Gl,(R)-invariant variational principles
on frame bundles

J. Brajercik

Abstract. Variational principles on frame bundles, given by the first
and the second order Lagrangians invariant with respect to the struc-
ture group, are considered. Noether’s currents, associated with the corre-
sponding Lepage equivalents, are obtained. It is shown that for the first
and the second order invariant variational problems, the system of the
Euler-Lagrange equations for a frame field are equivalent with the lower
order system of equations.
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1 Introduction

Let F X be the frame bundle over an n-dimensional manifold X, and let J"F X be the
r-jet prolongation of F'X. We shall consider J"FX with the canonical prolongation
of the right action of the general linear group Gi,(R) on FX. For foundations of the
variational theory in fibered space we refer to [5], [7], [8], [10], [14], and the notions
related to the frame bundles and invariance can be found in [6], [9], [11], [12], [15]. In
this paper we study the consequences of G, (R)-invariance for variational problems
on J'FX and J?FX. In particular, we discuss the corresponding Noether’s currents.
The generators of invariant transformations are the fundamental vector fields of the
Gl (R)-action. Then the Noether’s theorem gives us a conservation law for each one
of n? linearly independent fundamental vector fields. Our main object is to study how
the Noether’s currents can be used to simplify the Euler-Lagrange equations for a
frame field. We show that in case of first order invariant Lagrangian, the system of
n? second order Euler-Lagrange equations is equivalent with the system of the same
number of first order equations. Analogously, for the second order Lagrangian, the
system of fourth order Euler-Lagrange equations is equivalent to the system of third
order equations coming from the corresponding Noether’s currents.

For variational problems on principal fiber bundles there are several different con-
cepts of invariance. Castrillén, Garcia, Ratiu and Shkoller [3], [4] consider invariance of
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the first order Lagrangians on principal fiber bundle P, which determine constrained
variational problems on the bundle C(P) of connections of P. Munoz and Rosado [13]
study first order variational problems, invariant under diffeomorphisms of the base
manifold (first order natural variational problems in the sense of Krupka [7]).

2 Invariant Lagrange structures

In this section we recall basic notions of the theory of invariant Lagrangians, and
introduce our notation. For a more complete discussion we refer to [2].

If Y is a fibered manifold over an n-dimensional manifold X, of dimension n 4+ m,
we denote by J"Y the r-jet prolongation of Y, and n"™° : J'Y — J°Y, 7" : J'Y — X
are the canonical jet projections. The r-jet of a section v of Y at a point z € X, is
denoted JIv; and © — J"y(x) = JLv is the r-jet prolongation of v. Any fibered chart
(V,), % = (2%,4°), on Y, where 1 <i < n, 1 <o < m, induces the associated charts
on X andon J"Y, (U, ), p = (x%), and (V" "), y" = (xi,y”,y;»’l,ygljw s Y i)
respectively; here V" = (70)~=1(V), and U = (V). Recall that the formal derivative
operator is defined by

d-—6+08+08+ +y7 9
i = Yi dy° yiliayz yilhmiriaygiz.“i,..

ox?
For any open set W C Y, QW denotes the ring of smooth functions on W".
The QfW-module of differential g-forms on W is denoted by 2y W, and the exterior
algebra of forms on W” is denoted by Q"W. The module of 7™°-horizontal (7"-
horizontal) g-forms is denoted by Q y W (€2 W, respectively).
The horizontalization is the exterior algebra morphism h : Q"W — Q"W de-
fined, in any fibered chart (V, 1), ¥ = (2%, y7), by

hf=for"™ ™V hdx' =dx', hdyf, ;i =y5;, i kdet,

where f : W" — R is a function, and 0 < p < r. A form n € QW is contact, if
hn = 0. For any fibered chart (V,v), ¥ = (z*,y°), the 1-forms

w?

_ o _ .0 ) k
Jijz--Jp dyj1j2~-jp y]1]2---]pkdx )

where 0 < p < r — 1, are examples of contact 1-forms. 7 is w"-horizontal if and only
if (771 = ha.

A Lagrangian (of order r) for Y is any 7n"-horizontal n-form on some W7". A
differential form p € QJW, where n = dim X, is called a Lepage form, if p1dp is
75t 10 horizontal, i.e. p1dp € QflillYW A Lepage form p is a Lepage equivalent of a
Lagrangian A € Q) W, if hp = XA (possibly up to a jet projection).

In a fibered chart (V,v), ¢ = (2%, %), denote

wo =dxt ANdz? AL ANdE”, wy = 19/92+W0-
In this fibered chart, a Lagrangian, defined on V" = (7™9)~1(V), has an expression

(21) A= ,CWO,
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where £ : V" — R is the Lagrange function associated with A and (V). A pair
(Y, \), consisting of a fibered manifold Y and a Lagrangian X of order r for Y is called
a Lagrange structure (of order 7).

For our purpose we give the following examples of Lepage equivalents.

(1) Every first order Lagrangian A € Q}L W has a unique Lepage equivalent
Ox € Q) W whose order of contactness is < 1. If A is expressed by (2.1), then

(2.2) O\ = Lwg + gzz’wo A wj.

O, is the Poincaré-Cartan equivalent of A\, or the Poincaré-Cartan form.
(2) Formula

oL oL oL
2.3 O =L — —d TNANw; + —w! Aw;
(2.3) A wo + <8y§’ payg) w? A\ w; + 3y§»’iwj w
generalizes the Poincaré-Cartan form to second order Lagrangians A € Q7 .
If p is a Lepage equivalent of a Lagrangian A € (2} W, A = Lwo, then by a direct
calculation p1dp = E,(L)w’ A wp, where

E,(L£) =Y (-1)*d; ds, ... dikafiﬁ
Y

k=0 i199...1%
are the Euler-Lagrange expressions. The (n + 1)-form
Ex\ =pidp

is the Euler-Lagrange form associated with A.

By an automorphism of Y we mean a diffeomorphism o : W — Y where W C Y
is an open set, such that there exists a diffeomorphism «g : 7(W) — X such that
mTa = aom. If ap exists, it is unique, and is called the w-projection of a. The r-jet
prolongation of « is an automorphism J a : W" — J"Y of J"Y, defined by

Ja(Jry) = Jro(w)(owao_l).

[e3

If £ is a m-projectable vector field on Y, and «; is the local one-parameter group
of § with projection c g, we define the r-jet prolongation of £ to be the vector field
J"§ on J"Y whose local one-parameter group is J;,,. Thus,

T T d T -
J €(Jr7) = {dtja(o)t(x) (at/ya(o%t)}o ’

The chart expression for J"¢ can be found in [8] or [9].

We now compute the Lie derivative 0;-¢A. Choose to this purpose a Lepage equiv-
alent p of A\, and denote by s the order of p. Since A = hp, or, which is the same,
J"y*A = J*~*p for all sections v, we obtain

Jr’y*a]rg)\ = JS’}/*a]sgp = JS’Y*(Z-JSEdp + diJsg[)).

Omitting v and using the Euler-Lagrange form we get
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8JT§A - hl'(]erlgEA + hdZJsgp

This is the differential first variation formula; the first term on the right is the Fuler-
Lagrange term, and the second one is the boundary term.
An automorphism o : W — Y of Y is said to be an invariant transformation of a
form n € QW if
Jatn =m.

We say that a m-projectable vector field ¢ is the generator of invariant transformations
of n, if
8Jsg77 = 0.

The following simple consequence of the first variation formula is known as the
Nocether’s theorem. Let A € () W be a Lagrangian, let p € ;W be a Lepage
equivalent of X\, and let v be an extremal. Then for any generator ¢ of invariant
transformatlons of A\,

dJS')/*Zbep = 0.

An (n — 1)-form i ys¢p is called the Noether’s current associated with a Lepage form
p and a vector field &.

3 Frame bundle and its second jet prolongation

Let X be an n-dimensional smooth manifold, and let p : FX — X be the frame
bundle over X. FX has the structure of a right principal Gi,, (R)-bundle. Recall that
for every chart (U, ), ¢ = (2%), on X, the associated charton FX, (V, ), = (z° ,:cj)
is defined by V = p~1(U), and

2'(2) =2 (u3), F=15(3) <aiz) ’

where E € V, z = p(2), and E = (z,E;). We denote by yi the inverse matriz of x;
The right action FX x Gi,(R) 5 (E,A) — Ra(E) = E-A € FX is given by the

equations
T =x2'oR4 zxi, 1‘:3 zccj- oR» :zZaf,
where A = aé» is an element of the group Gi,(R).

For the formulation of variational principles on the frame bundles in this paper
we need the r-jet prolongations of F X, the manifolds J"FX, where r = 1,2,3,4.
These manifolds are constructed from sections of the frame bundle F X in a standard
way. We introduce basic concepts for J2F X, more general description of J"FX is
available in [1]. To the charts (U, <p) and (V,), introduced above, we associate a
chart (V2,4?), ¢? = (2 ,9c],x] k> T5 1)s as follows. We denote by V2 the set of 2-jets
of smooth frame fields U > x — y(z) € V C FX. If J2y € V2, we set

a'(J3y) = a'(2),  25(J7y) = 25(v(2)),
@5 1 (J27) = D@5y~ ) (e(@), a5k (J77) = DiDi(ajye ™) (p(x))-
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As usual, the 2-jets are equivalence classes of frame fields, which have the contact up
to the second order, and have the canonical jet prolongation x — J?y(x) = J2v of
any frame field . The general linear group acts on J2FX on the right by the formula
J2y - A= J%(y- A); the action is expressed by the equations

i _ i =i ik =i _ i om i _ i _m
(3.1) =g, T;=wpay, T =a,00 T = T, 0

It is easy to determine the orbits of the action (J2v, A) — J2(v - A). Denoting

kp = “Yp Tm,k> Fklp = "Yp T kl>

we obtain Gl,(R)-invariant functions on J2FX, and equations of Gl,(R)-orbits
i i i i

kp = Ckp> Fklp = Crip>

where c};p, Ci:lp € R are arbitrary numbers. The functions F};lp are symmetric in k, (.
We have the following result.

Lemma 1. Every Gl,(R)-invariant function on J°FX depends on ', T}, Ty,

In other words Lemma 1 says that G, (R)-invariant functions coincide with the
functions on the bundle of second order connections C2X = J*FX/Gl,(R) over X.
From equations (3.1) we can obtain an extension of Lemma 1 to differential forms.

Lemma 2. A k-form n on J?FX is Gl,(R)-invariant if and only if it has an
expression

n= Do +ypdug AL+ YRy deg Adegy NAY

q1,,92 dk D1 D2 Pk T17T2...Tk
+.oo YLyl ylrdagy Ndeg? oo A dagE A Amm---pw

T1 r1T2 TIT2... Tk . 2
where Ag, A7, AJV2 L ATUR% are arbitrary forms defined on C*X.

b=t ( 83)
J €

be a vector belonging to the Lie algebra gl,,(R). Then the corresponding fundamental
vector field on J?FX is given by

Let

» 0 0 0
2 =g\ diag s F e |-
(3.2) T s (xz ozt ik 8332,1@ Tikl 8x‘;’kl>

4 Reduction of the Euler-Lagrange equations

Using the results of Section 3, we determine in this section G, (R)-invariant La-
grangians on J'FX and J?FX. Then we give explicit expressions of the Euler-
Lagrange forms, and the Noether’s currents associated with the Lepage equivalents
O, of these Lagrangians. Then we discuss consequences of Gl,,(R)-invariance of these
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Lagrangians for the Euler-Lagrange equations. Our main tool is the first variation
formula (Section 2).

Let us denote by ¥, ¢ the Noether’s current associated with the Lepage form ©
(2:2), (2.3) and a vector field £, and by w! the contact forms defined by

i _ i m __ i P m
w; = dxj — xj ,da™ = dx + a1 da™.

Lemma 3. Let A € Q}LXFX be a Lagrangian expressed by A = Lwy.
(a) X is Gl,(R)-invariant if and only if L depends on x°, F};j only.
(b) The Euler-Lagrange form of a Gl,,(R)-invariant Lagrangian has an expression

, oL oL 92L
Eyx=1vy' | -T? rt : :
AT ( “ory + PIOT, +axpar;,l

+(Tk 4Tk T4 )8275 wh Aw
mpr maq— pr 811’];”611;[ J 0-

(¢) If X is Gl,(R)-invariant, then the Noether’s current associated with the
Poincaré-Cartan form of A and any fundamental vector field £ is given by

m i OL
(41) \Ij)uf = _gj yljxm 6F7i€l Wi.

Let X be an n-dimensional manifold, let FX be the bundle of frames over X, and
let & be the bundle projection. Suppose that we have a Lagrangian \ € Q}q xF'X and
a p-vertical vector field £ on F'X. Then in our standard notation

(42) 8J1€/\ - i]2£E>\ + ]7,d7;J1€®>\7
where ©) is the Poincaré-Cartan equivalent of A.

Theorem 1. Let A\ € Q}Z!XFX be a Gl,(R)-invariant Lagrangian, let n > 2, and
let v be a section of FX. The following conditions are equivalent.
(a) v satisfies the Euler-Lagrange equations,

Exo J%*y =0.

~(b) For any chart (U,¢), ¢ = (z'), on X, and all j, k, there exist (n — 2)-forms
nj, such that

Y .
Jhy* (y]xﬁciwm - dn]) =0.
hori k

Proof. By hypothesis, for any fundamental vector field £ on F'.X, A = 0.
Consequently, since € is always u-vertical, the first variation formula (4.2) reduces to

(4.3) iy2eEx 4 hd¥y ¢ = 0.
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We can write this identity in a chart (U, ), ¢ = (z%), on X. Using (3.2) we have,
according to Lemma 3, _ ‘
i By = E} (C)fffﬂiwoa

where

: oL ., oL &L . . 92 :
E,f (ﬁ) = <_F§1 6Fpl + qu ar})q + &Upafil + (Fmps + qurgs)m y'l],
q P ms P

and the Noether’s current W ¢ is given by (4.1). It is convenient to denote

i

— W
"or,

v =yl

Then Wy ¢ = —£7"9,, and the first variation formula (4.3) can equivalently be written

in the form Ef (E)gfx};wo — 5;“ hdwi = 0. But the numbers {f € R are arbitrary, so we
have

(4.4) E!(L)xtwo — hdyy], = 0.

Suppose now that a section +y satisfies the Euler-Lagrange equations. Then the form
F!(L)xiwo vanishes along J?v, so we have J2y*diy] = dJ*y*] = 0. Integrating we
can find an (n — 2)-form 7], on U such that

(4.5) Ty g = dn.

Conversely, if a section ~ satisfies condition (4.5), then by (4.4), v is necessarily an
extremal. O

For second order Lagrangians on F'X we have the following results.

Lemma 4. Let )\ € QZ’XFX be a Lagrangian expressed by A = Lwy.
(a) A is Gl (R)-invariant if and only if L depends on z°, F};j, F};lj only.
(b) The Euler-Lagrange form of a Gl,,(R)-invariant Lagrangian has an expression

By =y (rp 0L |, 0L 0L 0L oL

awory,  amory o Pior:, - Por: TPImor
oL oL oL .
—ort. (Tt i d,—— —dyd,——— | dz® A wy.
pt < qm are . + qal—\;qt) p an;qz) Lj /A Wo

(¢) If X is Gl (R)-invariant, then the Noether’s current associated with the Lepage
form (2.3) and any fundamental vector field £ is given by

- oL oL oL oL
Uy e =EMyal | ——- +T2 I : dy,— .
s ylx’”( ory, " rarg, oy, p@F;k)w’“

Theorem 2. Let A € Q) FX be a Gl,,(R)-invariant Lagrangian, let n > 2, and
let v be a section of FX. The following conditions are equivalent.
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(a) v satisfies the Euler-Lagrange equations,
EyoJ%y =0.

~(b) For any chart (U, ), ¢ = (z*), on X, and all j, k, there exist (n — 2)-forms
nj, such that

[ oL oL oL oL ,
T3y |yl i S —T! = d,— m —dnl | = 0.
7 <yl ok <8F2nl b ar;?nnl P al—‘;mq g arzml ) “ nk)

Proof. The first variation formula for a second order Lagrangian A\ has the form
(4.6) 8J2€A:iJ4EE>\+hdiJ3€®>\7

where ©) is the Lepage equivalent of A given by (2.3). Again, left hand side vanishes
and formula (4.6) reduces to

i]4§E/\ + hdlp)\,g = 07

where the forms Ey and ¥ ¢ are given by Lemma 4. The rest of the proof is analogous
to the Proof of Theorem 1. O
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