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Abstract. In this paper we study stable spacelike hyersurfaces with con-
stant scalar curvature in generalized Roberston-Walker spacetime M =

—I X Fm.
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1 Introduction

Hyersurfaces M™ with constant r-mean curvature in Riemannian manifolds or Lorentz

manifolds 37"+ (c) with constant sectional curvature ¢ are critical points of some area
functional variations which keep constant a certain volume function. Stable hyersur-
faces with constant mean curvature(CMC) (or constant r-mean curvature) in real
space form are very interesting geometrical objects that were investigated by many
geometricians. Barbosa and do Carmo [2] gave definition of stability of hyersurfaces
with constant mean curvature in the Eucildean space R™t! and proved the round
spheres are the only compact stable hyersurfaces with CMC in R"*!. Later, Barbosa,
do Carmo and Eschenburg [3] extended ambient spaces to Riemannian manifolds
and obtained the corresponding results. In [5] Barbosa and Oliker discussed stable
spacelile hyersurfaces with CMC in Lorentz manifolds. At the same time, Alencar, do
Carmo and Colares [1] investigated stable hyersurfaces with constant scalar curvature
in Riemannian manifolds and obtained geodesic sphere is the only stable compact ori-
entable hyersurface in Riemannain spaces. On the other hand, Barbosa and Colares
[4] studied compact hyersurfaces without boundary immersed in space forms with
constant r-mean curvature. Recently, Liu and Deng [9] also discussed stable space-
like hyersurfaces with constant scalar curvature in de Siter space S’?H. Barros, Brasil
and Caminha [6] classified strongly stable spacelike hypersurfaces with constant mean
curvature whose warping function satisfied a certain convexity condition.

Balkan Journal of Geometry and Its Applications, Vol.13, No.1, 2008, pp. 66-76.
(© Balkan Society of Geometers, Geometry Balkan Press 2008.



Stable space-like hypersurfaces 67

In this paper we will study stable spacelike hypersurfaces with constant scalar
—n+1
curvature in generalized Roberston-Walker spacetime M R xg F™.

2 Preliminaries

Consider F™ an n-dimensional manifold, let I be a 1-dimensional manifold (either

a circle or an open interval of R). We denote by M= Xg F™ the (n + 1)-
dimensional product manifold I x F' endowed with the Lorentzian metric
(2'1) §:<’>:_dt2+f2(t)<’>1\/fv

where f > 0 is positive function on I, and (,)as stands for the Riemannian metric
on F™. We refer to —I x4 F™ as a generalized Robertson-Walker (GRW) spacetime.
In particular, when the Riemannian factor F™ has constant sectional curvature, then
—1I x4 F" is classically called a Robertson-Walker (RW) spacetime.

A vector field V on a Lorentz manifold MnH is said to be conformal if
(2:2) Lvg = 247,

—n+1
for some smooth function ¢ : M L R, where L stands for the Lie derivative of

Lorentz metric of M+, The function 1 is called the conformal factor of V. V € TM
is conformal if and only if

(2.3) (VxV,Y) + (VyV, X) = 20(X,Y),

for all X, Y € T(M).

Any Lorentz manifold MTLH, possessing a globally defined, timelike conformal
vector field is said to be a conformally stationary (CS) spacetime.

——n+1 . . . .
Let 2 : M™ — M denote an orientable spacelike hyersurface in the time-

oriented Lorentz manifold M and N be a globally defined unit normal vector
field on M™. V and V denote the Levi-Civita connection of M™ and ambient space

1 . =5 5 .
T respectively. R and Ric denote the curvature tensor and Ricci curvature tensor
——n+1 . .
on M"F respectively, which are defined by

(2.4) E()(7 Y)Z = VxVyZ -VyVxZ - V[XTY]Z,
and

(25) E(W Z7 X7 Y) = <vx§yzv W> - <§Y§XY7 W> - <§[X,Y]Z7 W>a

then
n+1

(2.6) Ric(X,Y) =) Rle, X, ex,Y),
k=1

where X,Y,Z,W € TM, and {e;}?_, is a basis of T,M, e,+1 = N. In particular we
have
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n

(2.7) Ric(N, N) =Y R(ex, N, ex, N).
k=1

The shape operator A associated to N of M™, defined by

(2.8) A=-VN (i.e Aey=-V,.N)

is a self-adjoint linear operator in each tangent space T,,M. Its eigenvalues are the
principal curvatures of immersion and are represented by A1, Ao, -+, A,.The elemen-
tary symmetic functions S, associated to A can be defined, using the characteristic
polynomial of A, by

det(tT — A) = > (~1)FGyt"*,
k=0
where So = 1. If p € M, and {ex} is a basis of T, M formed by eigenvector of A,
with corresponding eigenvalues A\, one immediately sees that

Sr - UT(Ala e 7An)a

where o, is the r-th elementary symmetric polynomial. In particular

(2.9) JAI? =3 A = 57 — 285,
k
and
(2.10) D A =57 - 3515 + 3.
k

The r-th classical Newton transformation P, on M is defined as following
Po=1,
P,=85I1-AP,_;, 1<r<n.
Associated to each Newton transformation P, of immersion x : M™ — Mn-H, we
have a second order differential operator defined by
(2.11) L, (f) = trace(P, o Hessf).
When Mn—H has constant sectional curvature, then

(2.12) L,(f) = div(P,V ),

where div stands for the divergence of a vector field on M, it was proved by H.
Rosenberg in [12].
Remark 1.1. According (2.11) or (2.12), when r = 0,

Lof = div(PoVf) = Af

is Laplace operator on M™, and if » = 1, then

Lif = div[P;y ohessf] = div[(S1I — APg) o hessf]
(2.13) = ) (S16i; — hij) fij
(]

become Cheng-Yau’s operator O on M", where h;; and f;; denote the component of
A and hessf respectively.



Stable space-like hypersurfaces 69

3 The variational problem in Lorentz manifolds

Let 2 : M™ — M""" denotes an orientable spacelike hyersurface in the time-oriented
Lorentz manifold """ and N be a globally defined unit normal vector field on M™.
A variation of z is a smooth map X : M™ x (—¢,¢) — mt satisfying the following
conditions:

(1) For t € (—¢,¢), the map X; : M" — ! given by X;(p) = X(t,p) is a
spaelike immersion such that Xy = x.

(2) Xiloamr = zlom, for all ¢t € (—¢,¢).

The variational field vector associated the variation X is vector field X*(%) = %—f.

Let f = <%—f,N}, we have

X  0X ¢

(3.1) a5 = (5p)

_fNa

where T denotes tangential components. The balance of volume of the variation X is
the function V' : (—¢,¢) — R given by

(3.2) V(t) = /MX[O ) X*(dM),

where dM denotes the volume element of M.
The area functional A : (—e,¢) — R is given by

(3.3) A(t) = /M SvdM,

where dM; denotes the volume element of the metric induced in M by X;. Then we
have the following classical result.

Lemma 3.1. Let MHH be a time-oriented Lorentz manifold and z : M™ — M
a spacelike hyersurface. If X : M"™ X (—e,¢e) — M s a variation of x, then

(i)

n+1

d
Zit) lt=0 = /M fdM;

a(dM,) OX .
ot = (Sl + dlv(ﬁ) )th

Proof. For (i) see [3, 9], and for (ii) see [4, 11]. O
Barros, Brasil and Caminha [6] proved the following proposition:

(3.5)

Proposition 3.2. Let z : M" — M be a spacelike hypersurface of the time-
oriented Lorentz manifold MnH, and N be a globally defined unit normal vector field
on M™ If X : M™ x (—e,¢) — M""" is a variation of =, then

dSi 0X

(3.6) — = OF = (Rie(N, N) + [[A") f + <(E)T,VS1>-
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Suppose A is a constant, and J : (—¢,e) — R is given by
(3.7) J(t) = A(t) + AV (b),

J is called the Jacobi functional associated to the variation X. Then we have the
following proposition:

Proposition 3.3. Let z : M"™" — M bea spacelike hypersurface in the time-
oriented Lorentz manifold MnH, and N be a globally defined unit normal vector field
on M™. If X : M™ x (—¢,¢) — M is a variation of x, then

dJ(t)

(38) — = /M[diV(Sl(%()T) +Af = Ric(N,N) + | A|* = S§ = \) fldM,.

. . +1 .
In particular, when M™ is closed and M""" has constant sectional curvature ¢, then

(3.9) %ﬁt) = /M(2S2 —cn+ A) fdM;.

Proof. We can get this result from Lemma 3.1 and Proposition 3.2. In fact,

ONE s, . 0X - /
i /M i+ [ i1+ (G aM+ [ g,
B 0X + . OX -
= [ (G Vs + suiv(G)T + o

—(Ric(N, N) + [|Al*)f + ST f + AfldM,
= [ i)Y + AT (RN, N) + [AJPf - 82 = M) fld
M

. ——n+1 .
When M" is closed and 7" has constant sectional curvature ¢, then we have

/ div(Sl(a—X)T)th =0,
M ot

/ Afth = 0,
M
and Ric(N, N) = nc, then using (2.9), we have (3.9). O

sy ——n+1 . . .
Proposition 3.4. Let z : M" — M s a spacelike hypersurface in Lorentz
w5n+1 . .
space form Mt (¢) with constant sectional curvature ¢, and X : M™ x (—¢,¢) —

n+1 . c .
M is a variation of z, then

ds: 0X
(3.10) d—; =Li(f) = (5185 —393)f — f(n—1)eS; + <(E)T’ V5S,).
In particular, if S is a constant, then one has
ds:
(3.11) 22— Ly(f) = (8182 — 383)f — f(n — 1)cS;.

dt
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Proof. According to the proof of proposition 3.2 in [6], we can get

dhyi 0X

(3.12) o = Jwe—ef - hivef + (Vhir, (E)T>~
Using (2.9), we can get

dS; . dS: dhy
(3.13) — =5 o —Xk:hkk T

Substituting (3.6) and (3.12) into (3.13), using (2.9) and (2.10), then we have

D2 AT - RV, N) + AP+ (T, V)

dt
0X
= > haklfik = ef = Wi f + (Vhr, (52) 7))
k
, X
= S1Af = Si(ne+ ST —25)f +Si1{(50) " VS + Y (S fek — hik fir)
k
—S1> funteSif £ N - 1<V(S2 —285) (8—X)T>
1 : kk 1 : kT g 1 2): (g
0X .t
= Li(f) = (5182 = 383)f = f(n = DS +{(5) ", ViS2)-
If So is constant, then the last term in the above is equal to zero, so we have (3.11).
O
If M has constant normalized scalar curvature R, and we choose
(3.14) A =25 —nc=n(n—1)(c— R) — nc,

then A is a constant too, so we have
1
Proposition 3.5. Let x : M" — M (¢) is a spacelike hypersurface in the time-

. . wn+1 7+l . C e
oriented Lorentz manifold M (c),and X : M™ x (—¢,¢e) — M" is a variation of
x, and S9 is constant, then

d2J(0)

(3.15) 0 =2 [ [Lal) -~ (5152 - 380 ~ (0 - Desil

Proof. Since A = 253 —nec =n(n—1)(c — R) — nc, using (3.9) and (3.11), we can get

2
Loy =2 [ B gans = [ L)~ (515~ 3507 ~ Fin = e

a

Definition 3.6. Suppose = : M"™ — Mnﬂ(c) has constant scalar curvature. The
immersion z is stable if
d?J(0)
dt?
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for all volume-presering variations of x. If M™ is noncompact, x is stable if for every
conpact submanifolds M’ C M™ with boundary, the restriction x |5 is stable.

For conformally stationary spacetimes, we have the following proposition.

Proposition 3.7. Let M be a conformally stationary Lorentz manifold, with
conformal vector V' having conformal factor 1) : M SR Suppose x : M"™ — !
is a spacelike hypersurface in M = x ¢ F™ with constant sectional curvature c,
and N a future-pointing, unit normal vector field globally defined on M™, f = (V, N},
then

(3.17) Li(f) = (8182 —3S3)f + f(n—1)eS; — (n — 1)S;N () — 2851p — (V1| VS,).
In particular, if R is constant, then S5 is a constant too, so
(318)  Of = Li(f) = (S8 — 385)f + f(n — 1)eSy — (n— DS N(®) — 250

Proof. We can choose {e;} as a moving frame on neighborhood U C M of p, geodesic
at p, and diagonalizing the shape operator A of M at p, with Aey = Agey, for 1 <
k <n. Extend N and e; (1 < k < n) to a neighborhood of p in M, such that

(N,er) =0 and (Vyer)(p) = 0.

Let
V= Z e — fN,
l
so we have
ek(f) = <vekN7 V> + <N7ﬁ€kv> = _<Aek’V> + <N’vekv>'

Then

ekek(f) = —e; <A€k, V> + ek<N, Vek V>
(3.19) = (Ve (Aer), V) —2(Aeg, Ve, V) + (N, Ve, Ve, V).

For the first term in (3.19), we have

(Ver(Aer), V) = (Ve (Aex), Y e — [N)
l
= Y en(hug)es, Y oner) + Y hij(Veyej,—fN)
J z i
(3.20) = Y auer(hm) = > hiuf.
l l

For the second term in (3.19), we have

(3.21) <Aek,V6kV> = Z hkj<6j,§ekv> = /\k<ek,VekV> = )\kl/),
J

where in the last equality we use the fact that V' is conformal vector having conformal
factor 1, and we have
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(N, Ve, V) + (er, VNV) = 2¢{ex, N) = 0,

then we can get

(3'220661@]\[’ ﬁekv> + <N, vekﬁek‘/v + <§ek€k,§j\rv> + <€k,ﬁek§1\/v> =0.

Since
(Ve N, Ve, V) = —(Aey, Ve, V) = =\,
and
(VNV,Veer) = 7<YNV7<ﬁekek7N>N>
= —(VNV,hpN) = —hp (N, N) = A\,
then
(3.23) (N,V. Ve, V) =—(er, Ve, VNV).

On the other hand, noting that

[N, er](p) = —Vner(p) — Ve, N(p) = —Arer(p),

so we have

<R(N7 €k)‘/, €k> = <§Nﬁpkv *ﬁekﬁNV 7V[N,ek]‘/76k>p
= ]\f<ﬁekv7 6k> + <N,§ekﬁekv> — <ﬁ>\k,ekv, €k>
= <N7 Vekvek V> + N(T/J) — Ak

For the third term in (3.19), we have
(324) <N7 ﬁekﬁw V> = <E(N7 6k)V, ek> - NW) + /\k¢

Also we have

R(N,ex)Vyer) = RNV, ex)(Dcuer — fN),ex)
l

Z Oélﬁ(N, 6k)6l, €k> — f<E(N, ek)N, ek>,
l

and
(R(N, ep)er, ex) = Riex, e1, N, ex) = ex(hit) — er(hik),

50 (3.24) become
BE)Ve, Ve, V) = e (hrr) — er(hir)] + [R(N, ex, N, ex) — N () + Agob.
l

Substituting (3.20), (3.21) and (3.25) into (3.19) we can get
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foe = erer(f) =— zl: ager(hy) + zlj W f — 200 +
Z(alek(hkl) —ager(hir)) + FR(N, ex, N, e) — N(3) + A\t)
(3.26) = Zh L+ RN e, Nyex))f — (VT Vi) — N(1b) — Aib.

So we have

(327)  Af=(JAl® +Ric(N,N))f = (V',VS1) = nN(¥) - Si9,

and
D Aefwr = —22/\ Y — Z)\kek (hat) +Z/\khklf+z/\kal ex(hi)
k
—ei(hr)) +Zf/\kR(N7 er, N, ex) Z/\kN +Z/\i¢
(3.28) = —ZA§¢+ZA2f > adeer(Me) + feSy — SiN ().

k,l

Note that (2.9) and (2.10)

S A =57-28, D M =5 355, + 38,
k k

substituting (3.27) and (3.28) into (2.13), so we can get

Z(Sl ij zg fzg Zslfn Zhnfn

%,

= (5182 —383)f + f(n—1)eS; — (n — 1)S1 N () — 2S21p — (VT,VS,).

Li(f)

a

4 Stable hyersurfaces with constant scalar curva-
ture in GRW

In the following, we will consider the generalized Roberston-Walker spaces M =
—1 X Fm7 let

T MnH — I
denote the canonical projection onto the I. Then the vector field

0
(¢°WI)8t

is conformal, timelike and closed (in the sense that its metrically equavalent 1-form
is closed), with conformal factor ¢ = ¢'. Now we have the follow corollary
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Corollary 4.1. If M™ is a closed spacelike hypersurface having constant normal-

ized scalar curvature R in generalized Roberston-Walker spaces M= g x g F
with constant sectional curvature c. Let N be a future-pointing unit normal vector
field globally defined on M™. If V = (¢ o m;) £ and f = (V, N), then

(41)  Li(f) = (8182 — 3S3)f + f(n — 1)eSy + (n — 1)S16”"(N, %) 25,
Proof. Since we have

(12) Vo = (Vo o = ¢

then

(4.3 N(#) = (N Te) = ~¢"{ 5, V).

Substituting (4.3) into (3.18), we can get (4.1). 0

Now we can state and prove our main result:
Theorem 4.2. If M™ a is closed hypersurface, having constant normalized scalar

curvature R in generalized Roberston-Walker spaces M =1 X ¢ F'™ with constant
sectional curvature c. If the warping function ¢ is not constant and satisfies H¢" >
max{(R — ¢)¢’,0}, and M™ is stable, then
(I) R=con M, or
(IT) M is spacelike slice My, = to x F™, for some ty € I, satisfying
H¢' =(R—c)d'.

Proof. Using Proposition 3.5 and Corollary 4.1, we can get

FO) = 2 [ (=088, ) - 28001 M

vy ? o
= 2 [ (1= DS (V. 5) = nln = 1)(e = RIGIG(N, Z)dM.

Let (N, %) = —cosh @, where 6 denotes the hyperbolic angle between the timelike
verctor fields N and %. Since M™ is stable, so

0 22 [ (0= D810, ) = 1)(e— RGN, it

>2 / (n —1)S1¢¢" cosh§(cosh§ — 1)dM > 0,
M

and hence

(4.4) H¢"(coshf —1) =0 and H¢" = (R —c)¢’

holds on M™. If R # ¢ and ¢’ # 0 then H¢" # 0, and cosh = 1, so M is an umbilical
leaf satisfying H¢"” = (R — ¢)¢'. O
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