Null 2-type space-like submanifolds of E_t^5 with normalized parallel mean curvature vector

Uğur Dursun

Abstract. The purpose of this article is to classify 3-dimensional null 2type space-like submanifolds of the pseudo-Euclidean space E_t^5 which are constructed from the eigenfunctions of the Laplacian with two eigenvalues 0 and nonzero constant λ , under certain assumptions.

Mathematics Subject Classification: 53C40.

Key words: Laplacian, null 2-type submanifold, scalar curvature, mean curvature vector.

1 Introduction

A connected submanifold M^n of a pseudo-Euclidean space E_t^m is called of finite type if its position vector field x can be written as a sum of eigenfunctions of its Laplacian; more precisely, M^n is said to be of finite k-type if its position vector field x admits the following spectral decomposition

(1.1)
$$x = x_0 + x_1 + \dots + x_k$$

where $\Delta x_i = \lambda_i x_i$, i = 1, 2, ..., k, $\lambda_1 < \cdots < \lambda_k$, x_0 is a constant vector in E_t^m and x_1, \ldots, x_k are non-constant E_t^m -valued maps on M^n . If one of the eigenvalues λ_i vanishes, then M^n is said to be of null k-type (see [1, 2] for detail). We can choose a coordinate system on E_t^m with x_0 as its origin. Then we have the following simple spectral decomposition of x for a null 2-type submanifold M:

(1.2)
$$x = x_1 + x_2, \quad \Delta x_1 = 0, \quad \Delta x_2 = \lambda x_2.$$

In [4, 5], B.Y. Chen gave a classification of null 2-type surfaces in the Euclidean space E^3 and E^4 . He proved that circular cylinders and helical cylinders are the only surfaces of null 2-type in E^3 and E^4 , respectively. In [5], he also proved that a surface M in the Euclidean space E^4 is of null 2-type with parallel normalized mean curvature vector if and only if M is an open portion of a circular cylinder in a hyperplane of E^4 . However, in [12], S.J. LI showed that a surface M in E^m with parallel normalized

Balkan Journal of Geometry and Its Applications, Vol.11, No.1, 2006, pp. 61-72.

[©] Balkan Society of Geometers, Geometry Balkan Press 2006.

mean curvature vector is of null 2-type if and only if M is an open portion of a circular cylinder.

Later, in [6], B.Y. Chen and H. Song proved that a space-like surface M in E_t^4 , (t = 1, 2) is of null 2-type with constant mean curvature if and only if M is an open portion of a helical cylinder of the first kind or a helical cylinder of the second kind in E_t^4 , (t = 1, 2).

Also, in [11], D.S. Kim and Y.H. Kim gave complete classification theorems on null 2-type surfaces in Minkowski space E_1^4 . They proved that a Lorentzian surface M in E_1^4 is of null 2-type with constant mean curvature if and only if M is an open portion of a helical cylinder of third kind, a helical cylinder of fourth kind, an extended B-scroll or a cylinder $E_1^1 \times S^1(r)$, $S_1^1(r) \times E$.

In the case of the classification of hypersurfaces, the constancy of the mean curvature does not provide enough information to obtain a characterization of null 2-type hypersurfaces of Euclidean spaces and Lorentzian spaces. In [9, 10], A. Ferrandez and P. Lucas studied null 2-type hypersurfaces of Euclidean spaces and null 2-type spacelike hypersurfaces of Lorentzian spaces with additional assumption of having at most two distinct principal curvatures. They proved that Euclidean hypersurfaces of null 2-type and having at most two distinct principal curvatures are locally isometric to a generalized spherical cylinder, [9], and a space-like hypersurface of the Lorentzian space E_1^m with at most two distinct principal curvatures is of null 2-type if and only if it is locally isometric to a generalized hyperbolic cylinder, [10].

The assumptions on hypersurfaces to be of null 2-type are not enough for submanifolds M^n , $n \geq 3$ of the Euclidean spaces E^m and the pseudo-Euclidean spaces E_t^m to be of null 2-type. In [7], the author proved that a 3-dimensional submanifold M of the Euclidean space E^5 having two distinct principal curvatures in the parallel mean curvature direction and having a second fundamental form of a constant square length is of null 2-type if and only if M is locally isometric to one of $E \times S^2 \subset E^4 \subset E^5$, $E^2 \times S^1 \subset E^4 \subset E^5$ or $E \times S^1(a) \times S^1(a)$. However, in [8], the author proved that a 3-dimensional submanifold M of the Euclidean space E^5 with constant mean curvature and non-parallel mean curvature vector is an open portion of a 3-dimensional helical cylinder if and only if M is flat and of null 2-type.

In this work we study the classification of null 2-type space-like submanifolds of the pseudo-Euclidean spaces. We mainly prove that a 3-dimensional space-like submanifold M of the pseudo-Euclidean space E_t^5 with parallel normalized non-null mean curvature vector is of null 2-type having two distinct principal curvatures in the mean curvature direction and having a constant scalar curvature τ if and only if Mis locally isometric to one of the following:

- 1. $S^1(a) \times E^2 \subset E^4 \subset E_1^5$ or $S^2(a) \times E \subset E^4 \subset E_1^5$ when H is space-like,
- 2. $H^1(a) \times E^2 \subset E_1^4 \subset E_1^5$ or $H^2(a) \times E \subset E_1^4 \subset E_1^5$ when H is time-like, or

$$3. \ H^1(a) \times E^2 \subset E_1^4 \subset E_2^5, \ H^2(a) \times E \subset E_1^4 \subset E_2^5, \text{ or } H^1(a) \times H^1(a) \times E \subset E_2^5.$$

The cases (1) and (2) imply that there is no such a submanifold that lies fully in E_1^5 .

2 Preliminaries

Let E_t^m be an m-dimensional pseudo-Euclidean space with metric tensor given by

$$g = -\sum_{i=1}^{t} (dx_i)^2 + \sum_{i=t+1}^{m} (dx_i)^2$$

where (x_1, \ldots, x_m) is a rectangular coordinate system of E_t^m . So (E_t^m, g) is a flat pseudo-Riemannian manifold with signature (t, m - t). When t = 1, E_1^m is called the Lorentzian space. The hyperbolic space $H^m(a)$ is defined by

$$H^m(a) = \{ x \in E_1^{m+1} | \langle x, x \rangle = -a^2 \text{ and } x_1 > 0 \},\$$

where x_1 is the first coordinate in E_1^{m+1} .

Let M be an n-dimensional pseudo-Riemannian submanifold of an m-dimensional pseudo-Euclidean space E_t^m . We denote by h, A, H, ∇ and ∇^{\perp} , the second fundamental form, the Weingarten map, the mean curvature vector, the Riemannian connection and the normal connection of the submanifold M in E_t^m , respectively.

Let $e_1, \ldots, e_n, e_{n+1}, \ldots, e_m$ be an adapted local orthonormal frame in E_t^m such that $\langle e_A, e_B \rangle = \varepsilon_B \delta_{AB}$, ($\varepsilon_B = \langle e_B, e_B \rangle = \pm 1$), e_1, \ldots, e_n are tangent to M_t^n and e_{n+1}, \ldots, e_m are normal to M_t^n . We use the following convention on the range of indices:

$$1 \leq A, B, C, \ldots \leq m, \quad 1 \leq i, j, k, \ldots \leq n, \quad n+1 \leq \beta, \nu, \gamma, \ldots \leq m.$$

Let $\{\omega_A\}$ be the dual 1-forms of $\{e_A\}$ defined by $\omega_A(X) = \langle e_A, X \rangle$, $(\omega_A(e_B) = \langle e_B, e_A \rangle = \varepsilon_B \delta_{AB})$. Also, the connection forms ω_A^B are defined by

$$de_A = \sum_{B=1}^m \omega_A^B e_B, \quad \varepsilon_B \omega_A^B + \varepsilon_A \omega_B^A = 0.$$

For lifting or lowering indices we use $\omega^A = \varepsilon_A \omega_A$, $\omega^B_A = \varepsilon_B \omega_{AB}$. Then the structure equations of E_t^m are obtained as follows

(2.1)
$$d\omega^A = \sum_{B=1}^m \omega^B \wedge \omega_B^A, \quad d\omega_A^B = \sum_{C=1}^m \omega_A^C \wedge \omega_C^B$$

Restricting these forms to M we have

$$\omega^{\beta} = 0, \quad d\omega^{\beta} = \sum_{i=1}^{m} \omega^{i} \wedge \omega_{i}^{\beta} = 0, \quad \beta = n+1, \dots, m.$$

By Cartan's Lemma, we can write

(2.2)
$$\omega_i^\beta = \sum_{j=1}^n h_{ij}^\beta \omega^j, \quad h_{ij}^\beta = h_{ji}^\beta,$$

where h_{ij}^{β} are coefficients of the second fundamental form in the direction e_{β} .

Uğur Dursun

The mean curvature vector H is given by

(2.3)
$$H = \frac{1}{n} \sum_{\beta=n+1}^{m} \varepsilon_{\beta} \operatorname{tr}(h^{\beta}) e_{\beta}$$

and the scalar curvature τ is given by

(2.4)
$$n(n-1)\tau = n^2 |H|^2 - ||h||^2$$

where $\|h\|^2$ denotes the square of the length of the second fundamental form which is defined by

(2.5)
$$\|h\|^2 = \sum_{\beta} \varepsilon_{\beta} \operatorname{tr}(h^{\beta})^2 = \sum_{i,j,\beta} \varepsilon_{\beta} \varepsilon_i \varepsilon_j (h_{ij}^{\beta})^2.$$

The first equation of (2.1) gives

(2.6)
$$d\omega^{i} = \sum_{j=1}^{m} \omega^{j} \wedge \omega_{j}^{i}, \quad \varepsilon_{i} \omega_{j}^{i} + \varepsilon_{j} \omega_{i}^{j} = 0,$$

where $\{\omega_j^i\}$ is the connection forms on M and uniquely determined by these equations. However, from the second equation of (2.1) we can have the Gauss and Codazzi equations, respectively, as

(2.7)
$$d\omega_i^j = \sum_{k=1}^n \omega_i^k \wedge \omega_k^j + \sum_{\beta=n+1}^m \omega_i^\beta \wedge \omega_\beta^j$$

and

(2.8)
$$d\omega_i^\beta = \sum_{k=1}^n \omega_i^k \wedge \omega_k^\beta + \sum_{\nu=n+1}^m \omega_i^\nu \wedge \omega_\nu^\beta.$$

Using (2.2) and the connection equations $\nabla_{e_i} e_j = \sum_{k=1}^n \omega_j^k(e_i) e_k$ we can restate the equations of Gauss (2.7) and Codazzi (2.8) relative to the basis e_1, \ldots, e_n , respectively, as follows

$$(2.9) \qquad e_{\ell}(\omega_{i}^{j}(e_{k})) - e_{k}(\omega_{i}^{j}(e_{\ell})) = \sum_{r=1}^{n} \{\omega_{i}^{r}(e_{\ell})\omega_{r}^{j}(e_{k}) - \omega_{i}^{r}(e_{k})\omega_{r}^{j}(e_{\ell}) + \omega_{i}^{j}(e_{r})[\omega_{k}^{r}(e_{\ell}) - \omega_{\ell}^{r}(e_{k})]\} + \sum_{\nu=n+1}^{m} \varepsilon_{j}\varepsilon_{\nu}(\varepsilon_{k}h_{ik}^{\nu}h_{j\ell}^{\nu} - \varepsilon_{\ell}h_{jk}^{\nu}h_{i\ell}^{\nu}),$$

$$1 \leq i < j \leq n, \quad 1 \leq \ell < k \leq n$$

and

Null 2-type space-like submanifolds

(2.10)

$$e_{j}(h_{ik}^{\nu}) - e_{k}(h_{ij}^{\nu}) = \sum_{r=1}^{n} \{ h_{ir}^{\nu}[\omega_{k}^{r}(e_{j}) - \omega_{j}^{r}(e_{k})] + h_{rk}^{\nu}\omega_{i}^{r}(e_{j}) - h_{rj}^{\nu}\omega_{i}^{r}(e_{k}) \} + \sum_{\beta=n+1}^{m} (h_{ij}^{\beta}\omega_{\beta}^{\nu}(e_{k}) - h_{ik}^{\beta}\omega_{\beta}^{\nu}(e_{j})),$$

$$\nu = n+1, \dots, m, \ i = 1, \dots, n, \ 1 \le j < k \le n.$$

If the normal space of M in E_t^m is flat, then we can choose a parallel orthonormal normal basis on M. Therefore we have $\omega_{\beta}^{\nu} = 0$. Hence the equations of Codazzi become

(2.11)
$$e_j(h_{ii}^{\nu}) = \varepsilon_j \varepsilon_i (h_{ii}^{\nu} - h_{jj}^{\nu}) \omega_i^j(e_i), \quad i \neq j.$$

and

(2.12)
$$\varepsilon_j(h_{ii}^{\nu} - h_{kk}^{\nu})\omega_k^i(e_j) + \varepsilon_k(h_{jj}^{\nu} - h_{ii}^{\nu})\omega_j^i(e_k) = 0, \quad i \neq j \neq k \neq i.$$

3 Some Basic Lemmas

We need the following some well known formulas and lemmas (for details see [1, 2, 3, 5]).

Lemma 3.1. Let M be an n-dimensional pseudo-Riemannian submanifold of a pseudo-Euclidiean space E_t^m . Then we have

(3.1)
$$\Delta H = \Delta^{\nabla^{\perp}} H + \sum_{i=1}^{n} \varepsilon_i \{ (\nabla_{e_i} A_H) e_i + A_{\nabla_{e_i}} H e_i + h(A_H e_i, e_i) \}$$

where $\Delta^{\nabla^{\perp}} = -\sum_{i=1}^{n} \varepsilon_i \{ \nabla^{\perp}_{e_i} \nabla^{\perp}_{e_i} - \nabla^{\perp}_{\nabla_{e_i} e_i} \}$ is the Laplacian operator associated with the induced normal connection ∇^{\perp} .

Lemma 3.2. Let M be an n-dimensional pseudo-Riemannian submanifold of a pseudo-Euclidiean space E_t^m . Then we have

(3.2)
$$\operatorname{tr}(\nabla A_H) = \sum_{i=1}^n \varepsilon_i (\nabla_{e_i} A_H) e_i = \frac{n}{2} \nabla \langle H, H \rangle + \operatorname{tr}(A_{\nabla^{\perp} H}),$$

where $\nabla \langle H, H \rangle$ is the gradient of $\langle H, H \rangle$ and $\operatorname{tr}(A_{\nabla^{\perp} H}) = \sum_{i=1}^{n} \varepsilon_{i} A_{\nabla_{e_{i}}^{\perp} H} e_{i}$.

1-type pseudo-Riemannian submanifold of a pseudo-Euclidiean space E_t^m were completely classified in [3]. They are minimal submanifolds of E_t^m , minimal submanifolds of a pseudo-Riemannian sphere in E_t^m or minimal submanifolds of a pseudohyperbolic space in E_t^m .

For a null 2-type submanifold M of E_t^m , using $\Delta x = -nH$ the definition (1.2) implies

$$(3.3) \qquad \qquad \Delta H = \lambda H$$

Lemma 3.3. Let M be an n-dimensional pseudo-Riemannian submanifold of a pseudo-Euclidiean space E_t^m . Then, there is a constant $\lambda \neq 0$ such that $\Delta H = \lambda H$ holds if and only if M is either of 1-type or of null 2-type.

If the mean curvature vector H is non-null, that is, $\langle H, H \rangle \neq 0$, then there is an orthonormal normal frame e_{n+1}, \ldots, e_m such that $H = \alpha e_{n+1}$, where $\alpha^2 = \varepsilon_{n+1} \langle H, H \rangle$.

Lemma 3.4. Let M be an n-dimensional pseudo-Riemannian submanifold of a pseudo-Euclidiean space E_t^m . If M is not of 1-type, then M is of null 2-type if and only if

(3.4)
$$\operatorname{tr}(\bar{\nabla}A_H) = \operatorname{tr}(\nabla A_H) + \operatorname{tr}(A_{\nabla^{\perp}H}) = 0$$

and

(3.5)
$$\Delta^{\nabla^{\perp}} H + \sum_{i=1}^{n} \varepsilon_{i} h(A_{H} e_{i}, e_{i}) = \lambda H,$$

for some nonzero constant λ .

From the definition of $\Delta^{\nabla^{\perp}} H$ we have

$$\Delta^{\nabla^{\perp}} H = (\Delta \alpha + \sum_{\nu=n+2}^{m} \sum_{i=1}^{n} \varepsilon_i \varepsilon_{\nu} \varepsilon_{n+1} \alpha (\omega_{n+1}^{\nu}(e_i))^2) e_{n+1}$$

$$(3.6) \qquad -\sum_{\nu=n+2}^{m} \{ 2\omega_{n+1}^{\nu}(\nabla \alpha) + \alpha \operatorname{tr}(\nabla \omega_{n+1}^{\nu}) + \sum_{i=1}^{n} \sum_{\beta=n+2}^{m} \alpha \varepsilon_i \omega_{n+1}^{\beta}(e_i) \omega_{\beta}^{\nu}(e_i) \} e_{\nu},$$

where $\nabla \alpha = \sum_{i=1}^{n} \varepsilon_i(e_i \alpha) e_i$ and $\operatorname{tr}(\nabla \omega_{n+1}^{\beta}) = \sum_{i=1}^{n} \varepsilon_i(\nabla_{e_i} \omega_{n+1}^{\beta})(e_i).$

Lemma 3.5. Let M be an n-dimensional pseudo-Riemannian submanifold of E_t^m . If M is not of 1-type and $H = \alpha e_{n+1}$ is non-null, then M is of null 2-type if and only if we have

(3.7)
$$\operatorname{tr}(\bar{\nabla}A_H) = \frac{n}{2}\nabla\langle H, H\rangle + 2\operatorname{tr}(A_{\nabla^{\perp}H}) = 0$$

(3.8)
$$\Delta \alpha = \lambda \alpha - \alpha \varepsilon_{n+1} \|A_{n+1}\|^2 - \alpha \sum_{i=1}^n \sum_{\nu=n+2}^m \varepsilon_i \varepsilon_\nu \varepsilon_{n+1} (\omega_{n+1}^\nu(e_i))^2,$$

(3.9)
$$\varepsilon_{\beta} \operatorname{tr}(A_{H}A_{\beta}) = 2\omega_{n+1}^{\beta}(\nabla\alpha) + \alpha \operatorname{tr}(\nabla\omega_{n+1}^{\beta}) + \alpha \sum_{i=1}^{n} \sum_{\nu=n+2}^{m} \varepsilon_{i}\omega_{n+1}^{\nu}(e_{i})\omega_{\nu}^{\beta}(e_{i}),$$

where λ is a nonzero constant, $\beta = n + 2, \dots, m$ and $||A_{n+1}||^2 = \sum_{i=1}^n \varepsilon_i \langle A_{n+1}e_i, A_{n+1}e_i \rangle$.

66

Null 2-type space-like submanifolds

By direct calculation the equation (3.7) becomes

$$\operatorname{tr}(\bar{\nabla}A_{H}) = \frac{n}{2}\varepsilon_{n+1}\nabla(\alpha^{2}) + 2A_{n+1}(\nabla\alpha) + 2\alpha\sum_{i=1}^{n}\sum_{\nu=n+2}^{m}\varepsilon_{i}\omega_{n+1}^{\nu}(e_{i})A_{e_{\nu}}(e_{i}) = 0.$$

Using this equation we can have the following corollary from Lemma 3.5.

Corollary 3.1. Let M be an n-dimensional pseudo-Riemannian submanifold of E_t^{n+2} . If M is not of 1-type, $H = \alpha e_{n+1}$ is non-null and the normalized mean curvature vector, e_{n+1} , is parallel, then M is of null 2-type if and only if we have

(3.10)
$$A_{n+1}(\nabla \alpha^2) + \frac{n\alpha\varepsilon_{n+1}}{2}\nabla(\alpha^2) = 0,$$

(3.11)
$$\Delta \alpha = \lambda \alpha - \alpha \varepsilon_{n+1} \|A_{n+1}\|^2,$$

(3.12)
$$\operatorname{tr}(A_{n+1}A_{n+2}) = 0,$$

where λ is a nonzero constant.

In [9, 10], the following theorems are given on null 2-type hypersurfaces of Euclidean spaces and null 2-type space-like hypersurfaces of Lorentzian space.

Theorem 3.1. ([9]) Let M be a Euclidean hypersurface with at most two distinct principal curvature. Then, M is of null 2-type if and only if it is locally isometric to $E^p \times S^{n-p}(a)$.

Theorem 3.2. ([10]) Let M^n be a space-like hypersurface of the Lorentzian spaces E_1^n with at most two distinct principal curvature. Then, M^n is of null 2-type if and only if it is locally isometric to $E^p \times H^{n-p}(a)$.

4 Null 2-type space-like submanifolds of E_t^5

We prove the followings.

Proposition 4.1. Let M be a 3-dimensional space-like submanifold of the pseudo-Euclidean space E_t^5 with parallel normalized mean curvature vector such that M is not of 1-type. If M is of null 2-type with the Weingarten map in the direction of the mean curvature vector H has two distinct eigenvalues, then the mean curvature α is constant on M.

Proof. As the codimension is 2 and the normalized mean curvature vector, $e_4 = H/\alpha$, $\alpha^2 = \epsilon_4 \langle H, H \rangle$, is parallel, then the unit normal vector e_5 is also parallel. Therefore the normal space is flat, i.e., $\omega_4^5 \equiv 0$ on M. Hence we can have the diagonalized Weingarten maps in the direction e_4 and e_5 . Since A_4 has two distinct eigenvalues, say, $h_{41}^1 \neq h_{22}^2 = h_{33}^4$. We can write

$$A_4 = \operatorname{diag}(h_{11}^4, h_{22}^4, h_{22}^4) \text{ and } A_5 = \operatorname{diag}(h_{11}^5, h_{22}^5, h_{33}^5)$$

with $h_{11}^5 + h_{22}^5 + h_{33}^5 = 0$. However, from (3.12) we get

(4.1)
$$\operatorname{tr}(A_4A_5) = (h_{11}^4 - h_{22}^4)h_{11}^5 = 0$$

because of $h_{11}^5 + h_{22}^5 + h_{33}^5 = 0$. As $h_{11}^4 - h_{22}^4 \neq 0$ we have $h_{11}^5 = 0$ and $h_{22}^5 = -h_{33}^5$. Assume that α is not constant. Let $V = \{p \in M : \nabla \alpha^2(p) \neq 0\}$ which is open in M. From (3.10) it is seen that the vector $\nabla \alpha^2$ is an eigenvector of A_4 corresponding to the eigenvalue $-\frac{3\alpha\varepsilon_4}{2}$. Then we may say that $\nabla\alpha^2$ is parallel to e_1 or e_3 (the same as e_2). For the last case it could also be proved that the mean curvature α is constant by using the same way as in the first case. Thus $h_{11}^4 = -\frac{3\alpha\varepsilon_4}{2}$ and $h_{22}^4 = h_{33}^4 = \frac{9\alpha\varepsilon_4}{4}$ because of $3\alpha\varepsilon_4 = h_{11}^4 + 2h_{22}^4$. Then we have

(4.2)
$$\omega_1^4 = -\frac{3\alpha\varepsilon_4}{2}\,\omega^1, \quad \omega_2^4 = \frac{9\alpha\varepsilon_4}{4}\,\omega^2, \quad \omega_3^4 = \frac{9\alpha\varepsilon_4}{4}\,\omega^3.$$

Since $\nabla \alpha^2$ is parallel to e_1 we can have $e_2(\alpha) = e_3(\alpha) = 0$, that is, $e_2(h_{11}^4) = e_3(h_{11}^4) = e_3(h_{11}^4)$ 0, and

(4.3)
$$d\alpha = e_1(\alpha)\omega^1.$$

However, by using the equation of Codazzi (2.11) for $\nu = 4$ if i = 1 we have

(4.4)
$$\omega_1^2(e_1) = \omega_1^3(e_1) = 0$$

because of $h_{11}^4 - h_{22}^4 \neq 0$, and if j = 1, considering $h_{22}^4 = h_{33}^4 = \frac{9\alpha\varepsilon_4}{4}$, then we obtain

(4.5)
$$\omega_2^1(e_2) = \omega_3^1(e_3) = \frac{3}{5} \frac{e_1(\alpha)}{\alpha}.$$

Also, the equation of Codazzi (2.12) for $\nu = 4$ and j = 1 implies that

(4.6)
$$\omega_2^1(e_3) = \omega_3^1(e_2) = 0$$

Applying the structure equations and using (4.6), it can be shown that $d\omega^1 = 0$. Hence we have locally

(4.7)
$$\omega^1 = du,$$

where u is a local coordinate on U. From (4.3) and (4.7) we have $d\alpha \wedge du = 0$. This shows that α is a function of u, i.e., $\alpha = \alpha(u)$ and $d\alpha = \alpha'(u)du$. Thus, by (4.5) we have

(4.8)
$$\omega_2^1(e_2) = \omega_3^1(e_3) = \frac{3\alpha'}{5\alpha}.$$

Considering (4.4) and (4.6), from the equation of Gauss (2.9) for $i = \ell = 1, j =$ k = 2 we get

(4.9)
$$e_1(\omega_2^1(e_2)) = (\omega_2^1(e_2))^2 + \varepsilon_4 h_{11}^4 h_{22}^4.$$

Using (4.8), the equation (4.9) turns into

Null 2-type space-like submanifolds

(4.10)
$$40\alpha\alpha'' - 64(\alpha')^2 + 225\varepsilon_4\alpha^4 = 0.$$

Let $y = (\alpha')^2$. Then the above the equation can be reduced to the following first order differential equation:

(4.11)
$$2\alpha y' - 64y + 225\varepsilon_4 \alpha^4 = 0,$$

where y' denotes the first derivative of y with respect to α . For this equation we obtain the solution

(4.12)
$$(\alpha')^2 = C\alpha^{16/5} - \varepsilon_4 \left(\frac{225}{16}\right)^2 \alpha^4,$$

where C is a constant.

When we use the definition of $\Delta \alpha$, the fact that $\nabla \alpha^2$ is parallel to e_1 and the equation (4.8) we obtain

(4.13)
$$\Delta \alpha = \frac{6(\alpha')^2}{5\alpha} - \alpha''.$$

Also, since $||A_4||^2 = \frac{99\alpha^2}{8}$, considering (4.13) and the second equation (3.11) of Corollary 3.1 we get

(4.14)
$$40\alpha\alpha'' - 48(\alpha')^2 + 40\lambda\alpha^2 - 495\varepsilon_4\alpha^4 = 0.$$

Combining (4.10) and (4.14) we obtain

(4.15)
$$(\alpha')^2 = 45\varepsilon_4 \alpha^4 - \frac{5}{2}\lambda \alpha^2.$$

As a result, using (4.12) and (4.15) we deduce that α is locally constant on V which is a contradiction with the definition of M. Therefore α is constant on M.

Let $H^1(a) \times H^1(a) \times E = \{(x_1, x_2, \dots, x_5) : -x_1^2 + x_3^2 = -a^2, -x_2^2 + x_4^2 = -a^2\}.$ For later use we need the connection forms ω_A^B of $H^1(a) \times H^1(a) \times E \subset E_2^5$. By a suitable choice of the Euclidean coordinates, its equation takes the following form

 $x(u_1, u_2, u_3) = (a \cosh u_2, a \cosh u_3, a \sinh u_2, a \sinh u_3, u_1),$

where a is a nonzero constant. If we put

$$e_{1} = \frac{\partial}{\partial u_{1}} = (0, 0, 0, 0, 1), \quad e_{2} = \frac{1}{a} \frac{\partial}{\partial u_{2}} = (\sinh u_{2}, 0, \cosh u_{2}, 0, 0),$$
$$e_{3} = \frac{1}{a} \frac{\partial}{\partial u_{2}} = (0, \sinh u_{3}, 0, \cosh u_{3}, 0),$$
$$e_{4} = \frac{1}{\sqrt{2}} (\cosh u_{2}, \cosh u_{3}, \sinh u_{2}, \sinh u_{3}, 0),$$
$$e_{5} = \frac{1}{\sqrt{2}} (\cosh u_{2}, -\cosh u_{3}, \sinh u_{2}, -\sinh u_{3}, 0),$$

then, by a straight forward calculation we obtain

$$\begin{split} \omega^1 &= du_1, \quad \omega^2 = a du_2, \quad \omega^3 = a du_3, \quad \omega_2^1 = \omega_3^1 = \omega_3^2 = \omega_1^4 = \omega_1^5 = \omega_5^4 = 0, \\ (4.16) \qquad \omega_2^4 &= -\frac{1}{a\sqrt{2}}\,\omega^2, \quad \omega_3^4 = -\frac{1}{a\sqrt{2}}\,\omega^3, \quad \omega_2^5 = -\frac{1}{a\sqrt{2}}\,\omega^2, \quad \omega_3^5 = \frac{1}{a\sqrt{2}}\,\omega^3. \end{split}$$

Theorem 4.1. Let M be a 3-dimensional space-like submanifold of the pseudo-Euclidean space E_t^5 with parallel normalized non-null mean curvature vector such that M is not of 1-type. Then M is of null 2-type having two distinct principal curvatures in the mean curvature direction and having a constant scalar curvature τ if and only if M is locally isometric to one of the following:

 $\begin{array}{ll} 1. \ S^{1}(a) \times E^{2} \subset E^{4} \subset E_{1}^{5} \ \ or \ \ S^{2}(a) \times E \subset E^{4} \subset E_{1}^{5} \ \ when \ H \ is \ space-like, \\ \\ 2. \ \ H^{1}(a) \times E^{2} \subset E_{1}^{4} \subset E_{1}^{5} \ \ or \ \ H^{2}(a) \times E \subset E_{1}^{4} \subset E_{1}^{5} \ \ when \ H \ is \ time-like, \ or \\ \\ 3. \ \ H^{1}(a) \times E^{2} \subset E_{1}^{4} \subset E_{2}^{5}, \ \ H^{2}(a) \times E \subset E_{1}^{4} \subset E_{2}^{5}, \ or \ \ H^{1}(a) \times H^{1}(a) \times E \subset E_{2}^{5}. \end{array}$

Proof. As the codimension is 2 and the normalized mean curvature vector, $e_4 = H/\alpha$, is parallel, then the normal space is flat. Let M be of null 2-type and let the Weingarten map in the direction H has two distinct principal curvatures. Then the mean curvature α on M is constant by Proposition 4.1. However, as in the proof of Proposition 4.1 we can have

$$A_4 = \text{diag}(h_{11}^4, h_{22}^4, h_{22}^4)$$
 and $A_5 = \text{diag}(0, h_{22}^5, -h_{22}^5).$

By using (3.11) we have $||A_4||^2 = (h_{11}^4)^2 + 2(h_{11}^4)^2 = \lambda$ which is constant. Hence, as α is constant, it is easily seen that the eigenvalues h_{11}^4 and h_{22}^4 of A_4 are constant. Since the scalar curvature and the eigenvalues of A_4 are constant, by using (2.4) and (2.5) we obtain $h_{22}^5 = \text{const.}$

Using the fact that $h_{11}^4 \neq h_{22}^4 = h_{33}^4$, $h_{11}^5 = 0$, $h_{22}^5 = -h_{33}^5$ and all h_{ij}^{ν} 's are constant, from the equations of Codazzi (2.11) and (2.12) for $\nu = 4$ we obtain

(4.17)
$$\omega_i^1(e_i) = 0, \quad i = 1, 2, 3, \quad j = 2, 3$$

and for $\nu = 5$ from (2.12) we get

(4.18)
$$h_{22}^5 \omega_3^2(e_i) = 0, \quad i = 1, 2, 3.$$

However, by using the equations of Gauss (2.9), for $i = \ell = 1, j = k = 2$ and for $i = \ell = 2, j = k = 3$, we obtain, respectively,

$$(4.19) h_{11}^4 h_{22}^4 = 0,$$

and

(4.20)
$$e_2(\omega_3^2(e_3)) - e_3(\omega_3^2(e_2)) = (\omega_3^2(e_2))^2 + (\omega_3^2(e_3))^2 + \varepsilon_4(h_{22}^4)^2 - \varepsilon_5(h_{55}^5)^2.$$

Since A_4 has two distinct eigenvalues, one of h_{11}^4 and h_{22}^4 is a non-zero constant. Considering the equations (4.18), (4.19) and (4.20) we have the following classifications. Let t = 1, that is, $\varepsilon_4 \varepsilon_5 = -1$.

Case 1. $h_{11}^4 \neq 0$ and $h_{22}^4 = 0$. Then, by (4.18) we get $h_{22}^5 = 0$ or $\omega_3^2(e_i) = 0$, i = 1, 2, 3. Using the second part, the equation (4.20) implies that $h_{22}^5 = 0$. Thus, A_5 vanishes. Since the normal space is flat and $A_5 \equiv 0$, then M is contained in a hyperplane P of E_1^5 .

If *H* is space-like, then *P* is a space-like hyperplane of E_1^5 . Therefore, by Theorem 3.1 *M* is locally isometric to the circular cylinder $S^1(a) \times E^2 \subset E^4 \subset E_1^5$.

If H is time-like, then P is a Lorentzian hyperplane of E_1^5 . Therefore, by Theorem 3.2 M is locally isometric to the hyperbolic cylinder $H^1(a) \times E^2 \subset E_1^4 \subset E_1^5$.

Case 2. $h_{11}^4 = 0$ and $h_{22}^4 \neq 0$. Then, by (4.18) we have $h_{22}^5 = 0$ or $\omega_3^2(e_i) = 0$, i = 1, 2, 3. Suppose that $\omega_3^2(e_i) = 0$ for i = 1, 2, 3. Thus, from (4.20) we get $\varepsilon_4(h_{22}^4)^2 - \varepsilon_5(h_{55}^5)^2 = 0$ which implies that $h_{22}^4 = h_{55}^5 = 0$ as $\varepsilon_4\varepsilon_5 = -1$. This is a contradiction because $h_{22}^4 \neq 0$. Therefore $\omega_3^2(e_i) \neq 0$ at least for one $i \in \{1, 2, 3\}$ and $h_{55}^5 = 0$, and hence A_5 vanishes on M. Considering that the normal space is flat, M lies in a hyperplane P of E_1^5 .

If H is space-like, then P is a space-like hyperplane of E_1^5 . Therefore, by Theorem 3.1 M is locally isometric to $S^2(a) \times E^1 \subset E^4 \subset E_1^5$.

If H is time-like, then P is a Lorentzian hyperplane of E_1^5 . Therefore, by Theorem 3.2 M is locally isometric to $H^2(a) \times E^1 \subset E_1^4 \subset E_1^5$.

Let t = 2, that is, $\varepsilon_4 \varepsilon_5 = 1$. Then the normal space is time-like.

Case 3. $h_{11}^4 \neq 0$ and $h_{22}^4 = 0$. Then, by (4.18) we get $h_{22}^5 = 0$ or $\omega_3^2(e_i) = 0$, i = 1, 2, 3. Using the second part, the equation (4.20) implies that $h_{22}^5 = 0$. Therefore A_5 vanishes. Since the normal space is flat and $A_5 \equiv 0$, then M is contained in a Lorentzian hyperplane P of E_2^5 . Therefore, by Theorem 3.2 M is locally isometric to $H^1(a) \times E^2 \subset E_1^4 \subset E_2^5$.

Case 4. $h_{11}^4 = 0$ and $h_{22}^4 \neq 0$. Then, by (4.18) we get $h_{22}^5 = 0$ or $\omega_3^2(e_i) = 0$, i = 1, 2, 3.

Subcase 4-a. $\omega_3^2(e_i) \neq 0$ for at least one $i \in \{1, 2, 3\}$ and $h_{22}^5 = 0$. Hence, we have $A_4 = \text{diag}(0, h_{22}^4, h_{22}^4)$ and $A_5 \equiv 0$. Considering that the normal space is flat, M lies in a Lorentzian hyperplane P of E_2^5 . Therefore, M is locally isometric to $H^2(a) \times E \subset E_1^4 \subset E_2^5$ by Theorem 3.2.

Subcase 4-b. $h_{22}^5 \neq 0$ and $\omega_3^2(e_i) = 0$, i = 1, 2, 3. From (4.20) we get $\varepsilon_4(h_{22}^4)^2 - \varepsilon_5(h_{55}^5)^2 = 0$ which implies that $h_{22}^4 = \mp h_{55}^5 \neq 0$ as $\varepsilon_4 \varepsilon_5 = 1$. Putting $\mu_0 = h_{22}^4 = -\frac{3\alpha}{2}$ we have $A_4 = \text{diag}(0, \mu_0, \mu_0)$ and $A_5 = \text{diag}(0, \mp \mu_0, \pm \mu_0)$. Considering $\omega_3^2(e_i) = 0$, i = 1, 2, 3 and (4.17) it is seen that M is flat. Also, we can write

$$\omega_1^4 = 0, \ \omega_2^4 = \mu_0 \, \omega^2, \ \omega_3^4 = \mu_0 \, \omega^3, \ \omega_1^5 = 0, \ \omega_2^5 = \pm \mu_0 \, \omega^2, \ \omega_3^5 = \mp \mu_0 \, \omega^3$$

Since M has a flat normal connection it is seen that the connection forms ω_B^A coincide with the connection forms of $H^1(a) \times H^1(a) \times E$ given in (4.16). Therefore, from the fundamental theorem of submanifolds, M is locally isometric to $H^1(a) \times H^1(a) \times E \subset E_2^5$.

The converses of all these cases are trivial.

Remark : The cases (1) and (2) show that in the case t = 1 there is no such a submanifold that lies fully in E_1^5 .

References

- B.Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, Singapor-New Jersey-London, 1984.
- [2] B.Y. Chen, Finite type submanifolds in pseudo-Euclidean space and applications, Kodai Math. J., 8 (1985), 358–374.
- [3] B.Y. Chen, Finite type pseudo-Riemannian submanifolds, Tamkang J. Math., 17 (1986), 137–151.
- [4] B.Y. Chen, Null 2-type surfaces E³ are circular cylinder, Kodai Math J. 11 (1988), 295–299.
- [5] B.Y. Chen, Null 2-type surfaces in Euclidean space, in Algebra, Analysis and Geometry, (Taipei, 1988) 1–18, World Sci. Publishing, Teaneck, NJ, 1989.
- [6] B.Y.Chen and H. Song, Null 2-type surfaces in Minkowski space-time, Algebras, Groups and Geometries, 6 (1989), 333–352.
- U. Dursun, Null 2-Type Submanifolds of the Euclidean space E⁵ with parallel normalized mean curvature vector, Kodai Math. J., 28 (2005), 191–198.
- U. Dursun, Null 2-Type Submanifolds of the Euclidean Space E⁵ with non-parallel normalized mean curvature vector, to appear.
- [9] A. Ferrandez and P. Lucas, Null finite type hypersurfaces in Space Forms, Kodai Math. J. 14 (1001), 406–419.
- [10] A. Ferrandez and P. Lucas, Null finite type hypersurfaces in a Lorentz space, Canad. Math. Bull. 35 (1992), 354–360.
- [11] D.S. Kim and H.Y. Kim, Null 2-type surfaces in Minkowski 4-space, Houston J. Math., 22 (1996), 279–296.
- [12] S.J. Li, Null 2-type surfaces in E^m with parallel normalized mean curvature vector, Math. J. Toyama Univ., 17 (1994), 23–30.

Author's address:

Uğur Dursun Istanbul Technical University, Faculty of Science and Letters, Department Mathematics, 34469 Maslak, Istanbul, Turkey. email: udursun@itu.edu.tr