# Einstein equations for $(h, v)$-Berwald-Moor relativistic models 

Vladimir Balan and Nicoleta Brinzei


#### Abstract

The paper determines basic relations between the metric canonically induced by the Berwald-Moor Finsler structure, the normalized flag Generalized Lagrange metric and the Pavlov poly-scalar product. Then, in the framework of vector bundles endowed with $(h, v)$-metrics, the extended Einstein equations are obtained for both the associated Generalized Lagrange and the Euclidean-Berwald-Moor models.


Mathematics Subject Classification: 53B40, 53C60, 53C07.
Key words: Finsler metric, Generalized Lagrange metric, poly-scalar product, curvature, torsion, Einstein equations.

## 1 Introduction

Let $M$ be a 4-dimensional differential manifold of class $\mathcal{C}^{\infty},(T M, \pi, M)$ its tangent bundle and $\left(x^{i}, y^{i}\right)$ local coordinates in $T M$. Let $F: T M \rightarrow R, F=F(y)$ be a locally Minkowski Finsler function ([8], [7]). Then we consider the induced fundamental metric tensor field

$$
\begin{equation*}
g_{i j}^{*}=\frac{1}{2} \frac{\partial^{2} F^{2}}{\partial y^{i} \partial y^{j}}=F F_{i j}+F_{i} F_{j}, \quad i, j=\overline{1,4}, \tag{1.1}
\end{equation*}
$$

where we denote

$$
\begin{equation*}
F_{i}=\frac{\partial F}{\partial y^{i}}, \quad F_{i j}=\frac{\partial^{2} F}{\partial y^{i} \partial y^{j}}, \quad F_{i j k}=\frac{\partial^{3} F}{\partial y^{i} \partial y^{j} \partial y^{k}}, \text { etc. } \tag{1.2}
\end{equation*}
$$

For $M=\mathbb{R}^{4}$ and the Finsler function specialized to

$$
\begin{equation*}
F(y)=\sqrt[4]{\left|y^{1} y^{2} y^{3} y^{4}\right|}, y^{i} \neq 0, i=\overline{1,4} \tag{1.3}
\end{equation*}
$$

which is a particular case of the Shimada Finsler metric ([14, 15, 5, 4, 6])

$$
F(x, y)=\sqrt[n]{a_{i_{1} i_{2} \ldots i_{n}}(x) y^{i_{1}} y^{i_{2}} \ldots y^{i_{n}}}
$$

where $a_{i_{1} i_{2} \ldots i_{n}}$ is a $(0, n)$ tensor field on $M$, D.G. Pavlov has studied the "4-pseudoscalar product" ([11]) related to the Berwald-Moor metric (1.3),

$$
\begin{equation*}
(X, Y, Z, T)=G_{i j k l} X^{i} Y^{j} Z^{k} T^{l} \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{i j k l}=\frac{1}{4!} \frac{\partial^{4} \mathcal{L}}{\partial y^{i} \partial y^{j} \partial y^{k} \partial y^{l}}, \quad \mathcal{L}=F^{4} \tag{1.5}
\end{equation*}
$$

In the folowing, we consider (1.4) and (1.5) for an arbitrary Finsler function $F=F(y)$. Starting from here, we will construct a generalized Lagrange space based on the tensor field (1.4).

First, we notice that the tensor field (1.5) satisfies the following conditions:

1. $G_{i j k l}$ is totally symmetric w.r.t. the indices $i, j, k, l$;
2. $G_{i j k 0} \equiv G_{i j k l} y^{l}=\frac{1}{4!} \frac{\partial^{3} F^{4}}{\partial y^{i} \partial y^{j} \partial y^{k}}$ is 1-homogeneous in $y$;
3. $G_{i j 00} \equiv G_{i j k l} y^{k} y^{l}=\frac{1}{12} \frac{\partial^{2} F^{4}}{\partial y^{i} \partial y^{j}}$ is 2-homogeneous in $y$;
4. $G_{i 000} \equiv G_{i j k l} y^{j} y^{k} y^{l}=\frac{1}{4} \frac{\partial F^{4}}{\partial y^{i}}$ is 3-homogeneous in $y$;
5. $G_{0000} \equiv G_{i j k l} y^{i} y^{j} y^{k} y^{l}=F^{4}$ is 4-homogeneous,
where the null index denotes the transvection with the directional argument $y$. The properties from above are direct consequences of the 1 -homogeneity of $F$. The following relations are stragihtforward

$$
\left\{\begin{aligned}
\mathcal{L}_{i}= & 4 F^{3} F_{i} \\
\mathcal{L}_{i j}= & 4\left(3 F^{2} F_{i} F_{j}+F^{3} F_{i j}\right) \\
\mathcal{L}_{i j k}= & 4\left[6 F F_{i} F_{j} F_{k}+3 F^{2}{ }_{i j k}^{S_{2}}\left(F_{i} F_{j k}\right)+F^{3} F_{i j k}\right] \\
\mathcal{L}_{i j k l}= & 4\left[6 F_{i} F_{j} F_{k} F_{l}+F^{3} F_{i j k l}+6 F S^{\prime}\left(F_{i j} F_{k} F_{l}\right)+\right. \\
& +3 F^{2}\left[{ }_{i j k l}^{S}\left(F_{i j} F_{k l}\right)+\underset{i j k l}{S}\left(F_{l} F_{i j k}\right)\right]
\end{aligned}\right.
$$

where the lower index of $F$ represents partial derivative with respect to the corresponding directional variable, and we denoted by $S$ cyclic summation about the indices involved, and by $S^{\prime}$ distinct pairwise summation of 6 terms about the four indices. We define the pseudo-scalar product

$$
\langle X, Y\rangle_{y}=\frac{1}{F^{2}}(X, Y, y, y), \quad X, Y \in \mathcal{X}(M)
$$

where $y=y^{i} \frac{\partial}{\partial y^{i}}$ is the Liouville vector field ([7]) and the vector fields $X, Y$ are considered at some point $x \in M$.

It is obvious that $\langle,\rangle_{y}$ is bilinear in the two arguments and (e.g., for the BerwaldMoor metric) it satisfies the axioms of a pseudo-scalar product. We locally have

$$
\langle X, Y\rangle_{y}=\frac{1}{F^{2}} G_{i j k l} X^{i} Y^{j} y^{k} y^{l}=\frac{G_{i j 00}}{F^{2}} X^{i} Y^{j}
$$

and hence the coefficients of this pseudo-scalar product can be expressed as

$$
\begin{equation*}
g_{i j}=\frac{G_{i j 00}}{F^{2}}=\frac{1}{12 F^{2}} \frac{\partial^{2} F^{4}}{\partial y^{i} \partial y^{j}}=\frac{1}{3} F F_{i j}+F_{i} F_{j} \tag{1.6}
\end{equation*}
$$

Then $g_{i j}$ is a 2-covariant non-degenerate 0-homogeneous tensor field (called further normalized flag metric), which defines a generalized Lagrange space $(M, g)$.

We note that though the associated to $g$ Cartan tensor field

$$
C_{i j k}=\frac{1}{2}\left[\frac{1}{3}\left(F_{k} F_{i j}+F F_{i j k}\right)+F_{i k} F_{j}+F_{i} F_{j k}\right]=\frac{1}{2}\left[\left(\frac{1}{3} F F_{i j k}+S_{i j k} F_{i} F_{j k}\right)-\frac{2}{3} F_{k} F_{i j}\right]
$$

satisfies $C_{0 j k}=C_{i 0 k}=C_{i j 0}=0$, it is still non-symmetric in its three indices. Hence the metric $g_{i j}$ is not a Finsler fundamental tensor field, but a proper Generalized Lagrange metric. We remark that since $F$ is 0 -homogeneous in $y$, it follows by using the Euler relations that $F_{i} y^{i}=F$ and $F_{i j} y^{j}=0$. Then the absolute energy attached to $g_{i j}$ is $F^{2}$, since

$$
\begin{equation*}
\mathcal{E}=g_{i j} y^{i} y^{j}=\left(\frac{1}{3} F F_{i j}+F_{i} F_{j}\right) y^{i} y^{j}=F^{2} \tag{1.7}
\end{equation*}
$$

Then the Lagrange metric associated to $g$ via its energy is

$$
\begin{equation*}
\frac{1}{2} \frac{\partial^{2} \mathcal{E}}{\partial y^{i} \partial y^{j}}=\frac{1}{2} \frac{\partial^{2} F^{2}}{\partial y^{i} \partial y^{j}}=g_{i j}^{*} \tag{1.8}
\end{equation*}
$$

and then $\left(M, \mathcal{E}=F^{2}\right)$ is a Lagrange space.
From the homogeneity of $F$ it also follows that

$$
\begin{equation*}
\frac{1}{2} \frac{\partial \mathcal{E}}{\partial y^{i}}=g_{i j} y^{j} \tag{1.9}
\end{equation*}
$$

Consequently, we have
Theorem 1. a) $(M, g)$ is a generalized Lagrange space with regular metric. The Finslerian metric $g_{i j}^{*}$ provided by the energy $\mathcal{E}=F^{2}$ is related to the normalized flag metric $g$ via:

$$
g_{i j}^{*}=g_{i j}+\frac{2}{3} F F_{i j} .
$$

b) The families of metrics $\Sigma_{\lambda}: \quad \tilde{g}_{i j}=g_{i j}+\lambda F F_{i j}, \lambda \in \mathbb{R}$ and $\Sigma_{\mu}: \hat{g}_{i j}=\mu g_{i j}$ $+(1-\mu) g_{i j}^{*}, \mu \in \mathbb{R}$ have the same energy $\mathcal{E}=F^{2}$ and include the metrics $g^{*}$ and $g$, whence in particular

$$
\mathcal{E}=F^{2}=g_{i j} y^{i} y^{j}=g_{i j}^{*} y^{i} y^{j}
$$

Proof. a) The relations (1.9) and (1.8) provide the first claim, while (1.1) and (1.6), the second. Using an argument similar to (1.7), b) follows.

For the case when $F$ is the Berwald-Moor metric, the matrices attached to $g$ and to its dual have the particular form:

$$
[g]=\frac{1}{12 F^{2}}\left(\begin{array}{cccc}
0 & c d & b d & b c \\
c d & 0 & a d & a c \\
b d & a d & 0 & a b \\
b c & a c & a b & 0
\end{array}\right),\left[g^{-1}\right]=4 F^{2}\left(\begin{array}{cccc}
-\frac{2 a}{b c d} & \frac{1}{c d} & \frac{1}{d b} & \frac{1}{c b} \\
\frac{1}{c d} & -\frac{2 b}{c d a} & \frac{1}{d a} & \frac{1}{c a} \\
\frac{1}{d b} & \frac{1}{d a} & -\frac{2 c}{d a b} & \frac{1}{b a} \\
\frac{1}{c b} & \frac{1}{c a} & \frac{1}{b a} & -\frac{2 d}{a b c}
\end{array}\right)
$$

where we denoted $(a, b, c, d)=\left(y^{1}, y^{2}, y^{3}, y^{4}\right)$. Then one can easily check that $\operatorname{det}[g]=-3(a b c d)^{2} /\left(12 F^{2}\right)^{4}<0$ for $a b c d \neq 0$. As well, the signature of $[g]$ is $(+,-,-,-)$, as clearly show its Maple 9.5 - derived eigenvalues, which are the roots

$$
\begin{aligned}
& \operatorname{RootOf}\left(Z^{4}+\left(-a^{2} * b^{2}-a^{2} * c^{2}-c^{2} * d^{2}-b^{2} * d^{2}-a^{2} * d^{2}-b^{2} * c^{2}\right) * Z^{2}+\right. \\
& \quad+\left(-2 * c^{3} * d * b * a-2 * a^{3} * d * c * b-2 * b^{3} * d * c * a-2 * c * d^{3} * b * a\right) * Z- \\
& \left.\quad-3 * c^{2} * d^{2} * a^{2} * b^{2}\right) .
\end{aligned}
$$

The above construction in (1.5) can be generalized to an $n$-dimensional manifold $M$, as the "poly-pseudo-scalar product"

$$
\left(X_{1}, X_{2}, \ldots, X_{n}\right)=G_{i_{1} \ldots i_{n}} X^{i_{1}} \ldots X^{i_{n}}
$$

with

$$
G_{i_{1} \ldots i_{n}}=\frac{1}{n!} \frac{\partial^{n} F^{n}}{\partial y^{i_{1}} \ldots \partial y^{i_{n}}}
$$

This relates to the generalized Lagrange geometry by defining the pseudo-scalar product

$$
\langle X, Y\rangle=\frac{1}{F^{n-2}}(X, Y, y, \ldots, y), \quad X, Y \in \mathcal{X}(M)
$$

having the local components

$$
g_{i j}=\frac{1}{F^{n-2}} G_{i j 0 \ldots 0}=\frac{1}{n(n-1) F^{n-2}} \frac{\partial^{2} F^{n}}{\partial y^{i} \partial y^{j}}
$$

## 2 Links between $g, g^{*}$ and $G$.

We shall first establish the relation between the generalized Lagrange metric $g$ and the Finsler one $g^{*}$. For this purpose, we use a property of regular generalized Lagrange metrics ([7]):

$$
\begin{equation*}
g_{i j}^{*}=g_{i j}+\frac{\partial g_{i k}}{\partial y^{j}} y^{k} \tag{2.1}
\end{equation*}
$$

Taking into account that $\mathcal{E}=F^{2}$, we can write $g$ in the more convenient form

$$
\begin{equation*}
g_{i j}=\frac{1}{12 \mathcal{E}} \frac{\partial^{2} \mathcal{E}^{2}}{\partial y^{i} \partial y^{j}} \tag{2.2}
\end{equation*}
$$

Using (1.2), (1.6) and $g^{*}{ }_{i 0}=F F_{i}, g^{*}{ }_{00}=F^{2}$, where $g_{i 0}=g_{i j} y^{j}$ etc., one easily infers the relation

$$
\begin{equation*}
g_{i j}=\frac{1}{3}\left(g_{i j}^{*}+2 \frac{g_{i 0}^{*} \cdot g_{j 0}^{*}}{g_{00}^{*}}\right) . \tag{2.3}
\end{equation*}
$$

We shall now express $G_{i j k l}$ in terms of $g^{*}$. By a straightforward computation, we obtain

$$
\begin{equation*}
4!G_{i j k l}=2 \underset{i j k l}{S} \mathcal{E}_{i j k} \mathcal{E}_{l}+2\left(\mathcal{E}_{i j} \mathcal{E}_{k l}+\mathcal{E}_{i k} \mathcal{E}_{j l}+\mathcal{E}_{i l} \mathcal{E}_{j k}\right)+2 \mathcal{E} \mathcal{E}_{i j k l} \tag{2.4}
\end{equation*}
$$

where the low indices of $\mathcal{E}$ mean derivation with the corresponding components of $y$. If in the above equality we replace

$$
\mathcal{E}=g_{00}^{*}, \quad \mathcal{E}_{i}=2 g_{i 0}^{*}, \quad \mathcal{E}_{i j}=2 g_{i j}^{*}, \quad \mathcal{E}_{i j k}=2 g_{i j, k}^{*}=2 \frac{\partial g_{i j}^{*}}{\partial y^{k}}
$$

we obtain the components of the 4 -scalar product in the alternative form

$$
G_{i j k l}=\frac{1}{3!}\left[2 \underset{i j k l}{S}\left(2 g_{i j, k}^{*} g_{l 0}^{*}\right)+2\left(g_{i j}^{*} g_{k l}^{*}+g_{i k}^{*} g_{j l}^{*}+g_{i l}^{*} g_{j k}^{*}\right)+g_{00}^{*} g_{i j, k l}^{*}\right]
$$

Let us denote, for $X, Y, Z, T \in \mathcal{X}(M), g_{X Y}^{*}=g_{i j}^{*} X^{i} Y^{j}$, and $G_{X Y Z T}=G_{i j k l} X^{i} Y^{j} Z^{k} T^{l}$. Consequently, the basic multiple transvections of the 4- scalar product involved in the conformal properties of the Berwald-Moor space ([12]) are

$$
\begin{aligned}
(X, X, Y, Y)= & G_{X X Y Y}=\frac{1}{3!}\left[2 \underset{X, X, Y, Y}{S} g_{X X, Y}^{*} g_{Y 0}^{*}+\right. \\
& \left.+2\left(g_{X X}^{*} g_{Y Y}^{*}+2\left(g_{X Y}^{*}\right)^{2}\right)+g_{00}^{*} g_{X X, Y Y}^{*}\right]
\end{aligned}
$$

and we have as well

$$
\begin{aligned}
& (X, X, X, Y)+(X, Y, Y, Y)=G_{X X X Y}+G_{X Y Y Y}= \\
& \quad=\frac{1}{3!}\left[2\left(g_{X X, X}^{*} g_{Y 0}^{*}+g_{Y Y, Y}^{*} g_{X 0}^{*}\right)+6\left(g_{X Y, X}^{*} g_{X 0}^{*}+g_{Y X, Y}^{*} g_{Y 0}^{*}\right)+\right. \\
& \left.\quad+6 g_{X Y}^{*}\left(g_{X X}^{*}+g_{Y Y}^{*}\right)+g_{00}^{*}\left(g_{X X, X Y}^{*}+g_{X Y, Y Y}^{*}\right)\right]
\end{aligned}
$$

## 3 The Berwald-Moor case

For the sake of simplicity, we restrict ourselves to the case when $y^{1} y^{2} y^{3} y^{4}>0$. For $F$ as in (1.3), we obtain $G_{i j k l}=1 / 4$ !, i.e., the 4 -linear form defined in (1.5) on the space-time

$$
(X, Y, Z, T)=\frac{1}{4!} X^{i_{1}} Y^{i_{2}} Z^{i_{3}} T^{i_{4}} \varepsilon_{i_{1} i_{2} i_{3} i_{4}}
$$

where $\varepsilon_{i_{1} i_{2} i_{3} i_{4}}$ is 1 for $i_{1}, i_{2}, i_{3}, i_{4}$ different in pairs, and 0 else.
In the following, we maintain the convention to denote by $i_{1}, i_{2}, i_{3}, i_{4}$ the distinct values from 1 to $4\left(i_{j} \neq i_{k}\right.$ for $\left.j \neq k\right)$. The absolute energy of $M$ is then

$$
\mathcal{E}=\sqrt{y^{1} y^{2} y^{3} y^{4}}
$$

and the generalized Lagrange metric tensor given by (1.6) $g_{i j}$, which we call normalized flag Berwald-Moor metric, takes the form

$$
\begin{equation*}
g_{i i}=0, \quad i=\overline{1,4}, \quad g_{i_{1} i_{2}}=\frac{y^{i_{3}} y^{i_{4}}}{12 \mathcal{E}}, \quad i_{1} \neq i_{2} \tag{3.1}
\end{equation*}
$$

The inverse matrix $g^{i j}$ has the components

$$
g^{i i}=\frac{-8\left(y^{i}\right)^{2}}{\mathcal{E}}, \quad i=\overline{1,4} ; \quad g^{i_{1} i_{2}}=\frac{4 \mathcal{E}}{y^{i_{3}} y^{i_{4}}}=\frac{4 y^{i_{1}} y^{i_{2}}}{\mathcal{E}}, \quad i_{1} \neq i_{2} .
$$

For the associated Finsler metric, we have: $g_{i_{1} i_{2}}^{*}=\frac{y^{i_{3}} y^{i_{4}}}{8 \mathcal{E}}$, and $g_{i i}^{*}=-\frac{\mathcal{E}}{8\left(y^{i}\right)^{2}}$. It is worthy to notice that, for $i_{1} \neq i_{2}$, we have $g_{i_{1} i_{2}}=\frac{2}{3} g_{i_{1} i_{2}}^{*}$. Let

$$
C_{h j k}=g_{i h} C^{i}{ }_{j k}=\frac{1}{2}\left(\frac{\partial g_{j h}}{\partial y^{k}}+\frac{\partial g_{k h}}{\partial y^{j}}-\frac{\partial g_{j k}}{\partial y^{h}}\right) .
$$

Then, for distinct $i_{1}, i_{2}, i_{3}$, we get

$$
C_{i_{1} i_{2} i_{3}}=\frac{1}{3}\left(\frac{\partial g_{i_{2} i_{1}}^{*}}{\partial y^{i_{3}}}+\frac{\partial g_{i_{3} i_{1}}^{*}}{\partial y^{i_{2}}}-\frac{\partial g_{i_{i} i_{3}}^{*}}{\partial y^{i_{1}}}\right)=\frac{1}{3}\left(\frac{1}{2} \mathcal{E}_{i_{2} i_{1} i_{3}}+\frac{1}{2} \mathcal{E}_{i_{2} i_{1} i_{3}}-\frac{1}{2} \mathcal{E}_{i_{2} i_{1} i_{3}}\right),
$$

and hence $C_{i_{1} i_{2} i_{3}}=\frac{1}{6} \mathcal{E}_{i_{2} i_{1} i_{3}}$. In the same way, it follows that

$$
C_{i_{1} i_{1} i_{2}}=0=C_{i_{1} i_{2} i_{1}}, \quad C_{i_{2} i_{1} i_{1}}=\frac{1}{3} \mathcal{E}_{i_{1} i_{1} i_{2}}, \quad C_{i_{1} i_{1} i_{1}}=0
$$

We obtain now the coefficients $C^{i}{ }_{j k}=g^{i h} C_{h j k}$ in terms of the energy $\mathcal{E}$ as:

$$
\left\{\begin{array}{l}
C_{i_{2} i_{3}}^{i_{1}}=\frac{2}{3 \mathcal{E}}\left(-2\left(y^{i_{1}}\right)^{2} \mathcal{E}_{i_{1} i_{2} i_{3}}+y^{i_{1}} y^{i_{4}} \mathcal{E}_{i_{2} i_{3} i_{4}}\right)  \tag{3.2}\\
C_{i_{1} i_{2}}^{i_{1}}=\frac{2}{3 \mathcal{E}}\left(y^{i_{1}} y^{i_{3}} \mathcal{E}_{i_{1} i_{2} i_{3}}+y^{i_{1}} y^{i_{4}} \mathcal{E}_{i_{1} i_{2} i_{4}}\right) \\
C_{i_{2} i_{2}}^{i_{1}}=\frac{4}{3 \mathcal{E}}\left(-2\left(y^{i_{1}}\right)^{2} \mathcal{E}_{i_{1} i_{2} i_{2}}+y^{i_{1}} y^{i_{3}} \mathcal{E}_{i_{2} i_{2} i_{3}}+y^{i_{1}} y^{i_{4}} \mathcal{E}_{i_{2} i_{2} i_{4}}\right) \\
C_{i_{1} i_{1}}^{i_{1}}=\frac{4}{3 \mathcal{E}}\left(y^{i_{1}} y^{i_{2}} \mathcal{E}_{i_{2} i_{1} i_{1}}+y^{i_{1}} y^{i_{3}} \mathcal{E}_{i_{3} i_{1} i_{1}}+y^{i_{1}} y^{i_{4}} \mathcal{E}_{i_{4} i_{1} i_{1}}\right) .
\end{array}\right.
$$

## 4 Einstein equations for Berwald-Moore type ( $h, v$ )-models

The considerations within the current section apply to any locally Minkowski Finsler function, including the Berwald-Moor fundamental function as a particular case. Due to the fact that $F$ is locally Minkovski, it follows that the coefficients $N^{i}{ }_{j}$ of the Kern nonlinear connection ([7]) vanish. As well, the canonical linear $d$-connection $C \Gamma(N) \equiv\left\{L_{j k}^{i}, C_{j k}^{i}\right\}$ for the Generalized Lagrange space $(M, g)$ described by

$$
\begin{align*}
L_{j k}^{i} & =\frac{1}{2} g^{i h}\left(\frac{\delta g_{j h}}{\delta x^{k}}+\frac{\delta g_{k h}}{\delta x^{j}}-\frac{\delta g_{j k}}{\delta x^{h}}\right)  \tag{4.1}\\
C_{j k}^{i} & =\frac{1}{2} g^{i h}\left(\frac{\partial g_{j h}}{\partial y^{k}}+\frac{\partial g_{k h}}{\partial y^{j}}-\frac{\partial g_{j k}}{\partial y^{h}}\right),
\end{align*}
$$

has all its horizontal coefficients $L^{i}{ }_{j k}$ zero and the components of its torsion vanish, except $h T\left(\frac{\partial}{\partial y^{k}}, \frac{\delta}{\delta x^{j}}\right)=C^{i}{ }_{j k} \frac{\delta}{\delta x^{i}}$. The coefficients of its curvature tensor are ([7]) $R_{j k h}^{i}=P_{j k h}^{i}=0$, and

$$
\begin{equation*}
S_{b c d}^{a}=\dot{\partial}_{[d} C_{b c]}^{a}+C_{s[d}^{a} C_{b c]}^{s}, \tag{4.2}
\end{equation*}
$$

where $\dot{\partial}_{d}$ is the partial w.r.t. $y^{d}$ and we denoted $\tau_{[i \ldots j]}=\tau_{i \ldots j}-\tau_{j \ldots i}$.
In general, the Einstein equations for a $(h, v)$-metric $(h, g)$ on $T M$ have the form ([8])

$$
\left\{\begin{array}{l}
R_{i j}-\frac{1}{2}(R+S) h_{i j}=T_{i j}^{H} \\
P_{b j}^{1}=T_{b j}^{M_{1}}, \quad P_{b j}^{2}=T_{j b}^{M_{2}} \\
S_{a b}-\frac{1}{2}(R+S) g_{a b}=T_{a b}^{V},
\end{array}\right.
$$

where $R_{i j}, P_{i j}^{1}, P_{i j}^{2}$ and $S_{a b}$ are the Ricci $d$-tensors attached to the canonic connection, $R, S$ are the scalars of curvature and $T_{i j}^{H}, T_{i j}^{M_{1}}, T_{i j}^{M_{2}}$ and $T_{i j}^{V}$ are the energy-momentum d-tensor fields. Then, for the locally Minkovski model $(M, g)$, given by the particular case when the $(h, v)$-metric $(h, g)$ has $h=g=g(y)$, the following holds true:

Theorem 2. The Einstein mixed tensors of the Generalized Lagrange model attached to the locally Minkowski model $(M, g)$ identically vanish, and the Einstein equations are

$$
\left\{\begin{array}{l}
-\frac{1}{2} S g_{i j}=T_{i j}^{H}, \quad 0=T_{b j}^{M_{1}}, \quad 0=T_{j b}^{M_{2}}  \tag{4.3}\\
E_{a b} \equiv S_{a b}-\frac{1}{2} S g_{a b}=T_{a b}^{V},
\end{array}\right.
$$

where the vertical Einstein tensor has the specific form

$$
\begin{equation*}
E_{a b}=S_{r s t}^{p} \delta_{p}^{t}\left(\delta_{a}^{r} \delta_{b}^{s}-\frac{1}{2} g^{r s} g_{a b}\right) \tag{4.4}
\end{equation*}
$$

with $S_{r s t}^{p}$ given by (4.2) and $C_{b c}^{a}$ by (4.1), and where $g^{r s}$ is the dual of $g_{a b}$.
In the case when the $(h, v)$-metric has its horizontal part Euclidean, of coefficients $h_{i j}, i, j=\overline{1, n}$, then the canonic linear $d-$ connection $C \Gamma(N) \equiv\left\{L_{j k}^{i}, L_{b k}^{a}, C_{j a}^{i}, C_{b c}^{a}\right\}$ has the first three sets of coefficients zero and all its torsion components vanish; the same holds true for the curvature, except the set $S_{b}{ }^{a}$ g given in (4.2). In this case we have

Theorem 3. The Einstein equations for the (h,v) Einstein-locally Minkowski metric $\left(h_{i j}, g_{i j}(y)\right)$ write

$$
\left\{\begin{array}{l}
-\frac{1}{2} S h_{i j}=T_{i j}^{H}, \quad 0=T_{b j}^{M_{1}}, \quad 0=T_{j b}^{M_{2}}  \tag{4.5}\\
E_{a b} \equiv S_{a b}-\frac{1}{2} S g_{a b}=T_{a b}^{V},
\end{array}\right.
$$

with (4.2) and (4.4) satisfied.
We note that in the case when $g$ is of Berwald-Moor type (3.1), the equations (4.3) and (4.5) have the vertical coefficients $C_{b c}^{a}$ involved in (4.4)-(4.2) specialized by (3.2).

Acknowledgement. The present work was partially supported by Grant CNCSIS A1478.

## References

[1] D. Bao, S.-S. Chern, Z. Shen, An Introduction to Riemann-Finsler Geometry, Springer-Verlag, 2000.
[2] S.Kobayashi, K.Nomizu, Foundations of Differential Geometry I, II, Interscience Publishers, New York, 1963, 1969.
[3] M. Matsumoto, Foundations of Finsler Geometry and Special Finsler Spaces, Kaisheisha Press, Kyoto, 1986.
[4] M. Matsumoto, K. Okubo, Theory of Finsler spaces with m-th root metric: connections and main scalars, Tensor N.S., 56 (1995), 9-104.
[5] M. Matsumoto, S. Numata, On Finsler spaces with a cubic metric, Tensor N.S., 33 (1979), 153-162.
[6] M. Matsumoto, H. Shimada, On Finsler spaces with 1-form metric, Tensor N.S., 32 (1978), 161-169.
[7] R. Miron, The Geometry of Lagrange Spaces: Theory and Applications, Kluwer Acad. Publishers, 1994.
[8] R. Miron, M.Anastasiei, Vector Bundles. Lagrange Spaces. Applications to Relativity, Geometry Balkan Press, 1996.
[9] Gh. Munteanu, V. Balan, Lectures of Relativity Theory (Romanian), Bren Eds., Bucharest, 2000.
[10] D.G. Pavlov, Chronometry of the three-dimensional time, Hypercomplex Numbers in Geometry and Physics, Ed. "Mozet", Russia, 1, 1 (2004), 19-30.
[11] D.G. Pavlov, Four-dimensional time, Hypercomplex Numbers in Geometry and Physics, Ed. "Mozet", Russia, 1, 1 (2004), 31-39.
[12] D.G. Pavlov, Generalization of scalar product axioms, Hypercomplex Numbers in Geometry and Physics, Ed. "Mozet", Russia, 1, 1 (2004), 5-18.
[13] H. Rund, The Geometry of Finsler Spaces, Springer, Berlin 1959.
[14] H. Shimada, On Finsler spaces with the metric $L=\sqrt[n]{a_{i_{1} i_{2} \ldots i_{n}}(x) y^{i_{1}} y^{i_{2}} \ldots y^{i_{n}}}$, Tensor N.S., 33 (1979), 365-372.
[15] H. Shimada, On Finsler spaces with 1-form metric II. Berwald-Moor's metric $L=\sqrt[n]{y^{1} y^{2} \ldots y^{n}}$, Tensor N.S., 32 (1978), 375-278.

## Authors' addresses:

Vladimir Balan
Faculty of Applied Sciences, Department Mathematics I, University Politehnica of Bucharest, Splaiul Independenţei 313,
RO-060042, Bucharest, Romania
email: vbalan@mathem.pub.ro
Nicoleta Brinzei
Department of Mathematics, University "Transilvania" of Braşov, Str. Iuliu Maniu nr. 50, RO-500091, Brasov, Romania. email: nico.brinzei@rdslink.ro

