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Abstract. The paper determines basic relations between the metric
canonically induced by the Berwald-Moor Finsler structure, the normal-
ized flag Generalized Lagrange metric and the Pavlov poly-scalar product.
Then, in the framework of vector bundles endowed with (h, v)−metrics,
the extended Einstein equations are obtained for both the associated
Generalized Lagrange and the Euclidean-Berwald-Moor models.
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1 Introduction

Let M be a 4-dimensional differential manifold of class C∞, (TM, π,M) its tangent
bundle and (xi, yi) local coordinates in TM . Let F : TM → R, F = F (y) be a
locally Minkowski Finsler function ([8], [7]). Then we consider the induced fundamen-
tal metric tensor field

g∗ij =
1
2

∂2F 2

∂yi∂yj
= FFij + FiFj , i, j = 1, 4,(1.1)

where we denote

Fi =
∂F

∂yi
, Fij =

∂2F

∂yi∂yj
, Fijk =

∂3F

∂yi∂yj∂yk
, etc.(1.2)

For M = R4 and the Finsler function specialized to

F (y) = 4
√
|y1y2y3y4|, yi 6= 0, i = 1, 4,(1.3)

which is a particular case of the Shimada Finsler metric ([14, 15, 5, 4, 6])

F (x, y) = n
√

ai1i2...in(x)yi1yi2 . . . yin ,
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where ai1i2...in
is a (0, n) tensor field on M , D.G. Pavlov has studied the

”4-pseudoscalar product” ([11]) related to the Berwald-Moor metric (1.3),

(X,Y, Z, T ) = GijklX
iY jZkT l,(1.4)

where

Gijkl =
1
4!

∂4L
∂yi∂yj∂yk∂yl

, L = F 4.(1.5)

In the folowing, we consider (1.4) and (1.5) for an arbitrary Finsler function F = F (y).
Starting from here, we will construct a generalized Lagrange space based on the tensor
field (1.4).

First, we notice that the tensor field (1.5) satisfies the following conditions:

1. Gijkl is totally symmetric w.r.t. the indices i, j, k, l;

2. Gijk0 ≡ Gijkly
l =

1
4!

∂3F 4

∂yi∂yj∂yk
is 1-homogeneous in y;

3. Gij00 ≡ Gijkly
kyl =

1
12

∂2F 4

∂yi∂yj
is 2-homogeneous in y;

4. Gi000 ≡ Gijkly
jykyl =

1
4

∂F 4

∂yi
is 3-homogeneous in y;

5. G0000 ≡ Gijkly
iyjykyl = F 4 is 4-homogeneous,

where the null index denotes the transvection with the directional argument y.
The properties from above are direct consequences of the 1−homogeneity of F . The
following relations are stragihtforward





Li = 4F 3Fi

Lij = 4(3F 2FiFj + F 3Fij)

Lijk = 4[6FFiFjFk + 3F 2 S
ijk

(FiFjk) + F 3Fijk]

Lijkl = 4[6FiFjFkFl + F 3Fijkl + 6FS′(FijFkFl)+

+3F 2

[
S

ijkl
(FijFkl) + S

ijkl
(FlFijk)

]
,

where the lower index of F represents partial derivative with respect to the
corresponding directional variable, and we denoted by S cyclic summation about
the indices involved, and by S′ distinct pairwise summation of 6 terms about the four
indices. We define the pseudo-scalar product

〈X,Y 〉y =
1

F 2
(X, Y, y, y), X, Y ∈ X (M),

where y = yi ∂

∂yi
is the Liouville vector field ([7]) and the vector fields X, Y are

considered at some point x ∈ M .
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It is obvious that 〈 , 〉y is bilinear in the two arguments and (e.g., for the Berwald-
Moor metric) it satisfies the axioms of a pseudo-scalar product. We locally have

〈X, Y 〉y =
1

F 2
GijklX

iY jykyl =
Gij00

F 2
XiY j ,

and hence the coefficients of this pseudo-scalar product can be expressed as

gij =
Gij00

F 2
=

1
12F 2

∂2F 4

∂yi∂yj
=

1
3
FFij + FiFj .(1.6)

Then gij is a 2-covariant non-degenerate 0-homogeneous tensor field (called further
normalized flag metric), which defines a generalized Lagrange space (M, g).

We note that though the associated to g Cartan tensor field

Cijk =
1

2

[
1

3
(FkFij + FFijk) + FikFj + FiFjk

]
=

1

2

[(
1

3
FFijk + S

ijk
FiFjk

)
− 2

3
FkFij

]

satisfies C0jk = Ci0k = Cij0 = 0, it is still non-symmetric in its three indices. Hence
the metric gij is not a Finsler fundamental tensor field, but a proper Generalized
Lagrange metric. We remark that since F is 0−homogeneous in y, it follows by using
the Euler relations that Fiy

i = F and Fijy
j = 0. Then the absolute energy attached

to gij is F 2, since

E = gijy
iyj =

(
1
3
FFij + FiFj

)
yiyj = F 2.(1.7)

Then the Lagrange metric associated to g via its energy is

1
2

∂2E
∂yi∂yj

=
1
2

∂2F 2

∂yi∂yj
= g∗ij ,(1.8)

and then (M, E = F 2) is a Lagrange space.
From the homogeneity of F it also follows that

1
2

∂E
∂yi

= gijy
j .(1.9)

Consequently, we have
Theorem 1. a) (M, g) is a generalized Lagrange space with regular metric. The

Finslerian metric g∗ij provided by the energy E = F 2 is related to the normalized flag
metric g via:

g∗ij = gij +
2
3
FFij .

b) The families of metrics Σλ : g̃ij = gij + λFFij , λ ∈ R and Σµ : ĝij = µgij

+(1− µ)g∗ij , µ ∈ R have the same energy E = F 2 and include the metrics g∗ and g,
whence in particular

E = F 2 = gijy
iyj = g∗ijy

iyj .

Proof. a) The relations (1.9) and (1.8) provide the first claim, while (1.1) and (1.6),
the second. Using an argument similar to (1.7), b) follows. ut
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For the case when F is the Berwald-Moor metric, the matrices attached to g and
to its dual have the particular form:

[g] =
1

12F 2




0 cd bd bc
cd 0 ad ac
bd ad 0 ab
bc ac ab 0


 , [g−1] = 4F 2




− 2a
bcd

1
cd

1
db

1
cb

1
cd

− 2b
cda

1
da

1
ca

1
db

1
da

− 2c
dab

1
ba

1
cb

1
ca

1
ba

− 2d
abc




.

where we denoted (a, b, c, d) = (y1, y2, y3, y4). Then one can easily check that
det[g] = −3(abcd)2/(12F 2)4 < 0 for abcd 6= 0. As well, the signature of [g] is
(+,−,−,−), as clearly show its Maple 9.5 - derived eigenvalues, which are the roots

RootOf( Z4 + (−a2 ∗ b2 − a2 ∗ c2 − c2 ∗ d2 − b2 ∗ d2 − a2 ∗ d2 − b2 ∗ c2) ∗ Z2+

+(−2 ∗ c3 ∗ d ∗ b ∗ a− 2 ∗ a3 ∗ d ∗ c ∗ b− 2 ∗ b3 ∗ d ∗ c ∗ a− 2 ∗ c ∗ d3 ∗ b ∗ a) ∗ Z−
−3 ∗ c2 ∗ d2 ∗ a2 ∗ b2).

The above construction in (1.5) can be generalized to an n-dimensional manifold
M , as the ”poly-pseudo-scalar product”

(X1, X2, ..., Xn) = Gi1...inXi1 ...Xin ,

with
Gi1...in =

1
n!

∂nFn

∂yi1 ...∂yin
.

This relates to the generalized Lagrange geometry by defining the pseudo-scalar prod-
uct

〈X,Y 〉 =
1

Fn−2
(X, Y, y, . . . , y), X, Y ∈ X (M),

having the local components

gij =
1

Fn−2
Gij0...0 =

1
n(n− 1)Fn−2

∂2Fn

∂yi∂yj
.

2 Links between g, g∗ and G.

We shall first establish the relation between the generalized Lagrange metric g and
the Finsler one g∗. For this purpose, we use a property of regular generalized Lagrange
metrics ([7]):

g∗ij = gij +
∂gik

∂yj
yk.(2.1)

Taking into account that E = F 2, we can write g in the more convenient form

gij =
1

12E
∂2E2

∂yi∂yj
.(2.2)

Using (1.2), (1.6) and g∗i0 = FFi, g∗00 = F 2, where gi0 = gijy
j etc., one easily infers

the relation
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gij =
1
3

(
g∗ij + 2

g∗i0 · g∗j0
g∗00

)
.(2.3)

We shall now express Gijkl in terms of g∗. By a straightforward computation, we
obtain

4!Gijkl = 2 S
ijkl

EijkEl + 2(EijEkl + EikEjl + EilEjk) + 2EEijkl,(2.4)

where the low indices of E mean derivation with the corresponding components of y.
If in the above equality we replace

E = g∗00, Ei = 2g∗i0, Eij = 2g∗ij , Eijk = 2g∗ij,k = 2
∂g∗ij
∂yk

,

we obtain the components of the 4-scalar product in the alternative form

Gijkl =
1
3!

[
2 S

ijkl
(2g∗ij,kg∗l0) + 2(g∗ijg

∗
kl + g∗ikg∗jl + g∗ilg

∗
jk) + g∗00g

∗
ij,kl

]
.

Let us denote, for X,Y, Z, T ∈ X (M), g∗XY = g∗ijX
iY j , and GXY ZT = GijklX

iY jZkT l.
Consequently, the basic multiple transvections of the 4- scalar product involved in the
conformal properties of the Berwald-Moor space ([12]) are

(X, X, Y, Y ) = GXXY Y = 1
3!

[
2 S

X,X,Y,Y
g∗XX,Y g∗Y 0+

+2(g∗XXg∗Y Y + 2(g∗XY )2) + g∗00g
∗
XX,Y Y

]

and we have as well

(X,X, X, Y ) + (X, Y, Y, Y ) = GXXXY + GXY Y Y =

= 1
3!

[
2(g∗XX,Xg∗Y 0 + g∗Y Y,Y g∗X0) + 6(g∗XY,Xg∗X0 + g∗Y X,Y g∗Y 0)+

+6g∗XY (g∗XX + g∗Y Y ) + g∗00(g
∗
XX,XY + g∗XY,Y Y )

]
.

3 The Berwald-Moor case

For the sake of simplicity, we restrict ourselves to the case when y1y2y3y4 > 0. For
F as in (1.3), we obtain Gijkl = 1/4!, i.e., the 4-linear form defined in (1.5) on the
space-time

(X, Y, Z, T ) =
1
4!

Xi1Y i2Zi3T i4εi1i2i3i4 ,

where εi1i2i3i4 is 1 for i1, i2, i3, i4 different in pairs, and 0 else.

In the following, we maintain the convention to denote by i1, i2, i3, i4 the distinct
values from 1 to 4 (ij 6= ik for j 6= k). The absolute energy of M is then

E =
√

y1y2y3y4,

and the generalized Lagrange metric tensor given by (1.6) gij , which we call
normalized flag Berwald-Moor metric, takes the form
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gii = 0, i = 1, 4, gi1i2 =
yi3yi4

12E , i1 6= i2.(3.1)

The inverse matrix gij has the components

gii =
−8(yi)2

E , i = 1, 4; gi1i2 =
4E

yi3yi4
=

4yi1yi2

E , i1 6= i2.

For the associated Finsler metric, we have: g∗i1i2
=

yi3yi4

8E , and g∗ii = − E
8(yi)2

.

It is worthy to notice that, for i1 6= i2, we have gi1i2 =
2
3
g∗i1i2 . Let

Chjk = gihCi
jk =

1
2

(
∂gjh

∂yk
+

∂gkh

∂yj
− ∂gjk

∂yh

)
.

Then, for distinct i1, i2, i3, we get

Ci1i2i3 =
1
3

(
∂g∗i2i1

∂yi3
+

∂g∗i3i1

∂yi2
− ∂g∗i2i3

∂yi1

)
=

1
3

(
1
2
Ei2i1i3 +

1
2
Ei2i1i3 −

1
2
Ei2i1i3

)
,

and hence Ci1i2i3 = 1
6Ei2i1i3 . In the same way, it follows that

Ci1i1i2 = 0 = Ci1i2i1 , Ci2i1i1 =
1
3
Ei1i1i2 , Ci1i1i1 = 0.

We obtain now the coefficients Ci
jk = gihChjk in terms of the energy E as:





Ci1
i2i3

=
2
3E (−2(yi1)2Ei1i2i3 + yi1yi4Ei2i3i4)

Ci1
i1i2

=
2
3E (yi1yi3Ei1i2i3 + yi1yi4Ei1i2i4)

Ci1
i2i2

=
4
3E (−2(yi1)2Ei1i2i2 + yi1yi3Ei2i2i3 + yi1yi4Ei2i2i4)

Ci1
i1i1

=
4
3E (yi1yi2Ei2i1i1 + yi1yi3Ei3i1i1 + yi1yi4Ei4i1i1).

(3.2)

4 Einstein equations for Berwald-Moore type
(h, v)−models

The considerations within the current section apply to any locally Minkowski Finsler
function, including the Berwald-Moor fundamental function as a particular case. Due
to the fact that F is locally Minkovski, it follows that the coefficients N i

j of the
Kern nonlinear connection ([7]) vanish. As well, the canonical linear d−connection
CΓ(N) ≡ {Li

jk, Ci
jk} for the Generalized Lagrange space (M, g) described by

Li
jk =

1
2
gih

(
δgjh

δxk
+

δgkh

δxj
− δgjk

δxh

)
,

Ci
jk =

1
2
gih

(
∂gjh

∂yk
+

∂gkh

∂yj
− ∂gjk

∂yh

)
,

(4.1)
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has all its horizontal coefficients Li
jk zero and the components of its torsion

vanish, except hT ( ∂
∂yk , δ

δxj ) = Ci
jk

δ

δxi
. The coefficients of its curvature tensor are

([7]) Ri
j kh = P i

j kh = 0, and

Sa
bcd = ∂̇[dC

a
bc] + Ca

s[dC
s
bc],(4.2)

where ∂̇d is the partial w.r.t. yd and we denoted τ[i...j] = τi...j − τj...i.
In general, the Einstein equations for a (h, v)-metric (h, g) on TM have the form

([8]) 



Rij − 1
2 (R + S)hij = TH

ij

P 1
bj = TM1

bj , P 2
bj = TM2

jb ,

Sab − 1
2 (R + S)gab = TV

ab,

where Rij , P
1
ij , P

2
ij and Sab are the Ricci d−tensors attached to the canonic connection,

R, S are the scalars of curvature and TH
ij , TM1

ij , TM2
ij and TV

ij are the energy-momentum
d-tensor fields. Then, for the locally Minkovski model (M, g), given by the particular
case when the (h, v)−metric (h, g) has h = g = g(y), the following holds true:

Theorem 2. The Einstein mixed tensors of the Generalized Lagrange model at-
tached to the locally Minkowski model (M, g) identically vanish, and the Einstein
equations are { − 1

2Sgij = TH
ij , 0 = TM1

bj , 0 = TM2
jb

Eab ≡ Sab − 1
2Sgab = TV

ab,
(4.3)

where the vertical Einstein tensor has the specific form

Eab = Sp
rstδ

t
p(δ

r
aδs

b −
1
2
grsgab),(4.4)

with Sp
rst given by (4.2) and Ca

bc by (4.1), and where grs is the dual of gab.

In the case when the (h, v)−metric has its horizontal part Euclidean, of coefficients
hij , i, j = 1, n, then the canonic linear d−connection CΓ(N) ≡ {Li

jk, La
bk, Ci

ja, Ca
bc}

has the first three sets of coefficients zero and all its torsion components vanish; the
same holds true for the curvature, except the set S a

b cd given in (4.2). In this case we
have

Theorem 3. The Einstein equations for the (h, v) Einstein-locally Minkowski
metric (hij , gij(y)) write

{ − 1
2Shij = TH

ij , 0 = TM1
bj , 0 = TM2

jb

Eab ≡ Sab − 1
2Sgab = TV

ab,
(4.5)

with (4.2) and (4.4) satisfied.

We note that in the case when g is of Berwald-Moor type (3.1), the equations (4.3)
and (4.5) have the vertical coefficients Ca

bc involved in (4.4)-(4.2) specialized by (3.2).
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