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Abstract. In this paper the notion of smooth complete semidynamical
systems is studied. A relation between the rank of the derivatives of a
motion at a point and at the identity of that point is deduced. A method
for constructing top generalized subgroups is considered. Connected com-
ponent of an identity as a top generalized normal subgroup is studied. A
criterion for the connectedness of an inverse image of an identity is de-
duced. A condition for the separability of a top space is presented. Top
generalized normal subgroups and quotient space created by a top space
are studied.
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1 Introduction

The notion of topological generalized groups as a generalization of topological groups
considered in [2]. Let us recall its definition [2].

Definition 1.1 A topological generalized group is a non-empty set T admitting
an operation

m2 : T × T → T

(g, h) 7→ gh

called multiplication, subject to the set of rules given below:
(i) (xy)z = x(yz) for all x, y, z in T ;
(ii) For each x in T there exists a unique e(x) in T such that xe(x) = e(x)x = x;
(iii) For each x in T there exists y in T such that xy = yx = e(x);
(iv) T is a Hausdorff topological space;
(v) The mapping m2 and the mapping

m1 : T → T

g 7→ g−1
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are continuous maps.
Each topological generalized group T is a disjoint unions of topological groups
e−1({e(g)}) where g ∈ T [2]. Moreover if U is a neighborhood of the identity e(g),
then there exists a neighborhood V of e(g) such that m1(V ) = V , and V ⊂ U [2].

Theorem 1.1 Let T be a topological generalized group and let the cardinality of
e(T ) be finite. Moreover let H be a locally closed generalized subgroup of T [1]. Then
H is a closed subset of T .

Proof. We know that {e−1(e(g)) : e(g) ∈ T} is a partition of T by the topological
generalized groups, where the topology of the topological generalized group e−1(e(g))
is the subspace topology. If He(g) = H ∩ e−1(e(g)) is non-empty, then it is a locally
closed subgroup of the topological group e−1(e(g)), where g ∈ T . Thus it is a closed
subset of e−1(e(g)). Since e−1(e(g)) is a closed subset of T , then He(g) is a closed
subset of T , for all g ∈ T . Moreover we have H =

⋃

e(g)∈e(T )

He(g). So the finiteness of

e(T ) implies that H is a closed subset of T.2
The following example shows that a locally closed generalized subgroup of a topolog-
ical generalized group may not be closed.

Example 1.1 The set of real numbers with the binary operation (a, b) 7→ a
and Euclidean norm is a topological generalized group. The open interval (1, 2) is a
generalized subgroup of R which is locally closed.
Now let us recall the definition of top spaces [3].

Definition 1.2 A topological generalized group (T, .) is called a top space if:
i) The topological space T is a smooth manifold of dimension t;
ii) The mapping m1 : T → T is defined by m1(u) = u−1 and the mapping m2 :
T × T → T is defined by m2(u1, u2) = u1u2 are smooth maps
iii) For all x, y ∈ T , e(xy) = e(x)e(y) where e is the identity mapping.

Theorem 1.2 If T is a top space and if the cardinality of e(T ) is finite, then T
is a disjoint union of Lie groups.

Proof. Since the cardinality of e(T ) is finite, then for all p ∈ T , e−1(e(p)) is an open
subset of T [5], and the identity of e−1(e(p)) is e(p). So e−1(e(p)) is a Lie group as an
open submanifold of T . Moreover if e(p) 6= e(q) then (e−1(e(p))) ∩ (e−1(e(q))) = ∅.
So T is a disjoint union of Lie groups.2

2 Smooth complete semi-dynamical systems

In this section we assume that T is a top space and M is a smooth manifold.
The notion of complete semi-dynamical systems as a consequence of generalized vector
fields has been considered in [4].
We now define a smooth complete semi-dynamical system.

Definition 2.1 A mapping ϕ : T ×M → M is called a smooth complete semi-
dynamical system if
(i) ϕ is a C∞ map;
(ii) ϕ(t, ϕ(s,m)) = ϕ(ts, m) for all t, s ∈ T and m ∈ M ;
(iii) For all m ∈ M there is e(t) ∈ T such that ϕ(e(t), m) = m.
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Example 2.1 The set of non-zero real numbers with the operation ab = a|b| and
usual manifold structure as an open subset of R is a top space.
ϕ : R−{0}×R → R defined by ϕ(t,m) = t|m| is a smooth complete semi-dynamical
system.

Remark 2.1 If T is a Lie group and ϕ : T × M → M is a smooth complete
semi-dynamical system, then ϕ is a smooth dynamical system.
The mapping µm : T → M defined by t 7→ ϕ(t,m) is called the T-motion of the point
m and the set TT (m) := {ϕ(t,m) : t ∈ T} is called the T -trajectory of a point m.
The mappings lt : T → T and rt : T → T defined by lt(s) = ts and rt(s) = st−1 are
called left transformation and right transformation respectively.

Theorem 2.1 Let m ∈ M and let there exists t ∈ T such that ϕt : M → M
defined by ϕt(n) = ϕ(t, n) has a one to one differential at ϕ(e(t),m). Moreover let
the cardinality of e(T ) be finite. Then rank(de(t)µm) = rank(dtµm).

Proof. We have ϕtoµm = µmolt. Thus dϕ(e(t),m)ϕ
tode(t)µm = dtµmode(t)lt. Since

card(e(T )) < ∞, then e−1(e(t)) is an open set in T . Moreover lt : e−1(e(t)) →
e−1(e(t)) is a diffeomorphism. So de(t)lt is an isomorphism. Since dmϕt is also an
isomorphism, then rank(de(t)µm) = rank(dtµm). 2

Corollary 2.1 If T is a top space with finite number of identities, and ϕ : T×T →
T is defined by ϕ(t, s) = lt(s). Then for all s ∈ T and t ∈ e−1(e(s)), rank(de(t)µs) =
rank(dtµs).

Proof. Let s ∈ T be given. Then for all t ∈ e−1(e(s)) the mappings ϕt and µt are
local diffeomorphisms. So the corollary follows from theorem 2.1. 2

Corollary 2.2 With the assumptions of corollary 2.1 µ−1
t (t) is a submanifold and

a generalized subgroup of T , for all t ∈ T .
Proof. Corollary 2.1 implies that µt is a subimmersion. So µ−1

t (t) is a sub-
manifold of T . If s, u ∈ µ−1

t (t) then ts = t and tu = t. So t(su) = (ts)u = tu = t.
Hence su ∈ µ−1

t (t). Moreover we have ts−1 = tss−1 = te(s) = tse(s) = ts = t. So
s−1 ∈ µ−1

t (t). Thus it is a generalized subgroup of T.2

Definition 2.2 A generalized subgroup H of T is called a top generalized subgroup
if it is a submanifold of T .

Theorem 2.2 Let ϕ : T ×M → M be a smooth complete semi-dynamical system
and let m ∈ M . Moreover let e(T ) be a finite set and S = {e(n) ∈ M : ϕ(e(n),m) =
m}. Then H = (

⋃

s∈S

e−1(s)) ∩ µ−1
m (m) is a top generalized subgroup of T .

Proof. If s ∈ S, then e−1(s) is a top generalized subgroup of T which is also a Lie
group with its product. Moreover ϕ : e−1(s)×M → M is a smooth dynamical system.
So e−1(s) ∩ µ−1

m (m) is a Lie subgroup of e−1(s). Since e−1(s) is open in T , then H is
submanifold of T . Other properties can deduce by the straightforward calculations.
2
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3 Connected components of identities as top gener-
alized normal subgroups

In this section we assume that T is a top space and Ce(t) is the connected component
contains e(t) ∈ T .

Theorem 3.1 If t ∈ T then Ce(t) is a top generalized normal subgroup of T .
Proof. Suppose t ∈ T be given. Then Ce(t) is an open subset of T .

Since rt(t) = e(t), and rt is continuous, then rt(Ce(t)) is a connected set contains e(t).
So rt(Ce(t)) ⊆ Ce(t).
If s ∈ Ce(t), then e(s) ∈ Ce(t). Because rs−1(Ce(s)) ⊆ Ce(s). Hence rs−1(e(s)) = s ∈
Ce(s). Moreover we have s ∈ Ce(t). Thus Ce(s) ∩ Ce(t) 6= ∅. Hence Ce(s) = Ce(t).
Since s−1 = rs(e(s)), then s−1 ∈ Ce(t).
If s1, s2 ∈ Ce(t), then s1s2 = rs−1

2
(s1) ∈ Ce(t). So Ce(t) is a generalized subgroup of

T . Moreover it is a generalized normal subgroup. Because Ce(t) =
⋃

a∈T

(e−1(e(a)) ∩

Ce(t)). 2

Theorem 3.2 If there is s ∈ T such that s /∈
⋃

t6=s

Ce(t), then e−1(e(s)) is a con-

nected set.
Proof. The condition s /∈

⋃

t 6=s

Ce(t) implies that e−1(e(s)) ⊆ Ce(s). Moreover

e−1(e(s)) ∪ (
⋃

t 6=s

Ce(t)) = T . Thus e−1(e(s)) = Ce(s). So e−1(e(s)) is a connected

set. 2

Theorem 3.3 Let U be an open set contain e(T ), and e−1(e(t)) be a connected

set for all t ∈ T . Then T =
∞⋃

n=1

Un.

Proof. For given t ∈ T we have: U ∩ e−1(e(t)) is an open subset of e−1(e(t)). So

e−1(e(t)) =
∞⋃

n=1

(U ∩ e−1(e(t)))n. Thus T =
⋃

t∈T

e−1(e(t)) =
⋃

t∈T

∞⋃
n=1

(U ∩ e−1(e(t)))n =

∞⋃
n=1

⋃

t∈T

(U ∩ e−1(e(t)))n =
∞⋃

n=1

⋃

t∈T

(Un ∩ e−1(e(t))) =
∞⋃

n=1

Un. 2

Theorem 3.4 If T is a union of countably many compact subsets, then T has
countably many connected components.

Proof. Let Kn are compact sets such that T =
∞⋃

n=1

Kn. Then each Kn can cover

by a finite numbers of Ce(t). So there exist {t1, t2, t3, ...} ⊆ T such that T ⊆
∞⋃

i=1

Ce(ti).

Hence T has countably many connected components. 2

The following corollary follows from the proof of theorem 3.4.

Corollary 3.1 Let T be a union of countably many compact subsets. Then T is
separable.
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4 Quotient spaces created by a top space

We begin this section with the definition of a morphism of top spaces.

Definition 4.1 If T , and S are two top spaces, then a homomorphism f : T → S
is called a morphism if it is also a C∞ map.

Definition 4.2 A top generalized subgroup N of a top space T is called a top
generalized normal subgroup of T if there exists a top space S and a morphism
f : T → S such that,

(∀a ∈ T )(Na = ∅ or Na = Ker fa),

where Na := N ∩ e−1(e(a)) and fa := f |e−1(e(a)).
Theorem 4.1 Let N be a top normal generalized subgroup of T and let e(T ) be

finite. Then ΓN = {a ∈ T | Na 6= ∅} is an open top generalized subgroup of T .
Proof. Since e(T ) < ∞, then e−1(e(a)) is open in T for all a ∈ T . So ΓN is open

in T . Moreover ΓN is a generalized subgroup of T [3]. So it is an open top generalized
subgroup of T . 2

With the assumptions of theorem 4.1 the topology of ΓN is:

{V : V ∩ e−1(e(a)) is open in e−1(e(a)) for all a ∈ ΓN} ∪ {ΓN},
and we define a topology on T/N as the form

{V : π−1(V ) is open in ΓN},

where π : ΓN → T/N defined by π(x) := xNx.

Theorem 4.2 With the above assumptions there is a unique differentiable struc-
ture on T/N such that π : ΓN → T/N is a submersion. Moreover T/N with this
differentiable structure is a top space.

Proof. For all a ∈ ΓN there is a unique differentiable structure on e−1(e(a))/Na

such that π|e−1(e(a)) : e−1(e(a)) → e−1(e(a))/Na is a submersion. Because Na is a
Lie subgroup of the e−1(e(a)). Since e−1(e(a)) and e−1(e(a))/Na are open in T and
T/N respectively, then there is a unique differentiable structure on T/N such that
π : ΓN → T/N is a submersion. Moreover we know that T/N with the operation
(xNx)(yNy) = xyNxy is a topological generalized groups. We know show that

m̂1 : T/N → T/N

xNx 7→ x−1Nx

is a smooth map. This follows from the commutativity of the following diagram:

ΓN
m1−→ ΓN

π ↓ ↓ π

T/N
m̂1−→ T/N

.

Moreover the mapping
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m̂2 : T/N × T/N → T/N

(xNa, yNb) 7→ xyNab

is a smooth map. Because π is a submersion and the following diagram is a commu-
tative one.

ΓN × ΓN
m2−→ ΓN

π × π ↓ ↓ π

T/N × T/N
m̂2−→ T/N

.2

5 Conclusion

In this paper we used of dynamical methods for constructing new top spaces. We have
also deduced two conditions for separability and connectedness of top spaces. We also
paid attention to the interesting properties of the identities, which can be a base for
further research on this structure.
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