Null 2-type space-like submanifolds of E_{t}^{5} with normalized parallel mean curvature vector

Uğur Dursun

Abstract

The purpose of this article is to classify 3-dimensional null 2 type space-like submanifolds of the pseudo-Euclidean space E_{t}^{5} which are constructed from the eigenfunctions of the Laplacian with two eigenvalues 0 and nonzero constant λ, under certain assumptions.

Mathematics Subject Classification: 53C40.
Key words: Laplacian, null 2-type submanifold, scalar curvature, mean curvature vector.

1 Introduction

A connected submanifold M^{n} of a pseudo-Euclidean space E_{t}^{m} is called of finite type if its position vector field x can be written as a sum of eigenfunctions of its Laplacian; more precisely, M^{n} is said to be of finite k -type if its position vector field x admits the following spectral decomposition

$$
\begin{equation*}
x=x_{0}+x_{1}+\cdots+x_{k}, \tag{1.1}
\end{equation*}
$$

where $\Delta x_{i}=\lambda_{i} x_{i}, i=1,2, \ldots, k, \lambda_{1}<\cdots<\lambda_{k}, x_{0}$ is a constant vector in E_{t}^{m} and x_{1}, \ldots, x_{k} are non-constant E_{t}^{m}-valued maps on M^{n}. If one of the eigenvalues λ_{i} vanishes, then M^{n} is said to be of null k -type (see [1, 2] for detail). We can choose a coordinate system on E_{t}^{m} with x_{0} as its origin. Then we have the following simple spectral decomposition of x for a null 2-type submanifold M :

$$
\begin{equation*}
x=x_{1}+x_{2}, \quad \Delta x_{1}=0, \quad \Delta x_{2}=\lambda x_{2} . \tag{1.2}
\end{equation*}
$$

In [4, 5], B.Y. Chen gave a classification of null 2 -type surfaces in the Euclidean space E^{3} and E^{4}. He proved that circular cylinders and helical cylinders are the only surfaces of null 2-type in E^{3} and E^{4}, respectively. In [5], he also proved that a surface M in the Euclidean space E^{4} is of null 2-type with parallel normalized mean curvature vector if and only if M is an open portion of a circular cylinder in a hyperplane of E^{4}. However, in [12], S.J. LI showed that a surface M in E^{m} with parallel normalized

[^0]mean curvature vector is of null 2-type if and only if M is an open portion of a circular cylinder.

Later, in [6], B.Y. Chen and H. Song proved that a space-like surface M in $E_{t}^{4},(t=$ 1,2) is of null 2-type with constant mean curvature if and only if M is an open portion of a helical cylinder of the first kind or a helical cylinder of the second kind in $E_{t}^{4},(t=1,2)$.

Also, in [11], D.S. Kim and Y.H. Kim gave complete classification theorems on null 2-type surfaces in Minkowski space E_{1}^{4}. They proved that a Lorentzian surface M in E_{1}^{4} is of null 2-type with constant mean curvature if and only if M is an open portion of a helical cylinder of third kind, a helical cylinder of fourth kind, an extended B-scroll or a cylinder $E_{1}^{1} \times S^{1}(r), S_{1}^{1}(r) \times E$.

In the case of the classification of hypersurfaces, the constancy of the mean curvature does not provide enough information to obtain a characterization of null 2-type hypersurfaces of Euclidean spaces and Lorentzian spaces. In [9, 10], A. Ferrandez and P. Lucas studied null 2-type hypersurfaces of Euclidean spaces and null 2-type spacelike hypersurfaces of Lorentzian spaces with additional assumption of having at most two distinct principal curvatures. They proved that Euclidean hypersurfaces of null 2-type and having at most two distinct principal curvatures are locally isometric to a generalized spherical cylinder, [9], and a space-like hypersurface of the Lorentzian space E_{1}^{m} with at most two distinct principal curvatures is of null 2-type if and only if it is locally isometric to a generalized hyperbolic cylinder, [10].

The assumptions on hypersurfaces to be of null 2-type are not enough for submanifolds $M^{n}, n \geq 3$ of the Euclidean spaces E^{m} and the pseudo-Euclidean spaces E_{t}^{m} to be of null 2-type. In [7], the author proved that a 3-dimensional submanifold M of the Euclidean space E^{5} having two distinct principal curvatures in the parallel mean curvature direction and having a second fundamental form of a constant square length is of null 2-type if and only if M is locally isometric to one of $E \times S^{2} \subset E^{4} \subset E^{5}$, $E^{2} \times S^{1} \subset E^{4} \subset E^{5}$ or $E \times S^{1}(a) \times S^{1}(a)$. However, in [8], the author proved that a 3 -dimensional submanifold M of the Euclidean space E^{5} with constant mean curvature and non-parallel mean curvature vector is an open portion of a 3-dimensional helical cylinder if and only if M is flat and of null 2-type.

In this work we study the classification of null 2-type space-like submanifolds of the pseudo-Euclidean spaces. We mainly prove that a 3-dimensional space-like submanifold M of the pseudo-Euclidean space E_{t}^{5} with parallel normalized non-null mean curvature vector is of null 2-type having two distinct principal curvatures in the mean curvature direction and having a constant scalar curvature τ if and only if M is locally isometric to one of the following:

1. $S^{1}(a) \times E^{2} \subset E^{4} \subset E_{1}^{5}$ or $S^{2}(a) \times E \subset E^{4} \subset E_{1}^{5}$ when H is space-like,
2. $H^{1}(a) \times E^{2} \subset E_{1}^{4} \subset E_{1}^{5}$ or $H^{2}(a) \times E \subset E_{1}^{4} \subset E_{1}^{5}$ when H is time-like, or
3. $H^{1}(a) \times E^{2} \subset E_{1}^{4} \subset E_{2}^{5}, \quad H^{2}(a) \times E \subset E_{1}^{4} \subset E_{2}^{5}$, or $H^{1}(a) \times H^{1}(a) \times E \subset E_{2}^{5}$.

The cases (1) and (2) imply that there is no such a submanifold that lies fully in E_{1}^{5}.

2 Preliminaries

Let E_{t}^{m} be an m-dimensional pseudo-Euclidean space with metric tensor given by

$$
g=-\sum_{i=1}^{t}\left(d x_{i}\right)^{2}+\sum_{i=t+1}^{m}\left(d x_{i}\right)^{2}
$$

where $\left(x_{1}, \ldots, x_{m}\right)$ is a rectangular coordinate system of E_{t}^{m}. So $\left(E_{t}^{m}, g\right)$ is a flat pseudo-Riemannian manifold with signature $(t, m-t)$. When $t=1, E_{1}^{m}$ is called the Lorentzian space. The hyperbolic space $H^{m}(a)$ is defined by

$$
H^{m}(a)=\left\{x \in E_{1}^{m+1} \mid\langle x, x\rangle=-a^{2} \text { and } x_{1}>0\right\}
$$

where x_{1} is the first coordinate in E_{1}^{m+1}.
Let M be an n-dimensional pseudo-Riemannian submanifold of an m-dimensional pseudo-Euclidean space E_{t}^{m}. We denote by h, A, H, ∇ and ∇^{\perp}, the second fundamental form, the Weingarten map, the mean curvature vector, the Riemannian connection and the normal connection of the submanifold M in E_{t}^{m}, respectively.

Let $e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{m}$ be an adapted local orthonormal frame in E_{t}^{m} such that $\left\langle e_{A}, e_{B}\right\rangle=\varepsilon_{B} \delta_{A B},\left(\varepsilon_{B}=\left\langle e_{B}, e_{B}\right\rangle= \pm 1\right), e_{1}, \ldots, e_{n}$ are tangent to M_{t}^{n} and e_{n+1}, \ldots, e_{m} are normal to M_{t}^{n}. We use the following convention on the range of indices:

$$
1 \leq A, B, C, \ldots \leq m, \quad 1 \leq i, j, k, \ldots \leq n, \quad n+1 \leq \beta, \nu, \gamma, \ldots \leq m
$$

Let $\left\{\omega_{A}\right\}$ be the dual 1-forms of $\left\{e_{A}\right\}$ defined by $\omega_{A}(X)=\left\langle e_{A}, X\right\rangle, \quad\left(\omega_{A}\left(e_{B}\right)=\right.$ $\left.\left\langle e_{B}, e_{A}\right\rangle=\varepsilon_{B} \delta_{A B}\right)$. Also, the connection forms ω_{A}^{B} are defined by

$$
d e_{A}=\sum_{B=1}^{m} \omega_{A}^{B} e_{B}, \quad \varepsilon_{B} \omega_{A}^{B}+\varepsilon_{A} \omega_{B}^{A}=0 .
$$

For lifting or lowering indices we use $\omega^{A}=\varepsilon_{A} \omega_{A}, \omega_{A}^{B}=\varepsilon_{B} \omega_{A B}$. Then the structure equations of E_{t}^{m} are obtained as follows

$$
\begin{equation*}
d \omega^{A}=\sum_{B=1}^{m} \omega^{B} \wedge \omega_{B}^{A}, \quad d \omega_{A}^{B}=\sum_{C=1}^{m} \omega_{A}^{C} \wedge \omega_{C}^{B} \tag{2.1}
\end{equation*}
$$

Restricting these forms to M we have

$$
\omega^{\beta}=0, \quad d \omega^{\beta}=\sum_{i=1}^{m} \omega^{i} \wedge \omega_{i}^{\beta}=0, \quad \beta=n+1, \ldots, m
$$

By Cartan's Lemma, we can write

$$
\begin{equation*}
\omega_{i}^{\beta}=\sum_{j=1}^{n} h_{i j}^{\beta} \omega^{j}, \quad h_{i j}^{\beta}=h_{j i}^{\beta}, \tag{2.2}
\end{equation*}
$$

where $h_{i j}^{\beta}$ are coefficients of the second fundamental form in the direction e_{β}.

The mean curvature vector H is given by

$$
\begin{equation*}
H=\frac{1}{n} \sum_{\beta=n+1}^{m} \varepsilon_{\beta} \operatorname{tr}\left(h^{\beta}\right) e_{\beta} \tag{2.3}
\end{equation*}
$$

and the scalar curvature τ is given by

$$
\begin{equation*}
n(n-1) \tau=n^{2}|H|^{2}-\|h\|^{2} \tag{2.4}
\end{equation*}
$$

where $\|h\|^{2}$ denotes the square of the length of the second fundamental form which is defined by

$$
\begin{equation*}
\|h\|^{2}=\sum_{\beta} \varepsilon_{\beta} \operatorname{tr}\left(h^{\beta}\right)^{2}=\sum_{i, j, \beta} \varepsilon_{\beta} \varepsilon_{i} \varepsilon_{j}\left(h_{i j}^{\beta}\right)^{2} . \tag{2.5}
\end{equation*}
$$

The first equation of (2.1) gives

$$
\begin{equation*}
d \omega^{i}=\sum_{j=1}^{m} \omega^{j} \wedge \omega_{j}^{i}, \quad \varepsilon_{i} \omega_{j}^{i}+\varepsilon_{j} \omega_{i}^{j}=0 \tag{2.6}
\end{equation*}
$$

where $\left\{\omega_{j}^{i}\right\}$ is the connection forms on M and uniquely determined by these equations. However, from the second equation of (2.1) we can have the Gauss and Codazzi equations, respectively, as

$$
\begin{equation*}
d \omega_{i}^{j}=\sum_{k=1}^{n} \omega_{i}^{k} \wedge \omega_{k}^{j}+\sum_{\beta=n+1}^{m} \omega_{i}^{\beta} \wedge \omega_{\beta}^{j} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
d \omega_{i}^{\beta}=\sum_{k=1}^{n} \omega_{i}^{k} \wedge \omega_{k}^{\beta}+\sum_{\nu=n+1}^{m} \omega_{i}^{\nu} \wedge \omega_{\nu}^{\beta} \tag{2.8}
\end{equation*}
$$

Using (2.2) and the connection equations $\nabla_{e_{i}} e_{j}=\sum_{k=1}^{n} \omega_{j}^{k}\left(e_{i}\right) e_{k}$ we can restate the equations of Gauss (2.7) and Codazzi (2.8) relative to the basis e_{1}, \ldots, e_{n}, respectively, as follows

$$
\begin{align*}
& e_{\ell}\left(\omega_{i}^{j}\left(e_{k}\right)\right)-e_{k}\left(\omega_{i}^{j}\left(e_{\ell}\right)\right)=\sum_{r=1}^{n}\left\{\omega_{i}^{r}\left(e_{\ell}\right) \omega_{r}^{j}\left(e_{k}\right)-\omega_{i}^{r}\left(e_{k}\right) \omega_{r}^{j}\left(e_{\ell}\right)\right. \\
& \left.\quad+\omega_{i}^{j}\left(e_{r}\right)\left[\omega_{k}^{r}\left(e_{\ell}\right)-\omega_{\ell}^{r}\left(e_{k}\right)\right]\right\}+\sum_{\nu=n+1}^{m} \varepsilon_{j} \varepsilon_{\nu}\left(\varepsilon_{k} h_{i k}^{\nu} h_{j \ell}^{\nu}-\varepsilon_{\ell} h_{j k}^{\nu} h_{i \ell}^{\nu}\right) \tag{2.9}\\
& \quad 1 \leq i<j \leq n, \quad 1 \leq \ell<k \leq n
\end{align*}
$$

and

$$
\begin{align*}
e_{j}\left(h_{i k}^{\nu}\right)-e_{k}\left(h_{i j}^{\nu}\right)= & \sum_{r=1}^{n}\left\{h_{i r}^{\nu}\left[\omega_{k}^{r}\left(e_{j}\right)-\omega_{j}^{r}\left(e_{k}\right)\right]+h_{r k}^{\nu} \omega_{i}^{r}\left(e_{j}\right)-h_{r j}^{\nu} \omega_{i}^{r}\left(e_{k}\right)\right\} \\
& +\sum_{\beta=n+1}^{m}\left(h_{i j}^{\beta} \omega_{\beta}^{\nu}\left(e_{k}\right)-h_{i k}^{\beta} \omega_{\beta}^{\nu}\left(e_{j}\right)\right) \tag{2.10}\\
& \nu=n+1, \ldots, m, \quad i=1, \ldots, n, \quad 1 \leq j<k \leq n
\end{align*}
$$

If the normal space of M in E_{t}^{m} is flat, then we can choose a parallel orthonormal normal basis on M. Therefore we have $\omega_{\beta}^{\nu}=0$. Hence the equations of Codazzi become

$$
\begin{equation*}
e_{j}\left(h_{i i}^{\nu}\right)=\varepsilon_{j} \varepsilon_{i}\left(h_{i i}^{\nu}-h_{j j}^{\nu}\right) \omega_{i}^{j}\left(e_{i}\right), \quad i \neq j \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon_{j}\left(h_{i i}^{\nu}-h_{k k}^{\nu}\right) \omega_{k}^{i}\left(e_{j}\right)+\varepsilon_{k}\left(h_{j j}^{\nu}-h_{i i}^{\nu}\right) \omega_{j}^{i}\left(e_{k}\right)=0, \quad i \neq j \neq k \neq i \tag{2.12}
\end{equation*}
$$

3 Some Basic Lemmas

We need the following some well known formulas and lemmas (for details see $[1,2$, $3,5]$).

Lemma 3.1. Let M be an n-dimensional pseudo-Riemannian submanifold of a pseudo-Euclidiean space E_{t}^{m}. Then we have

$$
\begin{equation*}
\Delta H=\Delta^{\nabla^{\perp}} H+\sum_{i=1}^{n} \varepsilon_{i}\left\{\left(\nabla_{e_{i}} A_{H}\right) e_{i}+A_{\nabla_{e_{i}}^{\perp} H} e_{i}+h\left(A_{H} e_{i}, e_{i}\right)\right\} \tag{3.1}
\end{equation*}
$$

where $\Delta^{\nabla^{\perp}}=-\sum_{i=1}^{n} \varepsilon_{i}\left\{\nabla^{\perp}{ }_{e_{i}} \nabla^{\perp}{ }_{e_{i}}-\nabla^{\perp} \nabla_{e_{i} e_{i}}\right\}$ is the Laplacian operator associated with the induced normal connection ∇^{\perp}.

Lemma 3.2. Let M be an n-dimensional pseudo-Riemannian submanifold of a pseudo-Euclidiean space E_{t}^{m}. Then we have

$$
\begin{equation*}
\operatorname{tr}\left(\nabla A_{H}\right)=\sum_{i=1}^{n} \varepsilon_{i}\left(\nabla_{e_{i}} A_{H}\right) e_{i}=\frac{n}{2} \nabla\langle H, H\rangle+\operatorname{tr}\left(A_{\nabla^{\perp} H}\right) \tag{3.2}
\end{equation*}
$$

where $\nabla\langle H, H\rangle$ is the gradient of $\langle H, H\rangle$ and $\operatorname{tr}\left(A_{\nabla \perp H}\right)=\sum_{i=1}^{n} \varepsilon_{i} A_{\nabla_{e_{i}}{ }^{\perp}} e_{i}$.
1-type pseudo-Riemannian submanifold of a pseudo-Euclidiean space E_{t}^{m} were completely classified in [3]. They are minimal submanifolds of E_{t}^{m}, minimal submanifolds of a pseudo-Riemannian sphere in E_{t}^{m} or minimal submanifolds of a pseudohyperbolic space in E_{t}^{m}.

For a null 2-type submanifold M of E_{t}^{m}, using $\Delta x=-n H$ the definition (1.2) implies

$$
\begin{equation*}
\Delta H=\lambda H \tag{3.3}
\end{equation*}
$$

Lemma 3.3. Let M be an n-dimensional pseudo-Riemannian submanifold of a pseudo-Euclidiean space E_{t}^{m}. Then, there is a constant $\lambda \neq 0$ such that $\Delta H=\lambda H$ holds if and only if M is either of 1-type or of null 2-type.

If the mean curvature vector H is non-null, that is, $\langle H, H\rangle \neq 0$, then there is an orthonormal normal frame e_{n+1}, \ldots, e_{m} such that $H=\alpha e_{n+1}$, where $\alpha^{2}=\varepsilon_{n+1}\langle H, H\rangle$.

Lemma 3.4. Let M be an n-dimensional pseudo-Riemannian submanifold of a pseudo-Euclidiean space E_{t}^{m}. If M is not of 1-type, then M is of null 2-type if and only if

$$
\begin{equation*}
\operatorname{tr}\left(\bar{\nabla} A_{H}\right)=\operatorname{tr}\left(\nabla A_{H}\right)+\operatorname{tr}\left(A_{\nabla^{\perp} H}\right)=0 \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta^{\nabla^{\perp}} H+\sum_{i=1}^{n} \varepsilon_{i} h\left(A_{H} e_{i}, e_{i}\right)=\lambda H \tag{3.5}
\end{equation*}
$$

for some nonzero constant λ.
From the definition of $\Delta^{\nabla^{\perp}} H$ we have

$$
\begin{aligned}
& \Delta^{\nabla^{\perp}} H=\left(\Delta \alpha+\sum_{\nu=n+2}^{m} \sum_{i=1}^{n} \varepsilon_{i} \varepsilon_{\nu} \varepsilon_{n+1} \alpha\left(\omega_{n+1}^{\nu}\left(e_{i}\right)\right)^{2}\right) e_{n+1} \\
& \text { 6) } \quad-\sum_{\nu=n+2}^{m}\left\{2 \omega_{n+1}^{\nu}(\nabla \alpha)+\alpha \operatorname{tr}\left(\nabla \omega_{n+1}^{\nu}\right)+\sum_{i=1}^{n} \sum_{\beta=n+2}^{m} \alpha \varepsilon_{i} \omega_{n+1}^{\beta}\left(e_{i}\right) \omega_{\beta}^{\nu}\left(e_{i}\right)\right\} e_{\nu},
\end{aligned}
$$

where $\nabla \alpha=\sum_{i=1}^{n} \varepsilon_{i}\left(e_{i} \alpha\right) e_{i}$ and $\operatorname{tr}\left(\nabla \omega_{n+1}^{\beta}\right)=\sum_{i=1}^{n} \varepsilon_{i}\left(\nabla_{e_{i}} \omega_{n+1}^{\beta}\right)\left(e_{i}\right)$.
Lemma 3.5. Let M be an n-dimensional pseudo-Riemannian submanifold of E_{t}^{m}. If M is not of 1-type and $H=\alpha e_{n+1}$ is non-null, then M is of null 2-type if and only if we have

$$
\begin{equation*}
\varepsilon_{\beta} \operatorname{tr}\left(A_{H} A_{\beta}\right)=2 \omega_{n+1}^{\beta}(\nabla \alpha)+\alpha \operatorname{tr}\left(\nabla \omega_{n+1}^{\beta}\right)+\alpha \sum_{i=1}^{n} \sum_{\nu=n+2}^{m} \varepsilon_{i} \omega_{n+1}^{\nu}\left(e_{i}\right) \omega_{\nu}^{\beta}\left(e_{i}\right) \tag{3.9}
\end{equation*}
$$

where λ is a nonzero constant, $\beta=n+2, \ldots, m$ and $\left\|A_{n+1}\right\|^{2}=\sum_{i=1}^{n} \varepsilon_{i}\left\langle A_{n+1} e_{i}\right.$, $\left.A_{n+1} e_{i}\right\rangle$.

By direct calculation the equation (3.7) becomes

$$
\operatorname{tr}\left(\bar{\nabla} A_{H}\right)=\frac{n}{2} \varepsilon_{n+1} \nabla\left(\alpha^{2}\right)+2 A_{n+1}(\nabla \alpha)+2 \alpha \sum_{i=1}^{n} \sum_{\nu=n+2}^{m} \varepsilon_{i} \omega_{n+1}^{\nu}\left(e_{i}\right) A_{e_{\nu}}\left(e_{i}\right)=0
$$

Using this equation we can have the following corollary from Lemma 3.5.
Corollary 3.1. Let M be an n-dimensional pseudo-Riemannian submanifold of E_{t}^{n+2}. If M is not of 1-type, $H=\alpha e_{n+1}$ is non-null and the normalized mean curvature vector, e_{n+1}, is parallel, then M is of null 2-type if and only if we have

$$
\begin{gather*}
A_{n+1}\left(\nabla \alpha^{2}\right)+\frac{n \alpha \varepsilon_{n+1}}{2} \nabla\left(\alpha^{2}\right)=0 \tag{3.10}\\
\Delta \alpha=\lambda \alpha-\alpha \varepsilon_{n+1}\left\|A_{n+1}\right\|^{2} \tag{3.11}\\
\operatorname{tr}\left(A_{n+1} A_{n+2}\right)=0 \tag{3.12}
\end{gather*}
$$

where λ is a nonzero constant.
In $[9,10]$, the following theorems are given on null 2-type hypersurfaces of Euclidean spaces and null 2-type space-like hypersurfaces of Lorentzian space.

Theorem 3.1. ([9]) Let M be a Euclidean hypersurface with at most two distinct principal curvature. Then, M is of null 2-type if and only if it is locally isometric to $E^{p} \times S^{n-p}(a)$.

Theorem 3.2. ([10]) Let M^{n} be a space-like hypersurface of the Lorentzian spaces E_{1}^{n} with at most two distinct principal curvature. Then, M^{n} is of null 2-type if and only if it is locally isometric to $E^{p} \times H^{n-p}(a)$.

4 Null 2-type space-like submanifolds of E_{t}^{5}

We prove the followings.
Proposition 4.1. Let M be a 3-dimensional space-like submanifold of the pseudoEuclidean space E_{t}^{5} with parallel normalized mean curvature vector such that M is not of 1-type. If M is of null 2-type with the Weingarten map in the direction of the mean curvature vector H has two distinct eigenvalues, then the mean curvature α is constant on M.

Proof. As the codimension is 2 and the normalized mean curvature vector, $e_{4}=H / \alpha, \alpha^{2}=\epsilon_{4}\langle H, H\rangle$, is parallel, then the unit normal vector e_{5} is also parallel. Therefore the normal space is flat, i.e., $\omega_{4}^{5} \equiv 0$ on M. Hence we can have the diagonalized Weingarten maps in the direction e_{4} and e_{5}. Since A_{4} has two distinct eigenvalues, say, $h_{11}^{4} \neq h_{22}^{4}=h_{33}^{4}$. We can write

$$
A_{4}=\operatorname{diag}\left(h_{11}^{4}, h_{22}^{4}, h_{22}^{4}\right) \quad \text { and } \quad A_{5}=\operatorname{diag}\left(h_{11}^{5}, h_{22}^{5}, h_{33}^{5}\right)
$$

with $h_{11}^{5}+h_{22}^{5}+h_{33}^{5}=0$. However, from (3.12) we get

$$
\begin{equation*}
\operatorname{tr}\left(A_{4} A_{5}\right)=\left(h_{11}^{4}-h_{22}^{4}\right) h_{11}^{5}=0 \tag{4.1}
\end{equation*}
$$

because of $h_{11}^{5}+h_{22}^{5}+h_{33}^{5}=0$. As $h_{11}^{4}-h_{22}^{4} \neq 0$ we have $h_{11}^{5}=0$ and $h_{22}^{5}=-h_{33}^{5}$.
Assume that α is not constant. Let $V=\left\{p \in M: \nabla \alpha^{2}(p) \neq 0\right\}$ which is open in M. From (3.10) it is seen that the vector $\nabla \alpha^{2}$ is an eigenvector of A_{4} corresponding to the eigenvalue $-\frac{3 \alpha \varepsilon_{4}}{2}$. Then we may say that $\nabla \alpha^{2}$ is parallel to e_{1} or e_{3} (the same as e_{2}). For the last case it could also be proved that the mean curvature α is constant by using the same way as in the first case. Thus $h_{11}^{4}=-\frac{3 \alpha \varepsilon_{4}}{2}$ and $h_{22}^{4}=h_{33}^{4}=\frac{9 \alpha \varepsilon_{4}}{4}$ because of $3 \alpha \varepsilon_{4}=h_{11}^{4}+2 h_{22}^{4}$. Then we have

$$
\begin{equation*}
\omega_{1}^{4}=-\frac{3 \alpha \varepsilon_{4}}{2} \omega^{1}, \quad \omega_{2}^{4}=\frac{9 \alpha \varepsilon_{4}}{4} \omega^{2}, \quad \omega_{3}^{4}=\frac{9 \alpha \varepsilon_{4}}{4} \omega^{3} . \tag{4.2}
\end{equation*}
$$

Since $\nabla \alpha^{2}$ is parallel to e_{1} we can have $e_{2}(\alpha)=e_{3}(\alpha)=0$, that is, $e_{2}\left(h_{11}^{4}\right)=e_{3}\left(h_{11}^{4}\right)=$ 0 , and

$$
\begin{equation*}
d \alpha=e_{1}(\alpha) \omega^{1} \tag{4.3}
\end{equation*}
$$

However, by using the equation of Codazzi (2.11) for $\nu=4$ if $i=1$ we have

$$
\begin{equation*}
\omega_{1}^{2}\left(e_{1}\right)=\omega_{1}^{3}\left(e_{1}\right)=0 \tag{4.4}
\end{equation*}
$$

because of $h_{11}^{4}-h_{22}^{4} \neq 0$, and if $j=1$, considering $h_{22}^{4}=h_{33}^{4}=\frac{9 \alpha \varepsilon_{4}}{4}$, then we obtain

$$
\begin{equation*}
\omega_{2}^{1}\left(e_{2}\right)=\omega_{3}^{1}\left(e_{3}\right)=\frac{3}{5} \frac{e_{1}(\alpha)}{\alpha} . \tag{4.5}
\end{equation*}
$$

Also, the equation of Codazzi (2.12) for $\nu=4$ and $j=1$ implies that

$$
\begin{equation*}
\omega_{2}^{1}\left(e_{3}\right)=\omega_{3}^{1}\left(e_{2}\right)=0 \tag{4.6}
\end{equation*}
$$

Applying the structure equations and using (4.6), it can be shown that $d \omega^{1}=0$. Hence we have locally

$$
\begin{equation*}
\omega^{1}=d u \tag{4.7}
\end{equation*}
$$

where u is a local coordinate on U. From (4.3) and (4.7) we have $d \alpha \wedge d u=0$. This shows that α is a function of u, i.e., $\alpha=\alpha(u)$ and $d \alpha=\alpha^{\prime}(u) d u$. Thus, by (4.5) we have

$$
\begin{equation*}
\omega_{2}^{1}\left(e_{2}\right)=\omega_{3}^{1}\left(e_{3}\right)=\frac{3 \alpha^{\prime}}{5 \alpha} \tag{4.8}
\end{equation*}
$$

Considering (4.4) and (4.6), from the equation of Gauss (2.9) for $i=\ell=1, j=$ $k=2$ we get

$$
\begin{equation*}
e_{1}\left(\omega_{2}^{1}\left(e_{2}\right)\right)=\left(\omega_{2}^{1}\left(e_{2}\right)\right)^{2}+\varepsilon_{4} h_{11}^{4} h_{22}^{4} \tag{4.9}
\end{equation*}
$$

Using (4.8), the equation (4.9) turns into

$$
\begin{equation*}
40 \alpha \alpha^{\prime \prime}-64\left(\alpha^{\prime}\right)^{2}+225 \varepsilon_{4} \alpha^{4}=0 \tag{4.10}
\end{equation*}
$$

Let $y=\left(\alpha^{\prime}\right)^{2}$. Then the above the equation can be reduced to the following first order differential equation:

$$
\begin{equation*}
2 \alpha y^{\prime}-64 y+225 \varepsilon_{4} \alpha^{4}=0 \tag{4.11}
\end{equation*}
$$

where y^{\prime} denotes the first derivative of y with respect to α. For this equation we obtain the solution

$$
\begin{equation*}
\left(\alpha^{\prime}\right)^{2}=C \alpha^{16 / 5}-\varepsilon_{4}\left(\frac{225}{16}\right)^{2} \alpha^{4} \tag{4.12}
\end{equation*}
$$

where C is a constant.
When we use the definition of $\Delta \alpha$, the fact that $\nabla \alpha^{2}$ is parallel to e_{1} and the equation (4.8) we obtain

$$
\begin{equation*}
\Delta \alpha=\frac{6\left(\alpha^{\prime}\right)^{2}}{5 \alpha}-\alpha^{\prime \prime} \tag{4.13}
\end{equation*}
$$

Also, since $\left\|A_{4}\right\|^{2}=\frac{99 \alpha^{2}}{8}$, considering (4.13) and the second equation (3.11) of Corollary 3.1 we get

$$
\begin{equation*}
40 \alpha \alpha^{\prime \prime}-48\left(\alpha^{\prime}\right)^{2}+40 \lambda \alpha^{2}-495 \varepsilon_{4} \alpha^{4}=0 \tag{4.14}
\end{equation*}
$$

Combining (4.10) and (4.14) we obtain

$$
\begin{equation*}
\left(\alpha^{\prime}\right)^{2}=45 \varepsilon_{4} \alpha^{4}-\frac{5}{2} \lambda \alpha^{2} \tag{4.15}
\end{equation*}
$$

As a result, using (4.12) and (4.15) we deduce that α is locally constant on V which is a contradiction with the definition of M. Therefore α is constant on M.

Let $H^{1}(a) \times H^{1}(a) \times E=\left\{\left(x_{1}, x_{2}, \ldots, x_{5}\right):-x_{1}^{2}+x_{3}^{2}=-a^{2},-x_{2}^{2}+x_{4}^{2}=-a^{2}\right\}$. For later use we need the connection forms ω_{A}^{B} of $H^{1}(a) \times H^{1}(a) \times E \subset E_{2}^{5}$. By a suitable choice of the Euclidean coordinates, its equation takes the following form

$$
x\left(u_{1}, u_{2}, u_{3}\right)=\left(a \cosh u_{2}, a \cosh u_{3}, a \sinh u_{2}, a \sinh u_{3}, u_{1}\right),
$$

where a is a nonzero constant. If we put

$$
\begin{gathered}
e_{1}=\frac{\partial}{\partial u_{1}}=(0,0,0,0,1), \quad e_{2}=\frac{1}{a} \frac{\partial}{\partial u_{2}}=\left(\sinh u_{2}, 0, \cosh u_{2}, 0,0\right) \\
e_{3}=\frac{1}{a} \frac{\partial}{\partial u_{2}}=\left(0, \sinh u_{3}, 0, \cosh u_{3}, 0\right) \\
e_{4}=\frac{1}{\sqrt{2}}\left(\cosh u_{2}, \cosh u_{3}, \sinh u_{2}, \sinh u_{3}, 0\right) \\
e_{5}=\frac{1}{\sqrt{2}}\left(\cosh u_{2},-\cosh u_{3}, \sinh u_{2},-\sinh u_{3}, 0\right)
\end{gathered}
$$

then, by a straight forward calculation we obtain
$\omega^{1}=d u_{1}, \quad \omega^{2}=a d u_{2}, \quad \omega^{3}=a d u_{3}, \quad \omega_{2}^{1}=\omega_{3}^{1}=\omega_{3}^{2}=\omega_{1}^{4}=\omega_{1}^{5}=\omega_{5}^{4}=0$,

$$
\begin{equation*}
\omega_{2}^{4}=-\frac{1}{a \sqrt{2}} \omega^{2}, \quad \omega_{3}^{4}=-\frac{1}{a \sqrt{2}} \omega^{3}, \quad \omega_{2}^{5}=-\frac{1}{a \sqrt{2}} \omega^{2}, \quad \omega_{3}^{5}=\frac{1}{a \sqrt{2}} \omega^{3} \tag{4.16}
\end{equation*}
$$

Theorem 4.1. Let M be a 3-dimensional space-like submanifold of the pseudoEuclidean space E_{t}^{5} with parallel normalized non-null mean curvature vector such that M is not of 1-type. Then M is of null 2-type having two distinct principal curvatures in the mean curvature direction and having a constant scalar curvature τ if and only if M is locally isometric to one of the following:

1. $S^{1}(a) \times E^{2} \subset E^{4} \subset E_{1}^{5}$ or $S^{2}(a) \times E \subset E^{4} \subset E_{1}^{5}$ when H is space-like,
2. $H^{1}(a) \times E^{2} \subset E_{1}^{4} \subset E_{1}^{5}$ or $H^{2}(a) \times E \subset E_{1}^{4} \subset E_{1}^{5}$ when H is time-like, or
3. $H^{1}(a) \times E^{2} \subset E_{1}^{4} \subset E_{2}^{5}, \quad H^{2}(a) \times E \subset E_{1}^{4} \subset E_{2}^{5}$, or $H^{1}(a) \times H^{1}(a) \times E \subset E_{2}^{5}$.

Proof. As the codimension is 2 and the normalized mean curvature vector, $e_{4}=$ H / α, is parallel, then the normal space is flat. Let M be of null 2-type and let the Weingarten map in the direction H has two distinct principal curvatures. Then the mean curvature α on M is constant by Proposition 4.1. However, as in the proof of Proposition 4.1 we can have

$$
A_{4}=\operatorname{diag}\left(h_{11}^{4}, h_{22}^{4}, h_{22}^{4}\right) \quad \text { and } \quad A_{5}=\operatorname{diag}\left(0, h_{22}^{5},-h_{22}^{5}\right)
$$

By using (3.11) we have $\left\|A_{4}\right\|^{2}=\left(h_{11}^{4}\right)^{2}+2\left(h_{11}^{4}\right)^{2}=\lambda$ which is constant. Hence, as α is constant, it is easily seen that the eigenvalues h_{11}^{4} and h_{22}^{4} of A_{4} are constant. Since the scalar curvature and the eigenvalues of A_{4} are constant, by using (2.4) and (2.5) we obtain $h_{22}^{5}=$ const.

Using the fact that $h_{11}^{4} \neq h_{22}^{4}=h_{33}^{4}, h_{11}^{5}=0, h_{22}^{5}=-h_{33}^{5}$ and all $h_{i j}^{\nu}$'s are constant, from the equations of Codazzi (2.11) and (2.12) for $\nu=4$ we obtain

$$
\begin{equation*}
\omega_{j}^{1}\left(e_{i}\right)=0, \quad i=1,2,3, \quad j=2,3 \tag{4.17}
\end{equation*}
$$

and for $\nu=5$ from (2.12) we get

$$
\begin{equation*}
h_{22}^{5} \omega_{3}^{2}\left(e_{i}\right)=0, \quad i=1,2,3 \tag{4.18}
\end{equation*}
$$

However, by using the equations of Gauss (2.9), for $i=\ell=1, j=k=2$ and for $i=\ell=2, j=k=3$, we obtain, respectively,

$$
\begin{equation*}
h_{11}^{4} h_{22}^{4}=0 \tag{4.19}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{2}\left(\omega_{3}^{2}\left(e_{3}\right)\right)-e_{3}\left(\omega_{3}^{2}\left(e_{2}\right)\right)=\left(\omega_{3}^{2}\left(e_{2}\right)\right)^{2}+\left(\omega_{3}^{2}\left(e_{3}\right)\right)^{2}+\varepsilon_{4}\left(h_{22}^{4}\right)^{2}-\varepsilon_{5}\left(h_{55}^{5}\right)^{2} \tag{4.20}
\end{equation*}
$$

Since A_{4} has two distinct eigenvalues, one of h_{11}^{4} and h_{22}^{4} is a non-zero constant. Considering the equations (4.18), (4.19) and (4.20) we have the following classifications.

Let $t=1$, that is, $\varepsilon_{4} \varepsilon_{5}=-1$.
Case 1. $h_{11}^{4} \neq 0$ and $h_{22}^{4}=0$. Then, by (4.18) we get $h_{22}^{5}=0$ or $\omega_{3}^{2}\left(e_{i}\right)=$ $0, i=1,2,3$. Using the second part, the equation (4.20) implies that $h_{22}^{5}=0$. Thus, A_{5} vanishes. Since the normal space is flat and $A_{5} \equiv 0$, then M is contained in a hyperplane P of E_{1}^{5}.

If H is space-like, then P is a space-like hyperplane of E_{1}^{5}. Therefore, by Theorem $3.1 M$ is locally isometric to the circular cylinder $S^{1}(a) \times E^{2} \subset E^{4} \subset E_{1}^{5}$.

If H is time-like, then P is a Lorentzian hyperplane of E_{1}^{5}. Therefore, by Theorem $3.2 M$ is locally isometric to the hyperbolic cylinder $H^{1}(a) \times E^{2} \subset E_{1}^{4} \subset E_{1}^{5}$.

Case 2. $h_{11}^{4}=0$ and $h_{22}^{4} \neq 0$. Then, by (4.18) we have $h_{22}^{5}=0$ or $\omega_{3}^{2}\left(e_{i}\right)=$ $0, i=1,2,3$. Suppose that $\omega_{3}^{2}\left(e_{i}\right)=0$ for $i=1,2,3$. Thus, from (4.20) we get $\varepsilon_{4}\left(h_{22}^{4}\right)^{2}-\varepsilon_{5}\left(h_{55}^{5}\right)^{2}=0$ which implies that $h_{22}^{4}=h_{55}^{5}=0$ as $\varepsilon_{4} \varepsilon_{5}=-1$. This is a contradiction because $h_{22}^{4} \neq 0$. Therefore $\omega_{3}^{2}\left(e_{i}\right) \neq 0$ at least for one $i \in\{1,2,3\}$ and $h_{55}^{5}=0$, and hence A_{5} vanishes on M. Considering that the normal space is flat, M lies in a hyperplane P of E_{1}^{5}.

If H is space-like, then P is a space-like hyperplane of E_{1}^{5}. Therefore, by Theorem $3.1 M$ is locally isometric to $S^{2}(a) \times E^{1} \subset E^{4} \subset E_{1}^{5}$.

If H is time-like, then P is a Lorentzian hyperplane of E_{1}^{5}. Therefore, by Theorem $3.2 M$ is locally isometric to $H^{2}(a) \times E^{1} \subset E_{1}^{4} \subset E_{1}^{5}$.

Let $t=2$, that is, $\varepsilon_{4} \varepsilon_{5}=1$. Then the normal space is time-like.
Case 3. $h_{11}^{4} \neq 0$ and $h_{22}^{4}=0$. Then, by (4.18) we get $h_{22}^{5}=0$ or $\omega_{3}^{2}\left(e_{i}\right)=0, i=$ $1,2,3$. Using the second part, the equation (4.20) implies that $h_{22}^{5}=0$. Therefore A_{5} vanishes. Since the normal space is flat and $A_{5} \equiv 0$, then M is contained in a Lorentzian hyperplane P of E_{2}^{5}. Therefore, by Theorem $3.2 M$ is locally isometric to $H^{1}(a) \times E^{2} \subset E_{1}^{4} \subset E_{2}^{5}$.

Case 4. $h_{11}^{4}=0$ and $h_{22}^{4} \neq 0$. Then, by (4.18) we get $h_{22}^{5}=0$ or $\omega_{3}^{2}\left(e_{i}\right)=0, i=$ 1, 2, 3 .

Subcase 4-a. $\omega_{3}^{2}\left(e_{i}\right) \neq 0$ for at least one $i \in\{1,2,3\}$ and $h_{22}^{5}=0$. Hence, we have $A_{4}=\operatorname{diag}\left(0, h_{22}^{4}, h_{22}^{4}\right)$ and $A_{5} \equiv 0$. Considering that the normal space is flat, M lies in a Lorentzian hyperplane P of E_{2}^{5}. Therefore, M is locally isometric to $H^{2}(a) \times E \subset E_{1}^{4} \subset E_{2}^{5}$ by Theorem 3.2.

Subcase 4-b. $h_{22}^{5} \neq 0$ and $\omega_{3}^{2}\left(e_{i}\right)=0, i=1,2,3$. From (4.20) we get $\varepsilon_{4}\left(h_{22}^{4}\right)^{2}-$ $\varepsilon_{5}\left(h_{55}^{5}\right)^{2}=0$ which implies that $h_{22}^{4}=\mp h_{55}^{5} \neq 0$ as $\varepsilon_{4} \varepsilon_{5}=1$. Putting $\mu_{0}=h_{22}^{4}=-\frac{3 \alpha}{2}$ we have $A_{4}=\operatorname{diag}\left(0, \mu_{0}, \mu_{0}\right)$ and $A_{5}=\operatorname{diag}\left(0, \mp \mu_{0}, \pm \mu_{0}\right)$. Considering $\omega_{3}^{2}\left(e_{i}\right)=0, i=$ $1,2,3$ and (4.17) it is seen that M is flat. Also, we can write

$$
\omega_{1}^{4}=0, \quad \omega_{2}^{4}=\mu_{0} \omega^{2}, \quad \omega_{3}^{4}=\mu_{0} \omega^{3}, \quad \omega_{1}^{5}=0, \quad \omega_{2}^{5}= \pm \mu_{0} \omega^{2}, \quad \omega_{3}^{5}=\mp \mu_{0} \omega^{3}
$$

Since M has a flat normal connection it is seen that the connection forms ω_{B}^{A} coincide with the connection forms of $H^{1}(a) \times H^{1}(a) \times E$ given in (4.16). Therefore, from the fundamental theorem of submanifolds, M is locally isometric to $H^{1}(a) \times H^{1}(a) \times E \subset$ E_{2}^{5}.

The converses of all these cases are trivial.
Remark: The cases (1) and (2) show that in the case $t=1$ there is no such a submanifold that lies fully in E_{1}^{5}.

References

[1] B.Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, Singapor-New Jersey-London, 1984.
[2] B.Y. Chen, Finite type submanifolds in pseudo-Euclidean space and applications, Kodai Math. J., 8 (1985), 358-374.
[3] B.Y. Chen, Finite type pseudo-Riemannian submanifolds, Tamkang J. Math., 17 (1986), 137-151.
[4] B.Y. Chen, Null 2-type surfaces E^{3} are circular cylinder, Kodai Math J. 11 (1988), 295-299.
[5] B.Y. Chen, Null 2-type surfaces in Euclidean space, in Algebra, Analysis and Geometry, (Taipei, 1988) 1-18, World Sci. Publishing, Teaneck, NJ, 1989.
[6] B.Y.Chen and H. Song, Null 2-type surfaces in Minkowski space-time, Algebras, Groups and Geometries, 6 (1989), 333-352.
[7] U. Dursun, Null 2-Type Submanifolds of the Euclidean space E^{5} with parallel normalized mean curvature vector, Kodai Math. J., 28 (2005), 191-198.
[8] U. Dursun, Null 2-Type Submanifolds of the Euclidean Space E^{5} with non-parallel normalized mean curvature vector, to appear.
[9] A. Ferrandez and P. Lucas, Null finite type hypersurfaces in Space Forms, Kodai Math. J. 14 (1001), 406-419.
[10] A. Ferrandez and P. Lucas, Null finite type hypersurfaces in a Lorentz space, Canad. Math. Bull. 35 (1992), 354-360.
[11] D.S. Kim and H.Y. Kim, Null 2-type surfaces in Minkowski 4-space, Houston J. Math., 22 (1996), 279-296.
[12] S.J. Li, Null 2-type surfaces in E^{m} with parallel normalized mean curvature vector, Math. J. Toyama Univ., 17 (1994), 23-30.

Author's address:
Uğur Dursun
Istanbul Technical University, Faculty of Science and Letters, Department Mathematics, 34469 Maslak, Istanbul, Turkey. email: udursun@itu.edu.tr

[^0]: Balkan Journal of Geometry and Its Applications, Vol.11, No.1, 2006, pp. 61-72.
 (c) Balkan Society of Geometers, Geometry Balkan Press 2006.

