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Abstract. The aim of this paper is to study some properties of compact
minimal submanifold M of the standard Euclidean sphere Sn+p with flat
normal connection. We will give a lower bound for the squared form S of
the second fundamental form h of M in terms of the gap n−λ1 when S is
constant, where λ1 stands for the first eigenvalue of the Laplacian of M .
Moreover, we will prove that S is actually a constant if M , in addition, is
non-negatively curved and give an upper bound for S as well as a lower
bound. Finally, as applications of these results to the case of hypersurfaces,
we will also give a lower bound for λ1, which is better than that in [5].

M.S.C. 2000: 53C42.
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1 Introduction and main results

Let M be an n-dimensional compact minimal submanifold in the standard Euclidean
sphere Sn+p with the second fundamental form h. We denote by S the square of the
length of h. Throughout this paper, we shall make use of the convention on the ranges
of indices: 1 ≤ i, j, k, · · · ≤ n; n + 1 ≤ α, β, γ, · · · ≤ n + p.

There is a well-known theorem due to Simons [9] showed that if S satisfies 0 ≤
S ≤ n

2− 1
p

, then either S = 0, and M is totally geodesic, or else S = n
2− 1

p

. Later,

Chern, do Carmo and Kobayashi [4] further obtained that the Veronese surface in

S4 and the submanifold Sm
(√

m
n

)× Sn−m
(√

n−m
n

)
in Sn+1 are the only compact

minimal submanifolds of dimension n in Sn+p satisfying S = n
2− 1

p

. According to the

above results, it is plausible that the set of values for S is discrete, at least S does
not arbitrarily large. If this is the case, an estimate of the value for S next to n

2− 1
p

should be of interest. Leung [6] showed that the gap n − λ1 is a lower bound for
S provided that S is constant, where λ1 stands for the the first eigenvalue of the
Laplacian operator 4 on M . Recently, Barbosa and Barros [1] improved Leung’s gap
for compact minimal hypersurface M ⊂ Sn+1 by showing that there is a rational
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constant k ∈ [ n
n−1 , n] depending either on h or on the first eigenfunction of 4 such

that S ≥ k n−1
n (n− λ1).

In the present paper, we take on two goals. First, we study the similar problems
in the case of higher codimension and obtain two inequalities concerning the squared
norm of second fundamental form. Following which, we obtain the lower bounds for
S if it is constant.

Theorem 1.1. Let M be an n-dimensional compact orientable minimal submanifold
in the standard Euclidean sphere Sn+p with flat normal connection. Let f be an
eigenfunction of the Laplacian of M associated to λ1. Let l(q) denotes the number of
nonzero components of ∇f with respect to a principal referential Eq = {ei(q)}n

i=1 at

q ∈ M . Set l0 = min
q∈M

{l(q)|∇f(q) 6= 0} and k0 =

{
n

n−1 , if l0 = 1
l0, if l0 ≥ 2

. Then

∫

M

S|∇f |2 ≥ k0(n− 1)(n− λ1)
n

∫

M

|∇f |2.

In particular, if S is a constant, we have S ≥ k0(n−1)(n−λ1)
n .

Theorem 1.2. With the same assumptions on M and f as in Theorem 1.1. Let

k = max
n+1≤α≤n+p

{dim(kerAα)} and set n0 =

{
k, if k ≤ n− 2
n− 2, if k = n− 1 or k = n

, where

Aα is the shape operator in the direction eα. Then

∫

M

S|∇f |2 ≥ (n− n0)(n− 1)(n− λ1)
n

∫

M

|∇f |2.

In particular, if S is a constant, we have S ≥ (n−n0)(n−1)(n−λ1)
n .

Remark 1.1 In [14], Takahashi showed that n is an upper bound for λ1. Therefore,
either lower bound of S we obtain in Theorems 1.1 and 1.2 is nonnegative.

Remark 1.2 For codimension p = 1, normal connection of M in Sn+1 is naturally
flat. Therefore, Theorems 1.1 and 1.2 include that in [1] as the special cases.

Second, for submanifold M assumed in Theorem 1.1 or 1.2, applying Bochner
technique, we show that S is actually a constant if M is also non-negatively curved.
Furthermore, as a corollary of Theorem 1.1 or 1.2, we obtain a lower bound for S.
Another method will lead to an upper bound for S. These results, applying to the
case of hypersurfaces, will improve the lower bound for λ1 in [5] (see Corollaries 4.1
and 4.2).

Theorem 1.3. With the same assumptions on M as in Theorem 1.1. If, in addition,

M is non-negatively curved, then S must be a constant. Furthermore, k0(n−1)(n−λ1)
n ≤

S ≤ np or (n−n0)(n−1)(n−λ1)
n ≤ S ≤ np, where k0, n0 are given as in Theorem 1.1 and

1.2 respectively.

In fact, most of the classification theorems for submanifolds in Sn+p based on
the assumption of the upper bound for S (cf. [11], [12], [13], [15]). As I know, there
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are a few results about the estimate of upper bound of S as well as that of lower
bound if we exclude the totally geodesic case. Our progress in Theorem 1.3 is to
prove that S must be constant under the additional restriction—M is non-negatively
curved, furthermore, to give both bounds from below and above for S. If M is an n-
dimensional complete and connected minimal submanifold in the standard Euclidean
sphere Sn+p with the parallel second fundamental form, Mo [7] obtained the same
upper bound for S as that in Theorem 1.3.

2 Preliminaries

For a compact submanifold M of Sn+p, we choose a local field of orthonormal frames
{e1, · · · , en+p} in Sn+p such that, restricted to M , the vectors e1, · · · , en are tangent
to M and the remaining vectors en+1, · · · , en+p are normal to M . Then the second
fundamental form h of M is given by

h(ei, ej) =
n+p∑

α=n+1

hα
ijeα,

where hα
ij = 〈Aαei, ej〉 and Aα is the shape operator in the direction eα. The equations

of Gauss, Codazzi and Ricci are respectively

Rijkl = δikδjl − δilδjk +
n+p∑

α=n+1

(hα
ikhα

jl − hα
ilh

α
jk),(2.1)

hα
ijk = hα

ikj ,(2.2)

R⊥αβij = 〈[Aα, Aβ ](ei), ej〉,(2.3)

where R,R⊥ are the curvature tensors corresponding to the connection ∇ on M and
the normal connection ∇⊥ respectively. For X,Y, Z,W ∈ X (M), X (M) is the Lie
algebra of smooth vector fields on M , the first and second covariant derivatives of h
are given by

(∇h)(X, Y, Z) = ∇⊥X(h(Y,Z))− h(∇XY, Z)− h(Y,∇XZ),

(∇2h)(X, Y, Z, W ) = ∇⊥X((∇h)(Y,Z, W ))− (∇h)(∇XY, Z,W )
− (∇h)(Y,∇XZ, W )− (∇h)(Y,Z,∇XW ).

Also, the Ricci identity reads as

(∇2h)(X, Y, Z, W )− (∇2h)(Y, X, Z,W )

= R⊥(X, Y )h(Z, W )− h(R(X, Y )Z, W )− h(Z, R(X, Y )W ).
(2.4)

We recall now the Bochner formula (cf. [2] or [10]), which states that for a differ-
entiable function f : M → R,
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1
2
4(|∇f |2) = Ric(∇f,∇f) + 〈∇f,∇(4f)〉+ |Hessf |2,(2.5)

where Ric denote the Ricci tensor of M , and for X, Y ∈ X (M),

〈∇f, X〉 = X(f), Hess f(X,Y ) = 〈∇X(∇f), Y 〉, 4 f = tr(Hess f).

For a bilinear form A, the norm of A considered here is the Euclidean, which is given
by |A|2 = tr(AAt).

Let I denotes the identity operator on the tangent bundle TM of M , for any t ∈ R,
we have

|Hessf − tfI|2 = |Hessf |2 − 2tf4f + nt2f2.

Therefore, if 4f + λ1f = 0, then

∫

M

|Hessf − tfI|2 =
∫

M

|Hessf |2 +
(
2t +

n

λ1
t2

) ∫

M

|∇f |2.(2.6)

In particular, putting t = −λ1
n into (2.6), we get

∫

M

|Hessf |2 =
∫

M

|Hessf +
λ1

n
fI|2 +

λ1

n

∫

M

|∇f |2

≥ λ1

n

∫

M

|∇f |2.
(2.7)

Moreover, the equality holds if and only if M is isometric to the sphere Sn(
√

λ1/n )
(see Obata [8, Theorem A]).

Also, we need the following lemma in the rest sections.
Lemma 2.1.([1]) Let V be an inner product space of finite dimension n and T :
V → V be a nontrivial traceless symmetric linear operator. Let {e1, · · · , en} be an
orthonormal referential such that Tei = uiei, i = 1, · · · , n. Then given a nonzero

vector v =
n∑

i=1

viei, we have

1
n− k

|T |2|v|2 ≥
n∑

i=1

u2
i v

2
i ,(2.8)

or

1
k0
|T |2|v|2 ≥

n∑

i=1

u2
i v

2
i ,(2.9)

where k = dim(kerT ), k0 =

{
n

n−1 , if l0 = 1
l0, if l0 ≥ 2

and l0 be the number of nonzero com-

ponents vi of v.
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3 Proof of Theorems

Proof of Theorem 1.1. Since the normal connection is flat, for every point q ∈ M ,
all the shape operators Aα can be diagonalized simultaneously with respect to the
same local orthonormal frame {e1, · · · , en}(cf. [3], p.127). Choose a local orthonormal
frame {en+1, · · · , en+p} of normals such that Aαei = λα

i ei, where λα
i are the smooth

functions. Since M is minimal, we have from (2.1) that

Ric(ei, ei) = (n− 1)−
n+p∑

α=n+1

(λα
i )2.

Now for a differentiable function f defined on M , writing ∇f =
n∑

i=1

fiei at q ∈ M , we

get

Ric(∇f,∇f) = (n− 1)|∇f |2 −
n+p∑

α=n+1

( n∑

i=1

(λα
i )2f2

i

)
.

We may apply (2.9) at each point of M to obtain the inequality

1
k0

( n∑

i=1

(λα
i )2

)
|∇f |2 ≥

n∑

i=1

(λα
i )2f2

i ,

where k0 is given as in Theorem 1.1. Consequently, we derive

Ric(∇f,∇f) ≥ (n− 1)|∇f |2 − 1
k0

S|∇f |2,(3.1)

in addition 4f = −λ1f , then the Bochner formula (2.5) leads to

1
2
4(|∇f |2) = Ric(∇f,∇f) + |Hessf |2 − λ1|∇f |2.(3.2)

Integrating (3.2) on M and using (2.7) and (3.1), we get

0 ≥ λ1

n

∫

M

|∇f |2 + (n− 1)
∫

M

|∇f |2 − 1
k0

∫

M

S|∇f |2 − λ1

∫

M

|∇f |2.

Therefore, ∫

M

S|∇f |2 ≥ k0(n− 1)(n− λ1)
n

∫

M

|∇f |2,

which completes the proof of the Theorem 1.1. ¤

Proof of Theorem 1.2. With the same symbols as in the proof of Theorem 1.1. Let
f be an eigenfunction associated to the first eigenvalue λ1 of Laplacian operator on

M , and write ∇f =
n∑

i=1

fiei. Then,

(1) in the case of dim(kerAα) ≤ n− 2, it follows from (2.8) that

1
n− nα

0

( n∑

i=1

(λα
i )2

)
|∇f |2 ≥

n∑

i=1

(λα
i )2f2

i ,(3.3)
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where nα
0 = dim(kerAα).

(2) in the case of dim(kerAα) ≥ n − 1, i.e. dim(kerAα) = n − 1 or n, we note
Aα ≡ 0, because M is minimal. In this case, setting nα

0 = n− 2, so (3.3) also holds.
Setting n0 = max

n+1≤α≤n+p
{nα

0 }, we have from either of the cases (1) or (2) that

1
n− n0

S|∇f |2 ≥
n+p∑

α=n+1

( n∑

i=1

(λα
i )2f2

i

)
.

Therefore,

Ric(∇f,∇f) ≥ (n− 1)|∇f |2 − 1
n− n0

S|∇f |2.(3.4)

and the rest proof follows as in the proof of Theorem 1.1 after integrating (3.2) and
using (3.4). ¤

Remark 3.1 In fact, in the course of the above proof, if M is totally geodesic, i.e.
Aα ≡ 0, we have λ1 = n.

Proof of Theorem 1.3. With the same symbols as in the proof of Theorem 1.1. Then
we have

n∑

i,j=1

Ric(ej , Ah(ei,ej)ej)−
n∑

i,j,k=1

〈R(ek, ei)ej , Ah(ei,ej)ek〉

=
n+p∑

α=n+1

[ n∑

i,j=1

〈Aαei, ej〉Ric(ei, Aαej)−
n∑

i,j,k=1

〈Aαei, ej〉〈R(ek, ei)ej , Aαek〉
]

=
1
2

n+p∑
α=n+1

n∑

j,k=1

(λα
j − λα

k )2〈R(ek, ej)ej , ek〉

≥0 (since M is non-negatively curved).

(3.5)

Define F : M → R by F = 1
2S, then the Laplacian of F is given by

4F =
n∑

k=1

[ekek(F )− (∇ek
ek)(F )]

=
n∑

i,j,k=1

〈(∇2h)(ek, ek, ei, ej), h(ei, ej)〉+
n∑

i,j,k=1

‖(∇h)(ei, ej , ek)‖2.
(3.6)

When M is minimal, for X, Y ∈ X (M), we have

n∑

i=1

h(ei, ei) = 0,

n∑

i=1

(∇h)(X, ei, ei) = 0,

n∑

i=1

(∇2h)(X, Y, ei, ei) = 0.(3.7)

Substituting (2.2), (2.4) and (3.7) into (3.6) and noticing that R⊥ = 0, we get
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4F =
n∑

i,j=1

Ric(ej , Ah(ei,ej)ej)−
n∑

i,j,k=1

〈R(ek, ei)ej , Ah(ei,ej)ek〉+ ‖∇h‖2.(3.8)

Integrating (3.8) on M , we get

∫

M

[
‖∇h‖2 +

n∑

i,j=1

Ric(ej , Ah(ei,ej)ej)−
n∑

i,j,k=1

〈R(ek, ei)ej , Ah(ei,ej)ek〉
]

= 0.

Using (3.5), we have

n∑

i,j=1

Ric(ej , Ah(ei,ej)ej) =
n∑

i,j,k=1

〈R(ek, ei)ej , Ah(ei,ej)ek〉,(3.9)

and

‖∇h‖2 = 0.(3.10)

Together with (3.8), we have 4F = 0, then F = 1
2S = const., according to The-

orem 1.1, we get S ≥ k0(n−1)(n−λ1)
n . Similarly, it follows from Theorem 1.2 that

S ≥ (n−n0)(n−1)(n−λ1)
n .

Now, we turn to estimate the upper bound of S. Equation (2.1) implies

Ah(ej ,ek)ei = R(ei, ek)ej − δkjei + δijek + Ah(ei,ej)ek.(3.11)

Taking inner product in (3.11) with Ah(ei,ej)ek, we get

n∑

i,j,k=1

〈Ah(ei,ej)ek, Ah(ej ,ek)ei〉 = ‖Ah‖2 −
n∑

i,j,k=1

〈R(ek, ei)ej , Ah(ei,ej)ek〉 − S,(3.12)

where ‖Ah‖2 =
n∑

i,j,k=1

‖Ah(ei,ej)ek‖2. Similarly, we have from (2.1)

n∑

i,j,k=1

〈Ah(ej ,ek)ek, Ah(ei,ej)ei〉 = (n− 1)S −
n∑

i,j=1

Ric(ej , Ah(ei,ej)ei).(3.13)

Since R⊥ = 0, substituting (3.12) and (3.13) into (2.3), we arrive at

‖Ah‖2 −
n∑

i,j,k=1

〈R(ek, ei)ej , Ah(ei,ej)ek〉 = nS −
n∑

i,j=1

Ric(ej , Ah(ei,ej)ej).(3.14)

Combining (3.9) and (3.14), we have

‖Ah‖2 = nS.(3.15)

On the other hand, we have
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‖Ah‖2 =
n∑

i,j,k=1

‖Ah(ei,ej)ek‖2

=
n+p∑

α=n+1

n∑

i,j,k=1

〈Aαei, ej〉2‖Aαek‖2

=
n+p∑

α=n+1

‖Aα‖4.

Also from (3.15), we have
n+p∑

α=n+1
(‖Aα‖4 − n‖Aα‖2) = 0 or equivalently,

n+p∑
α=n+1

(
‖Aα‖2 − n

2

)2

=
n2p

4
.(3.16)

Now using Schwarz inequality, we get

n+p∑
α=n+1

(
‖Aα‖2 − n

2

)2

≥ 1
p

[ n+p∑
α=n+1

(‖Aα‖2 − n

2
)
]2

=
1
p
(S − np

2
)2.(3.17)

It follows from (3.16) and (3.17) that

S(S − np) ≤ 0.

which leads to S = 0 or S ≤ np. If S ≤ np, Theorem 1.3 holds. If S = 0, according to
remark 3.1, we have λ1 = n. Therefore, S = k0(n−1)(n−λ1)

n = (n−n0)(n−1)(n−λ1)
n , and

Theorem 1.3 also holds. In this way, we complete the proof of the Theorem 1.3. ¤

4 Applications

If ϕ : M → Sn+p is a minimal immersion, it was proved that n is an upper bound
for λ1 by Takahashi [14]. So it was conjectured by Yau [16] that for any embedded
compact minimal hypersurface M ⊂ Sn+1, the first eigenvalue λ1 of the Laplacian of
M satisfies λ1 = n. Later, Choi and Wang [5] proved that λ1 ≥ n

2 . Now, as applications
of Theorem 1.3 to the case of hypersurfaces, we have:

Corollary 4.1. Let Mn(n ≥ 2) be a compact orientable non-negatively curved

minimal hypersurface of the standard Euclidean sphere Sn+1. Then λ1 ≥ n− n2

k0(n−1) ,

where k0 is given as in Theorem 1.1.
Similarly, we have:

Corollary 4.2. Let Mn(n ≥ 2) be a compact orientable non-negatively curved min-

imal hypersurface of the standard Euclidean sphere Sn+1. Then λ1 ≥ n− n2

(n−n0)(n−1) ,

where n0 is given as in Theorem 1.2.

Remark 4.1 For n ≥ 3, when k0 ∈ [3, n], then n − n2

k0(n−1) ≥ n
2 . In this case,

Corollary 4.1 provides a better lower bound than that in [5]. For Corollary 4.2, we
can similarly discuss.
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