ($\mathbb{R}^+ = [0, \infty) \subset \mathbb{R}$); if $\phi(x,t)$ is denoted by $\phi_t(x)$, then for (\forall) $x \in X$, (\forall) $s,t \in \mathbb{R}^+$ the following relations hold true:

$$\phi_0 = id_X \quad , \quad \phi_{s+t} = \phi_s \circ \phi_t = \phi_t \circ \phi_s;$$

We say that ϕ is a *monotone* (and order preserving) semi-flow on X if for (\forall) $t \in \mathbb{R}^+$, (\forall) $x, y \in X$ we have

$$(1.2) x \le y \Longrightarrow \phi_t(x) \le \phi_t(y) .$$

The structure (X, K, ϕ) , named by Smith ([6]) a monotone dynamical system, was generalized by D.I.Papuc in [5] as a structure $((E, p, M); K, \phi)$, named a monotone (and

Balkan Journal of Geometry and Its Applications, Vol.10, No.2, 2005, pp. 7-10.

[©] Balkan Society of Geometers, Geometry Balkan Press 2005.

8 C. Bota

order preserving) global dynamical system, where (E, p, M) is a regular vector bundle, i.e. M is a real, finite-dimensional, connected, paracompact, without boundary topological manifold and the type-fibre of (E, p, M) is \mathbb{R}^m . The vector bundle (E, p, M) endowed with a cone field K (i.e. a map $K : x \in M \mapsto K(x) \subset p^{-1}(x) = E_x \subset E$, where K(x) is a convex, pointed, closed, with non-emtpy interior cone and the sets $\bigcup_{x \in M} \operatorname{int} K(x), \bigcup_{x \in M} (E_x \setminus K(x))$ are open subsets of E) was studied in many notes (e.g. [3], [4]).

A partial order relation on $(E_x, K(x))$ is determined by the following relation:

$$X_x, Y_x \in E_x \setminus X_x \le Y_x \stackrel{def}{\Leftrightarrow} Y_x - X_x \in K(x);$$

then the pair (E_x, \leq) is a partially ordered topological vector space ([5]).

Relative to the structure ((E, p, M), K) we have a partial order relation on E, fiberwise induced:

$$X_x \le Y_y \Leftrightarrow x = y$$
 and $Y_y - X_x \in K(x)$.

In a monotone global dynamical system $((E, p, M); K, \phi)$, ϕ is a semi-flow on E for which the following two supplementary conditions (3) and (4) hold:

$$(1.3) \qquad (\forall) \ t \in \mathbb{R}^+; \ (\forall) \ x \in M \mid \phi_t(E_x) \subset E_{f_t(x)},$$

where $f_t: x \in M \mapsto f_t(x) \in M \ (\forall t \in \mathbb{R}^+)$ is the continuous map uniquely determined by the relation $p \circ \phi_t = f_t \circ p$. The map $f: (x,t) \in M \times \mathbb{R}^+ \mapsto f(x,t) = f_t(x) \in M$ is a semi-flow on M, called the projection of the semi-flow ϕ ; we have:

$$(1.4) \qquad (\forall) \ t \in \mathbb{R}^+; \ (\forall) \ X_x, Y_x \in E \mid X_x < Y_x \Longrightarrow \phi_t(X_x) < \phi_t(Y_x).$$

In the following, we introduce ([5]) some concepts concerning an arbitrary monotone global dynamical system:

- nearly invariant and invariant sets: a subset $B \subset E$ is nearly invariant if $\phi_t B \subset B$ for all $t \geq 0$ and it is invariant if $\phi_t B = B$ for all $t \geq 0$;
- orbits: the orbit of the vector $X_x \in E$, denoted by $\mathcal{O}(X_x)$, is defined as

$$\mathcal{O}(X_x) = \{ \phi_t(X_x) : t > 0 \};$$

We note that any orbit is a neary invariant set.

• periodic orbits: $\mathcal{O}(X_x)$ is a T-periodic orbit if for some T > 0, we have $\phi_T(X_x) = X_x$. In this case $\phi_{t+T}(X_x) = \phi_t(X_x)$ for all $t \geq 0$ and hence

$$\mathcal{O}(X_x) = \{ \phi_t(X_x) : 0 < t < T \};$$

• equilibrium (invariant) vectors: the vector X_x is said to be an equilibrium vector if $\mathcal{O}(X_x) = \{X_x\}$. We further denote by \mathcal{E} the set of all equilibrium points for ϕ .

• the convergent limit set of a vector X_x , denoted by $\omega(X_x)$ is

$$\omega(X_x) \stackrel{\text{def}}{=} \bigcap_{t>0} \overline{\bigcup_{s>t} \phi_s(X_x)}$$
.

When Φ_t are homeomorphisms for all $t \geq 0$ this set is closed and nearly invariant. If it is compact then it is conected ([1]).

- an equilibrium vector X_x is a vector for which the omega limit set $\omega(X_x)$ is an invariant set.
- a convergent vector X_x is a vector for which $\omega(X_x) = \{Y_y\}$ and Y_y is an invariant vector.

2 The convergence criterion for a monotone global dynamical system

We shall consider an arbitrary monotone global dynamical system $((E, p, M); K, \phi)$.

Lemma. If for a vector $X_x \in E_x$ the following conditions are satisfied:

- 1) $\overline{\mathcal{O}(X_x)}$ is a compact set;
- 2) there is a real number T > 0 such that $f_T(p(X_x)) = x$ and $\phi_T(X_x) \ge X_x$, then $\omega(X_x)$ is a T-periodic orbit.

Proof. The monotonicity of ϕ implies $\phi_{(n+1)T}(X_x) \geq \phi_{nT}(X_x)$, $n \in \mathbb{N}$ and, since $\overline{\mathcal{O}(X_x)}$ is compact, it follows that

$$\lim_{n \to \infty} \phi_{nT}(X_x) = \xi_y \quad .$$

Taking account of the continuity of ϕ , we have, for (\forall) t > 0, that:

$$\phi_{t+T}(\xi_y) = \phi_{t+T}(\lim_{n \to \infty} \phi_{nT}(X_x)) =$$

$$= \lim_{n \to \infty} \phi_{(n+1)T+t}(X_x) =$$

$$= \lim_{n \to \infty} (\phi_t(\phi_{(n+1)T}(X_x)) =$$

$$= \phi_t(\xi_y)$$

It follows that $\mathcal{O}(\xi_y)$ is a T-periodic orbit. If $t_j \to \infty$ and $\phi_{t_j}(X_x) \longrightarrow \xi_q$, $j \to \infty$, we write $t_j = n_j T + r_j$ with $n_j \in \mathbb{N}$ and $0 \le r_j < T$.

We can assume that $r_j \to r$, for $j \to \infty$ (passing to a subsequence if necessary). Since $n_j \to \infty$ as $j \to \infty$, we have

$$\phi_{t_i}(X_x) = \phi_{r_i}(\phi_{n_iT}(X_x)) \longrightarrow \phi_r(\xi_y) = \xi_q,$$

with $0 \le r \le T$. Therefore we conclude that $\omega(X_x) = \mathcal{O}(\xi_y)$.

Theorem. (convergence criterion). Given a vector $X_x \in E_x$, and assuming that

10 C. Bota

- 1) $\overline{\mathcal{O}(X_x)}$ is a compact set;
- 2) $f_t(p(X_x)) = x$ and $\phi_t(X_x) \ge X_x$ for $t \in (a,b) \subset (0,\infty)$, $(a,b) \ne \emptyset$, then X_x is a convergent vector and $\xi_y = \lim_{t \to \infty} \phi_t(X_x)$ is an invariant vector.

Proof. Let T > 0 and $0 < \varepsilon < T$ such that $(T - \varepsilon, T + \varepsilon) \subset (a, b)$. By the previous Lemma we have that $\omega(X_x) = \mathcal{O}(\xi_y)$, where

$$\xi_y = \lim_{n \to \infty} \phi_{nT}(X_x)$$

and $\mathcal{O}(\xi_y)$ is a T-periodic orbit. Applying the same assertions for $\tau \in (T - \varepsilon, T + \varepsilon)$ and replacing T, we find that $\omega(X_x)$ is a τ -periodic orbit. But $\omega(X_x) = \mathcal{O}(\xi_y)$, and hence

$$\phi_{t+\tau}(\xi_y) = \phi_t(\xi_y)$$
, for all $t \ge 0$.

It follows that $\phi_t(\xi_y)$ is τ -periodic for any $\tau \in (T - \varepsilon, T + \varepsilon)$.

Let G be the set of all periods of $\phi_t(\xi_y)$. Then G is closed with respect to addition and contains the interval $(T - \varepsilon, T + \varepsilon)$. If $0 \le s < \varepsilon$ and $t \ge 0$ then

$$\phi_{t+s}(\xi_y) = \phi_t(\phi_s(\xi_y)) = \phi_t(\phi_{s+T}(\xi_y)) = \phi_t(\xi_y).$$

From this results that $[0, \varepsilon) \subset G$ and thus $G = \mathbb{R}^+$ and $\xi_y \in \mathcal{E}$.

References

- [1] C. Bota, Some properties for the limit sets of a dynamical system on a topological manifold, Proceedings of the 10th Symposium of Math. and Appl. "Politehnica" Univ. of Timisoara, Nov. 6-9, 2003, 192-195.
- [2] C. Bota, About the invariant and minimal sets of a dynamical system on a topological space, An. Univ. Timisoara, Ser. Math., Vol. XXXIX, Fasc. spec., 2001, 105-109.
- [3] D.I. Papuc, Field of cones and positive operators on a vector bundle, An. Univ. Timisoara, Ser. Math., vol XXX, fasc. 1, 1992, 39-58.
- [4] D.I. Papuc, *Field of cones on a tensor bundle*, Proceedings of the 24-th National Conference of Geometry and Topology, Timisoara, Romania, July 5-9 1994, Vol. II, 237-242.
- [5] D.I. Papuc, Cone Fields on Vector Bundle, 2005, preprint.
- [6] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, American Math. Soc., Providence, 1995.

Constantin Bota

Politehnica University of Timisoara

Piața Regina Maria 1, Timisoara 1900, Romania

e-mail address: cbotauvt@yahoo.com