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1 Introduction

Hyersurfaces Mn with constant r-mean curvature in Riemannian manifolds or Lorentz
manifolds M

n+1
(c) with constant sectional curvature c are critical points of some area

functional variations which keep constant a certain volume function. Stable hyersur-
faces with constant mean curvature(CMC) (or constant r-mean curvature) in real
space form are very interesting geometrical objects that were investigated by many
geometricians. Barbosa and do Carmo [2] gave definition of stability of hyersurfaces
with constant mean curvature in the Eucildean space Rn+1 and proved the round
spheres are the only compact stable hyersurfaces with CMC in Rn+1. Later, Barbosa,
do Carmo and Eschenburg [3] extended ambient spaces to Riemannian manifolds
and obtained the corresponding results. In [5] Barbosa and Oliker discussed stable
spacelile hyersurfaces with CMC in Lorentz manifolds. At the same time, Alencar, do
Carmo and Colares [1] investigated stable hyersurfaces with constant scalar curvature
in Riemannian manifolds and obtained geodesic sphere is the only stable compact ori-
entable hyersurface in Riemannain spaces. On the other hand, Barbosa and Colares
[4] studied compact hyersurfaces without boundary immersed in space forms with
constant r-mean curvature. Recently, Liu and Deng [9] also discussed stable space-
like hyersurfaces with constant scalar curvature in de Siter space Sn+1

1 . Barros, Brasil
and Caminha [6] classified strongly stable spacelike hypersurfaces with constant mean
curvature whose warping function satisfied a certain convexity condition.
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In this paper we will study stable spacelike hypersurfaces with constant scalar
curvature in generalized Roberston-Walker spacetime M

n+1
= −I ×φ Fn.

2 Preliminaries

Consider Fn an n-dimensional manifold, let I be a 1-dimensional manifold (either
a circle or an open interval of R). We denote by M

n+1
= −I ×φ Fn the (n + 1)-

dimensional product manifold I × F endowed with the Lorentzian metric

(2.1) g = 〈, 〉 = −dt2 + f2(t)〈, 〉M ,

where f > 0 is positive function on I, and 〈, 〉M stands for the Riemannian metric
on Fn. We refer to −I ×φ Fn as a generalized Robertson-Walker (GRW) spacetime.
In particular, when the Riemannian factor Fn has constant sectional curvature, then
−I ×φ Fn is classically called a Robertson-Walker (RW) spacetime.

A vector field V on a Lorentz manifold M
n+1

is said to be conformal if

(2.2) LV g = 2ψg,

for some smooth function ψ : M
n+1 → R, where L stands for the Lie derivative of

Lorentz metric of M
n+1

. The function ψ is called the conformal factor of V . V ∈ TM
is conformal if and only if

〈∇XV, Y 〉+ 〈∇Y V,X〉 = 2ψ〈X, Y 〉,(2.3)

for all X, Y ∈ T (M).
Any Lorentz manifold M

n+1
, possessing a globally defined, timelike conformal

vector field is said to be a conformally stationary (CS) spacetime.
Let x : Mn → M

n+1
denote an orientable spacelike hyersurface in the time-

oriented Lorentz manifold M
n+1

and N be a globally defined unit normal vector
field on Mn. ∇ and ∇ denote the Levi-Civita connection of Mn and ambient space
M

n+1
respectively. R and Ric denote the curvature tensor and Ricci curvature tensor

on M
n+1

respectively, which are defined by

(2.4) R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

and

(2.5) R(W,Z,X, Y ) = 〈∇X∇Y Z, W 〉 − 〈∇Y∇XY, W 〉 − 〈∇[X,Y ]Z, W 〉,

then

(2.6) Ric(X, Y ) =
n+1∑

k=1

R(ek, X, ek, Y ),

where X,Y, Z,W ∈ TM , and {ek}n
k=1 is a basis of TpM , en+1 = N . In particular we

have
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Ric(N, N) =
n∑

k=1

R(ek, N, ek, N).(2.7)

The shape operator A associated to N of Mn, defined by

(2.8) A = −∇N (i.e Aek = −∇ek
N)

is a self-adjoint linear operator in each tangent space TpM . Its eigenvalues are the
principal curvatures of immersion and are represented by λ1, λ2, · · · , λn.The elemen-
tary symmetic functions Sr associated to A can be defined, using the characteristic
polynomial of A, by

det(tI−A) =
n∑

k=0

(−1)kSktn−k,

where S0 = 1. If p ∈ M , and {ek} is a basis of TpM formed by eigenvector of Ap,
with corresponding eigenvalues λk, one immediately sees that

Sr = σr(λ1, · · · , λn),

where σr is the r-th elementary symmetric polynomial. In particular

(2.9) ‖A‖2 =
∑

k

λ2
k = S2

1 − 2S2,

and

(2.10)
∑

k

λ3
k = S3

1 − 3S1S2 + 3S3.

The r-th classical Newton transformation Pr on M is defined as following

P0 = I,

Pr = SrI−APr−1, 1 ≤ r ≤ n.

Associated to each Newton transformation Pr of immersion x : Mn → M
n+1

, we
have a second order differential operator defined by

(2.11) Lr(f) = trace(Pr ◦Hessf).

When M
n+1

has constant sectional curvature, then

(2.12) Lr(f) = div(Pr∇f),

where div stands for the divergence of a vector field on M , it was proved by H.
Rosenberg in [12].

Remark 1.1. According (2.11) or (2.12), when r = 0,

L0f = div(P0∇f) = 4f

is Laplace operator on Mn, and if r = 1, then

L1f = div[P1 ◦ hessf ] = div[(S1I−AP0) ◦ hessf ]

=
∑

i,j

(S1δij − hij)fij(2.13)

become Cheng-Yau’s operator 2 on Mn, where hij and fij denote the component of
A and hessf respectively.
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3 The variational problem in Lorentz manifolds

Let x : Mn → M
n+1

denotes an orientable spacelike hyersurface in the time-oriented
Lorentz manifold M

n+1
and N be a globally defined unit normal vector field on Mn.

A variation of x is a smooth map X : Mn × (−ε, ε) → M
n+1

satisfying the following
conditions:

(1) For t ∈ (−ε, ε), the map Xt : Mn → M
n+1

given by Xt(p) = X(t, p) is a
spaelike immersion such that X0 = x.

(2) Xt|∂M = x|∂M , for all t ∈ (−ε, ε).
The variational field vector associated the variation X is vector field X∗( ∂

∂t ) = ∂X
∂t .

Let f = 〈∂X
∂t , N〉, we have

(3.1)
∂X

∂t
= (

∂X

∂t
)> − fN,

where > denotes tangential components. The balance of volume of the variation X is
the function V : (−ε, ε) → R given by

(3.2) V (t) =
∫

M×[0,t]

X∗(dM),

where dM denotes the volume element of M .
The area functional A : (−ε, ε) → R is given by

(3.3) A(t) =
∫

M

S1dMt,

where dMt denotes the volume element of the metric induced in M by Xt. Then we
have the following classical result.

Lemma 3.1. Let M
n+1

be a time-oriented Lorentz manifold and x : Mn → M
n+1

a spacelike hyersurface. If X : Mn × (−ε, ε) → M
n+1

is a variation of x, then
(i)

(3.4)
dV (t)

dt
|t=0 =

∫

M

fdM ;

(ii)

(3.5)
∂(dMt)

∂t
= (S1 + div(

∂X

∂t
)>)dMt.

Proof. For (i) see [3, 9], and for (ii) see [4, 11]. 2

Barros, Brasil and Caminha [6] proved the following proposition:
Proposition 3.2. Let x : Mn → M

n+1
be a spacelike hypersurface of the time-

oriented Lorentz manifold M
n+1

, and N be a globally defined unit normal vector field
on Mn. If X : Mn × (−ε, ε) → M

n+1
is a variation of x, then

(3.6)
dS1

dt
= 4f − (Ric(N, N) + ‖A‖2)f + 〈(∂X

∂t
)>,∇S1〉.
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Suppose λ is a constant, and J : (−ε, ε) → R is given by

(3.7) J(t) = A(t) + λV (t),

J is called the Jacobi functional associated to the variation X. Then we have the
following proposition:

Proposition 3.3. Let x : Mn → M
n+1

be a spacelike hypersurface in the time-
oriented Lorentz manifold M

n+1
, and N be a globally defined unit normal vector field

on Mn. If X : Mn × (−ε, ε) → M
n+1

is a variation of x, then

(3.8)
dJ(t)

dt
=

∫

M

[div(S1(
∂X

∂t
)>) + ∆f − (Ric(N, N) + ‖A‖2 − S2

1 − λ)f ]dMt.

In particular, when Mn is closed and M
n+1

has constant sectional curvature c, then

(3.9)
dJ(t)

dt
=

∫

M

(2S2 − cn + λ)fdMt.

Proof. We can get this result from Lemma 3.1 and Proposition 3.2. In fact,

dJ(t)
dt

=
∫

M

dS1

dt
dMt +

∫

M

S1(S1f + div(
∂X

∂t
)>)dMt +

∫

M

λfdMt

=
∫

M

[〈(∂X

∂t
)>,∇S1〉+ S1div(

∂X

∂t
)> +4f

−(Ric(N, N) + ‖A‖2)f + S2
1f + λf ]dMt

=
∫

M

[div(S1(
∂X

∂t
)>) +4f − (Ric(N,N) + ‖A‖2f − S2

1f − λ)f ]dMt.

When Mn is closed and M
n+1

has constant sectional curvature c, then we have
∫

M

div(S1(
∂X

∂t
)>)dMt = 0,

∫

M

4fdMt = 0,

and Ric(N, N) = nc, then using (2.9), we have (3.9).

Proposition 3.4. Let x : Mn → M
n+1

is a spacelike hypersurface in Lorentz
space form M

n+1
(c) with constant sectional curvature c, and X : Mn × (−ε, ε) →

M
n+1

is a variation of x, then

(3.10)
dS2

dt
= L1(f)− (S1S2 − 3S3)f − f(n− 1)cS1 + 〈(∂X

∂t
)>,∇S2〉.

In particular, if S2 is a constant, then one has

(3.11)
dS2

dt
= L1(f)− (S1S2 − 3S3)f − f(n− 1)cS1.
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Proof. According to the proof of proposition 3.2 in [6], we can get

dhkk

dt
= fkk − cf − h2

kkf + 〈∇hkk, (
∂X

∂t
)>〉.(3.12)

Using (2.9), we can get

dS2

dt
= S1

dS1

dt
−

∑

k

hkk
dhkk

dt
.(3.13)

Substituting (3.6) and (3.12) into (3.13), using (2.9) and (2.10), then we have

dS2

dt
= S1[4f − (Ric(N, N) + ‖A‖2)f + 〈(∂X

∂t
)>,∇S1〉]

−
∑

k

hkk[fkk − cf − h2
kkf + 〈∇hkk, (

∂X

∂t
)>〉]

= S14f − S1(nc + S2
1 − 2S2)f + S1〈(∂X

∂t
)>,∇S1〉+

∑

k

(S1fkk − hkkfkk)

−S1

∑

k

fkk + cS1f + f
∑

k

λ3
k −

1
2
〈∇(S2

1 − 2S2), (
∂X

∂t
)>〉

= L1(f)− (S1S2 − 3S3)f − f(n− 1)cS1 + 〈(∂X

∂t
)>,∇S2〉.

If S2 is constant, then the last term in the above is equal to zero, so we have (3.11).

If M has constant normalized scalar curvature R, and we choose

λ = 2S2 − nc = n(n− 1)(c−R)− nc,(3.14)

then λ is a constant too, so we have
Proposition 3.5. Let x : Mn → M

n+1
(c) is a spacelike hypersurface in the time-

oriented Lorentz manifold M
n+1

(c), and X : Mn × (−ε, ε) → M
n+1

is a variation of
x, and S2 is constant, then

(3.15)
d2J(0)

dt2
(f) = 2

∫

M

[L1(f)− (S1S2 − 3S3)f − f(n− 1)cS1]fdM.

Proof. Since λ = 2S2 − nc = n(n− 1)(c−R)− nc, using (3.9) and (3.11), we can get

d2J(0)
dt2

(f) = 2
∫

M

dS2(0)
dt

fdM = 2
∫

M

[L1(f)− (S1S2 − 3S3)f − f(n− 1)cS1]fdM.

Definition 3.6. Suppose x : Mn → M
n+1

(c) has constant scalar curvature. The
immersion x is stable if

d2J(0)
dt2

(f) = 2
∫

M

[L1(f)− (S1S2 − 3S3)f − f(n− 1)cS1]fdM ≤ 0,(3.16)
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for all volume-presering variations of x. If Mn is noncompact, x is stable if for every
conpact submanifolds M ′ ⊂ Mn with boundary, the restriction x |M ′ is stable.

For conformally stationary spacetimes, we have the following proposition.
Proposition 3.7. Let M

n+1
be a conformally stationary Lorentz manifold, with

conformal vector V having conformal factor ψ : M
n+1 → R. Suppose x : Mn → M

n+1

is a spacelike hypersurface in M
n+1

= I ×φ Fn with constant sectional curvature c,
and N a future-pointing, unit normal vector field globally defined on Mn, f = 〈V, N〉,
then

(3.17) L1(f) = (S1S2 − 3S3)f + f(n− 1)cS1 − (n− 1)S1N(ψ)− 2S2ψ− 〈V >,∇S2〉.

In particular, if R is constant, then S2 is a constant too, so

(3.18) 2f = L1(f) = (S1S2 − 3S3)f + f(n− 1)cS1 − (n− 1)S1N(ψ)− 2S2ψ.

Proof. We can choose {ek} as a moving frame on neighborhood U ⊂ M of p, geodesic
at p, and diagonalizing the shape operator A of M at p, with Aek = λkek, for 1 ≤
k ≤ n. Extend N and ek (1 ≤ k ≤ n) to a neighborhood of p in M , such that

〈N, ek〉 = 0 and (∇Nek)(p) = 0.

Let
V =

∑

l

αlel − fN,

so we have

ek(f) = 〈∇ek
N,V 〉+ 〈N,∇ek

V 〉 = −〈Aek, V 〉+ 〈N,∇ek
V 〉.

Then

ekek(f) = −ek〈Aek, V 〉+ ek〈N,∇ek
V 〉

= −〈∇ek
(Aek), V 〉 − 2〈Aek,∇ek

V 〉+ 〈N,∇ek
∇ek

V 〉.(3.19)

For the first term in (3.19), we have

〈∇ek
(Aek), V 〉 = 〈∇ek

(Aek),
∑

l

αlel − fN〉

=
∑

j

ek(hkj)〈ej ,
∑

l

αlel〉+
∑

j

hkj〈∇ek
ej ,−fN〉

=
∑

l

αlek(hkl)−
∑

l

h2
klf.(3.20)

For the second term in (3.19), we have

〈Aek,∇ek
V 〉 =

∑

j

hkj〈ej ,∇ek
V 〉 = λk〈ek,∇ek

V 〉 = λkψ,(3.21)

where in the last equality we use the fact that V is conformal vector having conformal
factor ψ, and we have
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〈N,∇ek
V 〉+ 〈ek,∇NV 〉 = 2ψ〈ek, N〉 = 0,

then we can get

〈∇ek
N,∇ek

V 〉+ 〈N,∇ek
∇ek

V 〉+ 〈∇ek
ek,∇NV 〉+ 〈ek,∇ek

∇NV 〉 = 0.(3.22)

Since

〈∇ek
N,∇ek

V 〉 = −〈Aek,∇ek
V 〉 = −λkψ,

and

〈∇NV,∇ek
ek〉 = −〈∇NV, 〈∇ek

ek, N〉N〉
= −〈∇NV, hkkN〉 = −hkkψ〈N,N〉 = λkψ,

then

〈N,∇ek
∇ek

V 〉 = −〈ek,∇ek
∇NV 〉.(3.23)

On the other hand, noting that

[N, ek](p) = −∇Nek(p)−∇ek
N(p) = −λkek(p),

so we have

〈R(N, ek)V, ek〉 = 〈∇N∇ek
V −∇ek

∇NV −∇[N,ek]V, ek〉p
= N〈∇ek

V, ek〉+ 〈N,∇ek
∇ek

V 〉 − 〈∇λkek
V, ek〉

= 〈N,∇ek
∇ek

V 〉+ N(ψ)− λkψ.

For the third term in (3.19), we have

〈N,∇ek
∇ek

V 〉 = 〈R(N, ek)V, ek〉 −N(ψ) + λkψ.(3.24)

Also we have

〈R(N, ek)V, ek〉 = 〈R(N, ek)(
∑

l

αlel − fN), ek〉

=
∑

l

αlR(N, ek)el, ek〉 − f〈R(N, ek)N, ek〉,

and
〈R(N, ek)el, ek〉 = R(ek, el, N, ek) = ek(hkl)− el(hkk),

so (3.24) become

〈N,∇ek
∇ek

V 〉 =
∑

l

[αlek(hkl)− el(hkk)] + fR(N, ek, N, ek)−N(ψ) + λkψ.(3.25)

Substituting (3.20), (3.21) and (3.25) into (3.19) we can get
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fkk = ekek(f) = −
∑

l

αlek(hkl) +
∑

l

h2
klf − 2λkψ +

∑

l

(αlek(hkl)− αlel(hkk)) + fR(N, ek, N, ek)−N(ψ) + λkψ

= (
∑

l

h2
kl + R(N, ek, N, ek))f − 〈V >,∇hkk〉 −N(ψ)− λkψ.(3.26)

So we have

4f = (‖A‖2 + Ric(N, N))f − 〈V >,∇S1〉 − nN(ψ)− S1ψ,(3.27)

and
∑

k

λkfkk = −2
∑

k

λ2
kψ −

∑

k,l

λkek(hkl) +
∑

k

λkh2
klf +

∑

k

λkαl(ek(hkl)

−el(hkk)) +
∑

k

fλkR(N, ek, N, ek)−
∑

k

λkN(ψ) +
∑

k

λ2
kψ

= −
∑

k

λ2
kψ +

∑

k

λ3
kf −

∑

k,l

αlλkel(λk) + fcS1 − S1N(ψ).(3.28)

Note that (2.9) and (2.10)
∑

k

λ2
k = S2

1 − 2S2,
∑

k

λ3
k = S3

1 − 3S1S2 + 3S3,

substituting (3.27) and (3.28) into (2.13), so we can get

L1(f) =
∑

i,j

(S1δij − hij)fij =
∑

i

S1fii −
∑

i

hiifii

= (S1S2 − 3S3)f + f(n− 1)cS1 − (n− 1)S1N(ψ)− 2S2ψ − 〈V >,∇S2〉.

4 Stable hyersurfaces with constant scalar curva-
ture in GRW

In the following, we will consider the generalized Roberston-Walker spaces M
n+1

=
−I ×φ Fn, let

πI : M
n+1 → I

denote the canonical projection onto the I. Then the vector field

V = (φ ◦ πI)
∂

∂t

is conformal, timelike and closed (in the sense that its metrically equavalent 1-form
is closed), with conformal factor ψ = φ′. Now we have the follow corollary
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Corollary 4.1. If Mn is a closed spacelike hypersurface having constant normal-
ized scalar curvature R in generalized Roberston-Walker spaces M

n+1
= −I ×φ Fn

with constant sectional curvature c. Let N be a future-pointing unit normal vector
field globally defined on Mn. If V = (φ ◦ πI) ∂

∂t and f = 〈V, N〉, then

(4.1) L1(f) = (S1S2 − 3S3)f + f(n− 1)cS1 + (n− 1)S1φ
′′〈N,

∂

∂t
〉 − 2S2ψ.

Proof. Since we have

(4.2) ∇φ′ = −〈∇φ′,
∂

∂t
〉 ∂

∂t
= −φ′′

∂

∂t
,

then

(4.3) N(φ′) = 〈N,∇φ′〉 = −φ′′〈 ∂

∂t
,N〉.

Substituting (4.3) into (3.18), we can get (4.1).

Now we can state and prove our main result:
Theorem 4.2. If Mn a is closed hypersurface, having constant normalized scalar

curvature R in generalized Roberston-Walker spaces M
n+1

= −I×φFn with constant
sectional curvature c. If the warping function φ is not constant and satisfies Hφ′′ ≥
max{(R− c)φ′, 0}, and Mn is stable, then

(I) R = c on M , or
(II) M is spacelike slice Mt0 = t0 × Fn, for some t0 ∈ I, satisfying

Hφ′′ = (R− c)φ′.

Proof. Using Proposition 3.5 and Corollary 4.1, we can get

J ′′(0)(f) = 2
∫

M

[(n− 1)S1φ
′′〈N,

∂

∂t
〉 − 2S2φ

′]fdM

= 2
∫

M

[(n− 1)S1φ
′′〈N,

∂

∂t
〉 − n(n− 1)(c−R)φ′]φ〈N,

∂

∂t
〉dM.

Let 〈N, ∂
∂t 〉 = − cosh θ, where θ denotes the hyperbolic angle between the timelike

verctor fields N and ∂
∂t . Since Mn is stable, so

0 ≥ 2
∫

M

[(n− 1)S1φ
′′〈N,

∂

∂t
〉 − n(n− 1)(c−R)φ′]φ〈N,

∂

∂t
〉dM

≥ 2
∫

M

(n− 1)S1φφ′′ cosh θ(cosh θ − 1)dM ≥ 0,

and hence

Hφ′′(cosh θ − 1) = 0 and Hφ′′ = (R− c)φ′(4.4)

holds on Mn. If R 6= c and φ′ 6= 0 then Hφ′′ 6= 0, and cosh θ = 1, so M is an umbilical
leaf satisfying Hφ′′ = (R− c)φ′. 2
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