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Abstract. During an operation of surgery on a Riemannian manifold and
along a given embedded submanifold, (see [1, 2, 3]), one needs to replace
the (old) metric induced by the exponential map on a tubular neighbor-
hood of the submanifold by the Sasakian metric. So a good understanding
of the behavior of these two metrics is important, this is our main goal in
this paper. In particular, we prove that these two metrics are tangent up
to the order one if and only if the submanifold is totally geodesic. In the
case where the ambient space is an Euclidean space, we prove that the
difference of these two metrics is quadratic in the radius of the tube and
depends only on the second fundamental form of the submanifold. Also
the case of spherical and hyperbolic space forms are studied.
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1 Statement of the results

Let (X, g) be a smooth Riemannian manifold of dimension n + p and let M be an
embedded (compact) n-submanifold of X. Let

Tε = {(x, v) : x ∈ M, v ∈ NxM and g(v, v) < ε2}

be a tube of radius ε around M, where NxM denotes the normal space to M at x. It
is well known that there exists ε0 > 0 such that the exponential map, exp : Tε → X,
is a diffeomorphism onto its image for all ε ≤ ε0. We shall denote by exp∗g the pull
back to Tε of the metric g on X.

The normal sub-bundle Tε can also be endowed with a second natural metric,
namely, the Sasakian metric. It is defined to be the metric h compatible with the
normal connection of the normal (sub)bundle such that the natural projection π :
(Tε, h) → (M, g) is a Riemannian submersion.

In this paper we investigate the behavior of these two metrics near the zero section
of the normal bundle.
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Let (p, rn) be an arbitrary point in Tε, where r < ε and n is a unit normal vector
to M at p. We shall denote by An the shape operator of the submanifold M in the
direction of n.

Theorem A. Let R denote the Riemann curvature (0, 4)-tensor of (X, g). Then for
u1, u2 ∈ T(p,rn)Tε, we have

exp∗g(u1, u2) = h(u1, u2)− 2g(Anπ∗u1, π∗u2)r
+

{
g(Anπ∗u1, Anπ∗u2) + R(π∗u1, n, π∗u2, n) + 2

3R(π∗u1, n,Ku2, n)
+ 2

3R(π∗u2, n, Ku1, n) + 1
3R(Ku1, n, Ku2, n)

}
r2 + O(r3)

In particular,
d

dr |r=0

exp∗g =
d

dr |r=0

h− 2π∗(IIn).

Where IIn(u, v) = g(Anπ∗u, v) is the second fundamental form of M .

Remark. Note that in [1], at the beginning of the proof of Lemma 2 page 430, it
is claimed that the metrics exp∗g and h are sufficiently close in the C2-topology as
r → 0. The same error is also in [2]. But this does not affect the corresponding
conclusions in both papers (after minor changes), see [3].
An alternative short way to notice this fact is as follows:
With respect to the metric h, the zero section M ↪→ Tε is totally geodesic (since for
a Riemannian submersion the horizontal lift of a geodesic is a geodesic). But on the
other side, the zero section M ↪→ Tε is totally geodesic for the metric exp∗g if and
only if M is totally geodesic in (X, g).

In the case when the ambient space (X, g) is the Euclidean space Rn, we prove
the following simple formula relating the metrics exp∗g and h:

Theorem B. Let M be an embedded submanifold in the Euclidean space Rn, then
for u1, u2 ∈ T(p,rn)Tε, we have

exp∗g(u1, u2) = h(u1, u2)− 2g(Anπ∗u1, π∗u2)r + g(Anπ∗u1, Anπ∗u2)r2.

A similar result is proved for any space form, as follows:

Theorem C. Let M be an embedded submanifold in a space form (X, g) with cur-
vature k, then for u1, u2 ∈ T(p,rn)Tε, we have

exp∗g(u1, u2) = sin2
k(r)
r2 h(u1, u2)− 2 sink(r) cosk(r)g(Anπ∗u1, u2)

+ sin2
k(r)g(Anπ∗u1, Anπ∗u2) + {cos2k(r)− sin2

k(r)
r2 }g(π∗u1, π∗u2)

+ { sink(r)
r − 1}2g(Ku1, n)g(Ku2, n).

2 Preliminaries

2.1 The Sasakian Metric on the Normal Bundle

Let M and (X, g) be as above and let π : ν(M) → M be the normal bundle of the
embedding. Using the normal connection ∇ of ν(M), the tangent bundle T (ν(M))
splits naturally to
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T (ν(M)) = V ⊕H.

Where V and H are respectively the vertical and horizontal bundles. Recall that at
a given point (p, v) ∈ ν(M), we have V(p,v) = T(p,v)π

−1(p), that is the tangent to
the fiber over p. Hence, using parallel displacement in the fiber, we can canonically
identify the vertical space at (p, v) with the fiber νp(M). Thus we get a map , called
the connection map,

K : T (ν(M)) → ν(M)

It is the composition of the projection onto the vertical space followed by a parallel
displacement in the fiber as above. In particular, we have

K(V(p,v)) = νp(M) and K(H(p,v)) = {0}.

More explicitly, if u is a tangent vector at t = 0 to a curve (p(t), v(t)) in ν(M), then

Ku = ∇ṗv(0).(2.1)

On the other hand, a tangent vector u, as above, is horizontal if and only if v(t) is
∇-parallel along p(t).
The Sasakian metric on ν(M) is defined by

h(u1, u2) = g(Ku1,Ku2) + g(π∗u1, π∗u2).(2.2)

Note that clearly π : (ν(M), h) → (M, g) is then a Riemannian submersion.

2.2 Jacobi Fields and the Exponential Map

Let r be positive and let n be a unit normal vector at p ∈ M . Let u ∈ T(p,rn)ν(M),
then u = d

dt |t=0
(p(t), rn(t)). Consider U(s) = d

dt |t=0
(p(t), sn(t)). It is a vector field

along the curve c(s) = (p, sn) such that U(r) = u. Next, set

Y (s) = exp∗U(s).

Fact: The vector field Y (s) is a Jacobi field in (X, g) such that

Y (o) = ṗ(0) = π∗(u) ∈ TpM,
D
dsY (0) = 1

r Ku−An(π∗(u)).(2.3)

Where D and An denote respectively the Riemannian connection of (X, g) and the
shape operator of M .

Proof: Let ξ(s) = expνc(s) = expν(p, sn) be the unit speed geodesic in (X, g) normal
to M with ξ(0) = p ∈ M and n = ξ̇(0) ∈ νp(M). Remark that

Y (s) = exp∗U(s) =
d

dt |t=0

expν(p(t), sn(t)).

The vector field Y (s) is then generated from a variation of geodesics, in (X, g), nor-
mal to M , namely, c(t, s) = expν(p(t), sn(t)). Then Y (s) is a Jacobi field along ξ(s).
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Furthermore, we have

Y (o) = ṗ(0) = π∗(u) ∈ TpM.

Also, using (2.1) we get

D
dsY (0) = D

ds

(
d
dt |t=0

expν(p(t), sn(t))
)
(0) = D

dt

(
d
ds |s=0

expν(p(t), sn(t))
)
(0)

= D
dtn(t)(0) = 1

r
D⊥
dt rn(t)(0) + DT

dt n(t)(0)
= 1

r Ku−An(π∗(u)).

This completes the proof.
Finally, note the following remarks:

π∗(U(s)) = Y (0) = π∗(u) = ṗ(0),
K(U(s)) = ∇ṗsn(t) = s

r∇ṗrn(t) = s
r Ku.

3 Proof of Theorems

Let u1, u2 ∈ T(p,rn)ν(M), then

exp∗g(u1, u2) = g(exp∗u1, exp∗u2) = g(exp∗U1(r), exp∗U2(r)) = g(Y1(r), Y2(r)),

where, for j = 1, 2, Yj(s) = exp∗Uj(s) and Uj is the vector field associated to the
vector uj as above.

3.1 Proof of Theorem A

It results from the Jacobi equation that for every k ≥ 0 and for j = 1 or 2, we have

Dk+2

ξ̇
Yj(o) = −

k∑

i=0

Ck
i (Dk−i

ξ̇
R)(Di

ξ̇
Yj(0), n)n

In particular, using (2.3), we have

D2
ξ̇
Yj(o) = −R(π∗uj , n)n,

D3
ξ̇
Yj(o) = −Dξ̇R(π∗uj , n)n− 1

r R(Kuj , n)n + R(π∗uj , n)n
D4

ξ̇
Yj(o) = −D2

ξ̇
R(π∗uj , n)n− 2

r Dξ̇R(π∗uj , n)n + 2Dξ̇R(Anπ∗uj , n)n
+R(R(π∗uj , n)n, n)n

Next, the Taylor expansion of g(Y1(r), Y2(r)) shows that

exp∗g(u1, u2) = g(Y1(r), Y2(r))
= g(π∗u1, π∗u2)− 2g(Anπ∗u1, π∗u2)r
+

{
2R(π∗u1, n, π∗u2, n) + 2

r2 g(Ku1,Ku2) + 2g(Anπ∗u1, Anπ∗u2)
}

r2

2!

+
{

4
r R(π∗u1, n, Ku2, n) + 4

r R(Ku1, n, π∗u2, n) + O(1)
}

r3

3!

+
{

8
r2 R(Ku1, n, Ku2, n) + O( 1

r )
}

r4

4! + ...

Consequently, using (2.2) we get
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exp∗g(u1, u2) = h(u1, u2)− 2g(Anπ∗u1, π∗u2)r +
{
g(Anπ∗u1, Anπ∗u2)

+ R(π∗u1, n, π∗u2, n) + 2
3R(π∗u1, n,Ku2, n) + 2

3R(π∗u2, n, Ku1, n)
+ 1

3R(Ku1, n, Ku2, n)
}
r2 + O(r3).

This completes the proof.

3.2 Proof of Theorems B and C

Here, we suppose the manifold (X, g) is with constant sectional curvature k, then the
Jacobi equation for Yj , j = 1 or 2, becomes

Y ′′
j (s) + kYj(s)− kg

(
Yj(s), ξ̇(s)

)
ξ̇(s) = 0.(3.1)

Next, note that
Yj(s) = g

(
Yj(s), ξ̇(s)

)
ξ̇(s) + Y ⊥

j (s),

and it is easy to check that

g(Yj(s), ξ̇(s)) = g(Yj(0), ξ̇(0)) + g(Y ′
j (0), ξ̇(0))s.

On the other hand, we also have

(Y ⊥
j )′′(s) + R

(
Y ⊥

j (s), ξ̇(s)
)
ξ̇(s) = 0,

then the vector field Y ⊥
j (s) satisfies

(Y ⊥
j )′′(s) +kY ⊥

j (s) = 0,
Y ⊥

j (0) = Yj(0),
(Y ⊥

j )′(0) = Y ′
j (0)− g(Y ′

j (0), n)n.

The solutions of this differential equation are in terms of parallel translation τs along
ξ(s) as follows

Y ⊥
j (s) = cosk(s)τs(Y ⊥

j (0)) + sink(s)τs

(
(Y ⊥

j )′(0)
)
.(3.2)

Where, cosk(s) = d
ds sink(s) and

sink(s) =





sin
√

ks√
k

if k > 0

s if k = 0
sinh

√
|k|s√

|k| if k < 0
(3.3)

Consequently, after using formula (2.3), the Jacobi fields Yj are explicitly given by

Yj(s) = s
rg(Kuj , n)ξ̇(s)+ cosk(s)τs(π∗uj)

+ sink(s)τs

{
1
r Kuj −Anπ∗uj − g( 1

r Kuj , n)n
}

Finally, a direct computation shows that

exp∗g(u1, u2) = g(Y1(r), Y2(r))
= sin2

k(r)
r2 h(u1, u2)− 2 sink(r) cosk(r)g(Anπ∗u1, u2)

+ sin2
k(r)g(Anπ∗u1, Anπ∗u2) + {cos2k(r)− sin2

k(r)
r2 }g(π∗u1, π∗u2)

+ { sink(r)
r − 1}2g(Ku1, n)g(Ku2, n).

This completes the proof.
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