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Abstract. In this paper we study some geometrical objects (d-tensors,
multi-time semisprays of polymomenta and nonlinear connections) on the
dual 1-jet vector bundle J1∗(T ,M) → T ×M . Several geometric formulas,
which connect the last two geometrical objects, are also derived. Finally, a
canonical nonlinear connection produced by a Kronecker h-regular multi-
time Hamiltonian function is given.
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1 Introduction

From a geometrical point of view, we point out that the 1-jet spaces are funda-
mental ambient mathematical spaces used in the study of classical and quantum field
theories (in their contravariant Lagrangian approach). For this reason, the differen-
tial geometry of these spaces was intensively studied by many authors (please see,
for example, Saunders [18] or Asanov [1] and references therein). In this direction, it
is important to note that, following the geometrical ideas initially stated by Asanov
in [1], a multi-time Lagrange contravariant geometry on 1-jet spaces (in the sense of
distinguished connection, torsions and curvatures) was recently constructed by Neagu
and Udrişte [14], [16], [17] and published by Neagu in the book [15]. This geomet-
rical theory is a natural multi-parameter extension on 1-jet spaces of the already
classical Lagrange geometrical theory on the tangent bundle elaborated by Miron and
Anastasiei [12]. Note that recent new geometrical developments, which relies on the
multi-time Lagrange contravariant geometrical ideas from [15], are given by Udrişte
and his co-workers in the paper [19].

From the point of view of physicists, the differential geometry of the dual 1-jet
spaces was also studied because the dual 1-jet spaces represent the polymomentum
phase spaces for the covariant Hamiltonian formulation of the field theory (this is
a natural multi-parameter, or multi-time, extension of the classical Hamiltonian for-
malism from Mechanics). Thus, in order to quantize the covariant Hamiltonian field
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theory (this is the final purpose in the framework of quantum field theory), the co-
variant Hamiltonian differential geometry was developed in three distinct ways:

• the multisymplectic covariant geometry elaborated by Gotay, Isenberg, Marsden,
Montgomery and their co-workers [7], [8];

• the polysymplectic covariant geometry investigated by Giachetta, Mangiarotti
and Sardanashvily [6];

• the De Donder-Weyl covariant Hamiltonian geometry intensively studied by
Kanatchikov (please see [9], [10] and references therein).

It is important to note that these three distinct geometrical-physics variants differ
by the multi-time phase space and the geometrical techniques used in this study. Also,
we point out that there are different point of views for the study of the multi-time
Hamilton equations, which appear in first order field theory. Please see, for example,
Duca and Udrişte’s paper [5].

Inspired by the Cartan covariant Hamiltonian approach of classical Mechanics, the
studies of Miron [11], Atanasiu [2], [3] and their co-workers led to the development
of the Hamilton geometry on the cotangent bundle exposed in the book [13]. Thus, in
such a physical and geometrical context, suggested by the multi-time framework of
the De Donder-Weyl covariant Hamiltonian formulation of Physical Fields, the aim of
this paper is to present some basic geometrical concepts on dual 1-jet spaces (we refer
to distinguished (written briefly, d-) tensors, multi-time semisprays of polymomenta
and nonlinear connections), necessary to the development of a subsequent multi-time
covariant Hamilton geometry (in the sense of d-linear connections, d-torsions and
d-curvatures [4]), which to be a natural multi-parameter, or poly-momentum, general-
ization of the Hamilton geometry on the cotangent bundle [13].

2 The dual 1-jet vector bundle J1∗(T ,M)

We start our geometrical study considering two smooth real manifolds T m and Mn

having the dimensions m, respectively n, and which are coordinated by (ta)a=1,m, re-
spectively (xi)i=1,n. We point out that, throughout this paper, the indices a, b, c, d, f, g
run over the set {1, 2, . . . ,m} and the indices i, j, k, l, r, s run over the set {1, 2, . . . , n}.

Let us consider the 1-jet space E
not= J1(T × M) → T × M , coordinated by

(ta, xi, xi
a), where xi

a behave as partial derivatives.

Remark 2.1. From a physical point of view, the manifold T can be regarded as a
temporal manifold or, better, a multi-time manifold, while the manifold M can be
regarded as a spatial one. In this way, the coordinates xi

a are regarded as partial
velocities. In other words, the 1-jet vector bundle J1(T ,M) → T ×M can be regarded
as a bundle of configurations for ”multi-time” physical events.

It is well known that the transformations of coordinates on the 1-jet vector bundle
J1(T ,M) are given by
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(2.1)





t̃a = t̃a(tb)

x̃i = x̃i(xj)

x̃i
a =

∂x̃i

∂xj

∂tb

∂t̃a
xj

b,

where det(∂t̃a/∂tb) 6= 0 and det(∂x̃i/∂xj) 6= 0.
Now, using the general theory of vector bundles (please see [12], for example), let

us consider the dual 1-jet vector bundle E∗ not= J1∗(T ,M) → T × M, whose local
coordinates are denoted by (ta, xi, pa

i ).

Remark 2.2. According to the Kanatchikov’s physical terminology [9], which general-
izes the Hamiltonian terminology from Analytical Mechanics, the coordinates pa

i are
called polymomenta and the dual 1-jet space E∗ is called the polymomentum phase
space.

It is easy to see that the transformations of coordinates on the dual 1-jet space
E∗ have the expressions

(2.2)





t̃a = t̃a(tb)

x̃i = x̃i(xj)

p̃a
i =

∂xj

∂x̃i

∂t̃a

∂tb
pb

j ,

where det(∂t̃a/∂tb) 6= 0 and det(∂x̃i/∂xj) 6= 0. In the sequel, doing a transformation
of coordinates (2.2) on E∗, we obtain

Proposition 2.3. The elements of the local natural basis
{

∂

∂ta
,

∂

∂xi
,

∂

∂pa
i

}
of the

Lie algebra of vector fields X (E∗) transform by the rules

(2.3)

∂

∂ta
=

∂t̃b

∂ta
∂

∂t̃b
+

∂p̃b
j

∂ta
∂

∂p̃b
j

,

∂

∂xi
=

∂x̃j

∂xi

∂

∂x̃j
+

∂p̃b
j

∂xi

∂

∂p̃b
j

,

∂

∂pa
i

=
∂xi

∂x̃j

∂t̃b

∂ta
∂

∂p̃b
j

.

Proposition 2.4. The elements of the local natural cobasis {dta, dxi, dpa
i } of the Lie

algebra of covector fields X ∗(E∗) transform by the rules

(2.4)

dta =
∂ta

∂t̃b
dt̃b,

dxi =
∂xi

∂x̃j
dx̃j ,

dpa
i =

∂pa
i

∂t̃b
dt̃b +

∂pa
i

∂x̃j
dx̃j +

∂x̃j

∂xi

∂ta

∂t̃b
dp̃b

j .
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3 d-Tensors, multi-time semisprays of polymomenta
and nonlinear connections

It is well known the importance of tensors in the development of a fertile geometry
on a vector bundle. Following the geometrical ideas developed in the books [12] and
[13], in our study upon the geometry of the dual 1-jet bundle E∗ a central role is
played by the distinguished tensors or, briefly, d-tensors.

Definition 3.1. A geometrical object T =
(
T

ai(k)(d)...
bj(c)(l)...

)
on the dual 1-jet vector

bundle E∗, whose local components, with respect to a transformation of coordinates
(2.2) on E∗, transform by the rules

T
ai(k)(d)...
bj(c)(l)... = T̃

ep(r)(h)...
fq(g)(s)...

∂ta

∂t̃e
∂xi

∂x̃p

(
∂xk

∂x̃r

∂t̃g

∂tc

)
∂t̃f

∂tb
∂x̃q

∂xj

(
∂x̃s

∂xl

∂td

∂t̃h

)
. . . ,

is called a d-tensor or a distinguished tensor field on the dual 1-jet space E∗.

Example 3.2. If H : E∗ → R is a Hamiltonian function depending on the polymomenta
pa

i , then the local components

G
(i)(j)
(a)(b) =

1
2

∂2H

∂pa
i ∂pb

j

represent a d-tensor field G =
(
G

(i)(j)
(a)(b)

)
on the dual 1-jet space E∗, which is called

the fundamental vertical metrical d-tensor associated to the Hamiltonian function of
polymomenta H.

Example 3.3. Let us consider the d-tensor C∗ =
(
C(a)

(i)

)
, where C(a)

(i) = pa
i . The

distinguished tensor C∗ is called the Liouville-Hamilton d-tensor field of polymomenta
on the dual 1-jet space E∗.

Example 3.4. Let hab(t) be a semi-Riemannian metric on the temporal manifold T .
The geometrical object L =

(
L

(c)
(j)ab

)
, where L

(c)
(j)ab = habp

c
j , is a d-tensor field on E∗,

which is called the polymomentum Liouville-Hamilton d-tensor field associated to the
metric hab(t).

Example 3.5. Using the preceding metric hab(t), we can construct the d-tensor field
J =

(
J

(i)
(a)bj

)
, where J

(i)
(a)bj = habδ

i
j . The distinguished tensor J is called the d-tensor

of h-normalization on the dual 1-jet vector bundle E∗.

Definition 3.6. A set of local functions G
1

=
(
G
1

(b)
(j)i

)
, which transform by the rules

(3.1) 2G̃
1

(c)
(k)r = 2G

1

(b)
(j)i

∂t̃c

∂tb
∂xi

∂x̃r

∂xj

∂x̃k
− ∂xi

∂x̃r

∂p̃c
k

∂ta
pa

i ,

is called a temporal semispray on the dual 1-jet vector bundle E∗.

Example 3.7. If κa
bc(t) are the Christoffel symbols of a semi-Riemannian metric hab(t)

of the temporal manifold T , then the local components
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(3.2)
0

G
1

(a)
(j)k =

1
2
κa

bcp
b
jp

c
k

represent a temporal semispray
0

G
1

on the dual 1-jet vector bundle E∗.

Definition 3.8. The temporal semispray
0

G
1

given by (3.2) is called the canonical

temporal semispray associated to the temporal metric hab(t).

Definition 3.9. A set of local functions G
2

=
(
G
2

(b)
(j)i

)
, which transform by the rules

(3.3) 2G̃
2

(d)
(s)k = 2G

2

(b)
(j)i

∂t̃d

∂tb
∂xi

∂x̃k

∂xj

∂x̃s
− ∂xi

∂x̃k

∂p̃d
s

∂xi
,

is called a spatial semispray on the dual 1-jet vector bundle E∗.

Example 3.10. If γi
jk(x) are the Christoffel symbols of a semi-Riemannian metric

ϕij(x) of the spatial manifold M , then the local components

(3.4)
0

G
2

(b)
(j)k = −1

2
γi

jkpb
i

define a spatial semispray
0

G
2

on the dual 1-jet space E∗.

Definition 3.11. The spatial semispray
0

G
2

given by (3.4) is called the canonical

spatial semispray associated to the spatial metric ϕij(x).

Definition 3.12. A pair G =
(
G
1
, G

2

)
, consisting of a temporal semispray G

1
and

a spatial semispray G
2
, is called a multi-time semispray of polymomenta on the dual

1-jet space E∗.

Definition 3.13. The pair
0

G =
(

0

G
1
,

0

G
2

)
, given by the local functions (3.2) and

(3.4), is called the canonical semispray of polymomenta associated to the pair of
semi-Riemannian metrics hab(t) and ϕij(x).

Definition 3.14. A pair of local functions N =
(
N
1

(c)
(k)a, N

2

(c)
(k)i

)
on E∗, which trans-

form by the rules

(3.5)
Ñ
1

(b)
(j)d =N

1

(c)
(k)a

∂t̃b

∂tc
∂xk

∂x̃j

∂ta

∂t̃d
− ∂ta

∂t̃d
∂p̃b

j

∂ta
,

Ñ
2

(b)
(j)r = N

2

(c)
(k)i

∂t̃b

∂tc
∂xk

∂x̃j

∂xi

∂x̃r
− ∂xi

∂x̃r

∂p̃b
j

∂xi
,

is called a nonlinear connection on the dual 1-jet bundle E∗.
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Remark 3.15. The nonlinear connections are very important in the study of the dif-
ferential geometry of the dual 1-jet space E∗ because they produce the adapted dis-
tinguished 1-forms

δpa
i = dpa

i + N
1

(a)
(i)bdtb + N

2

(a)
(i)jdxj ,

which are necessary for the adapted local description of the d-linear connections,
d-torsions or d-curvatures. For more details, please see the paper [4].

Now, let us expose the connection between the notions of multi-time semispray
of polymomenta and nonlinear connection on the dual 1-jet space E∗. Thus, in our
context, using the transformation rules (3.1), (3.3) and (3.5) of the geometrical objects
taken in study, we can easily prove the following statements:

Proposition 3.16. i) If G
1

(a)
(j)k are the components of a temporal semispray G

1
on E∗

and ϕij(x) is a semi-Riemannian metric on the spatial manifold M , then the local
components

N
1

(a)
(r)b = ϕjk

∂G
1

(a)
(j)k

∂pb
i

ϕir

represent the temporal components of a nonlinear connection NG on E∗.
ii) Conversely, if N

1

(a)
(i)b are the temporal components of a nonlinear connection N

on E∗, then the local components

G
1

(a)
(i)j =

1
2
N
1

(a)
(i)bp

b
j

represent a temporal semispray G
1

N on E∗.

Proposition 3.17. i) If G
2

(b)
(j)i are the components of a spatial semispray G

2
on E∗,

then the local components
N
2

(b)
(j)i = 2G

2

(b)
(j)i

represent the spatial components of a nonlinear connection NG on E∗.
ii) Conversely, if N

2

(b)
(j)i are the spatial components of a nonlinear connection N on

E∗, then the local functions

G
2

(b)
(j)i=

1
2
N
2

(b)
(j)i

represent a spatial semispray G
2

N on E∗.

Remark 3.18. The Propositions 3.16 and 3.17 emphasize that a multi-time semispray
of polymomenta G =

(
G
1
, G

2

)
on the dual 1-jet space E∗ naturally induces a nonlinear

connection NG on E∗ and vice-versa, N induces GN .

Definition 3.19. The nonlinear connection NG on the dual 1-jet space E∗ is called
the canonical nonlinear connection associated to the multi-time semispray of polymo-
menta G =

(
G
1
, G

2

)
and vice-versa.
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Corollary 3.20. The canonical nonlinear connection
0

N =
(

0

N
1

(a)
(i)b,

0

N
2

(a)
(i)j

)
produced

by the canonical multi-time semispray of polymomenta
0

G =
(

0

G
1
,

0

G
2

)
associated to the

pair of semi-Riemannian metrics (hab(t), ϕij(x)) has the local components

0

N
1

(a)
(i)b = κa

cbp
c
i and

0

N
2

(a)
(i)j = −γk

ijp
a
k.

4 Kronecker h-regularity. Canonical nonlinear con-
nections

Let us consider a smooth multi-time Hamiltonian function H : E∗ → R, locally
expressed by

E∗ 3 (ta, xi, pa
i ) → H(ta, xi, pa

i ) ∈ R,

whose fundamental vertical metrical d-tensor is defined by

G
(i)(j)
(a)(b) =

1
2

∂2H

∂pa
i ∂pb

j

.

In the sequel, let us fix h = (hab(tc)), a semi-Riemannian metric on the temporal
manifold T , together with a d-tensor gij(tc, xk, pc

k) on the dual 1-jet space E∗, which
is symmetric, has the rank n = dim M and a constant signature.

Definition 4.1. A multi-time Hamiltonian function H : E∗ → R, having the funda-
mental vertical metrical d-tensor of the form

G
(i)(j)
(a)(b)(t

c, xk, pc
k) =

1
2

∂2H

∂pa
i ∂pb

j

= hab(tc)gij(tc, xk, pc
k),

is called a Kronecker h-regular multi-time Hamiltonian function.

Definition 4.2. A pair MHn
m = (E∗ = J1∗(T , M),H), where m = dim T and

n = dim M, consisting of the dual 1-jet space and a Kronecker h-regular multi-time
Hamiltonian function H : E∗ → R, is called a multi-time Hamilton space.

Remark 4.3. In the particular case (T , h) = (R, δ), a multi-time Hamilton space will
be called a relativistic rheonomic Hamilton space. In this case, we use the notation
RRHn = (J1∗(R,M),H).

Example 4.4. Let us consider the following Kronecker h-regular multi-time Hamilto-
nian function H1 : E∗ → R, defined by

(4.1) H1 =
1

mc
hab(t)ϕij(x)pa

i pb
j ,

where hab(t) (ϕij(x), respectively) is a semi-Riemannian metric on the temporal (spa-
tial, respectively) manifold T (M , respectively) having the physical meaning of grav-
itational potentials, and m and c are the known constants from Physics representing
the mass of the test body and the speed of light. Then, the multi-time Hamilton space
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GMHn
m = (E∗,H1)

defined by the multi-time Hamiltonian function (4.1) is called (please see [13]) the
multi-time Hamilton space of gravitational field.

Example 4.5. Using preceding notations, let us consider the Kronecker h-regular
multi-time Hamiltonian function H2 : E∗ → R, defined by

(4.2) H2 =
1

mc
hab(t)ϕij(x)pa

i pb
j −

2e

mc2
A

(i)
(a)(x)pa

i +
e2

mc3
F (t, x),

where A
(i)
(a)(x) is a d-tensor on E∗ having the physical meaning of potential d-tensor

of an electromagnetic field, e is the charge of the test body and the function F (t, x) is
given by

F (t, x) = hab(t)ϕij(x)A(i)
(a)(x)A(j)

(b)(x).

Then, the multi-time Hamilton space

EDMHn
m = (E∗,H2)

defined by the multi-time Hamiltonian function (4.2) is called (please see [13]) the
autonomous multi-time Hamilton space of electrodynamics. The non-dynamical char-
acter (the independence of the temporal coordinates tc) of the spatial gravitational
potentials ϕij(x) motivated us to use the term ”autonomous”.

Example 4.6. More general, if we take on E∗ a symmetric d-tensor field gij(t, x)
having the rank n and a constant signature, we can define the Kronecker h-regular
multi-time Hamiltonian function H3 : E∗ → R, setting

(4.3) H3 = hab(t)gij(t, x)pa
i pb

j + U
(i)
(a)(t, x)pa

i + F(t, x),

where U
(i)
(a)(t, x) is a d-tensor field on E∗ and F(t, x) is a function on E∗. Then, the

multi-time Hamilton space

NEDMHn
m = (E∗,H3)

defined by the multi-time Hamiltonian function (4.3) is called the non-autonomous
multi-time Hamilton space of electrodynamics. The dynamical character (the depen-
dence of the temporal coordinates tc) of the spatial gravitational potentials gij(t, x)
motivated us to use the word ”non-autonomous”.

An important role and, at the same time, an obstruction for the subsequent de-
velopment of a geometrical theory for the multi-time Hamilton spaces, is represented
by the following result:

Theorem 4.7 (of characterization of the multi-time Hamilton spaces). If we
have m = dim T ≥ 2, then the following statements are equivalent:

(i) H is a Kronecker h-regular multi-time Hamiltonian function on E∗.
(ii) The multi-time Hamiltonian function H reduces to a multi-time Hamiltonian

function of non-autonomous electrodynamic kind, that is we have

(4.4) H = hab(t)gij(t, x)pa
i pb

j + U
(i)
(a)(t, x)pa

i + F(t, x).
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Proof. (ii) =⇒ (i) It is obvious (even if we have m = 1).
(i) =⇒ (ii) Let us suppose that m = dim T ≥ 2 and let us consider that H is a

Kronecker h-regular multi-time Hamiltonian function, that is we have

1
2

∂2H

∂pa
i ∂pb

j

= hab(tc)gij(tc, xk, pc
k).

(1◦) Firstly, let us suppose that there exist two distinct indices a and b, from the
set {1, . . . , m}, such that hab 6= 0. Let k (c, respectively) be an arbitrary element of
the set {1, . . . , n} ({1, . . . , m}, respectively). Deriving the above relation, with respect
to the variable pc

k, and using the Schwartz theorem, we obtain the equalities

∂gij

∂pc
k

hab =
∂gjk

∂pa
i

hbc =
∂gik

∂pb
j

hac, ∀ a, b, c ∈ {1, . . . ,m}, ∀ i, j, k ∈ {1, . . . , n}.

Contracting now with hcd, we deduce that

∂gij

∂pc
k

habh
cd = 0, ∀ d ∈ {1, . . . , m}.

In this context, the supposing hab 6= 0, together with the fact that the metric

h is non-degenerate, imply that
∂gij

∂pc
k

= 0, for any two arbitrary indices k and c.

Consequently, we have gij = gij(td, xr).
(2◦) Let us suppose now that hab = 0, ∀ a 6= b ∈ {1, . . . , m}. It follows that

hab = ha(t)δa
b , ∀ a, b ∈ {1, . . . ,m},

where ha(t) 6= 0, ∀ a ∈ {1, . . . ,m}. In these conditions, the relations

∂2L

∂pa
i ∂pb

j

= 0, ∀ a 6= b ∈ {1, . . . , m}, ∀ i, j ∈ {1, . . . , n},

1
2ha(t)

∂2L

∂pa
i ∂pa

j

= gij(tc, xk, pc
k), ∀ a ∈ {1, . . . , m}, ∀ i, j ∈ {1, . . . , n},

are true. If we fix now an index a in the set {1, . . . ,m}, we deduce from the first

relations that the local functions
∂L

∂pa
i

depend only by the coordinates (tc, xk, pa
k).

Considering b 6= a another index from the set {1, . . . , m}, the second relations imply

1
2ha(t)

∂2L

∂pa
i ∂pa

j

=
1

2hb(t)
∂2L

∂pb
i∂pb

j

= gij(tc, xk, pc
k), ∀ i, j ∈ {1, . . . , n}.

Because the first term of the above equality depends only by the coordinates
(tc, xk, pa

k), while the second term depends only by the coordinates (tc, xk, pb
k), and

because we have a 6= b, we conclude that gij = gij(td, xr).
Finally, the equalities

1
2

∂2H

∂pa
i ∂pb

j

= hab(tc)gij(tc, xk), ∀ a, b ∈ {1, . . . , m}, ∀ i, j ∈ {1, . . . , n},

imply that the multi-time Hamilton function H is one of kind (4.4).
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Corollary 4.8. The fundamental vertical metrical d-tensor of a Kronecker h-regular
multi-time Hamiltonian function H has the form

(4.5) G
(i)(j)
(a)(b) =

1
2

∂2H

∂pa
i ∂pb

j

=

{
h11(t)gij(t, xk, pk), m = dim T = 1

hab(tc)gij(tc, xk), m = dim T ≥ 2.

Remark 4.9. i) It is obvious that the Theorem 4.7 is an obstruction in the development
of a fertile geometrical theory for the multi-time Hamilton spaces. This obstruction
will be surpassed in other future paper by the introduction of the more general geo-
metrical concept of generalized multi-time Hamilton space. The generalized multi-time
Hamilton geometry on the dual 1-jet space E∗ will be constructed using only a Kro-
necker h-regular fundamental vertical metrical d-tensor (not necessarily provided by
a Hamiltonian function) G

(i)(j)
(a)(b) =hab(tc)gij(tc, xk, pc

k), together with an ”a priori”
given nonlinear connection N on E∗.

ii) In the case m = dim T ≥ 2, the Theorem 4.7 obliges us to continue our
geometrical study of the multi-time Hamilton spaces channeling our attention upon
the non-autonomous multi-time Hamilton spaces of electrodynamics.

In the sequel, following the geometrical ideas of Miron from [11], we will show
that any Kronecker h-regular multi-time Hamiltonian function H produces a natural
nonlinear connection on the dual 1-jet bundle E∗, which depends only by H. In order
to do that, let us take a Kronecker h-regular multi-time Hamiltonian function H,
whose fundamental vertical metrical d–tensor is given by (4.5). Also, let us consider
the generalized spatial Christoffel symbols of the d-tensor gij , given by

Γk
ij =

gkl

2

(
∂gli

∂xj
+

∂glj

∂xi
− ∂gij

∂xl

)
.

In this context, using preceding notations, we can give the following result:

Theorem 4.10. The pair of local functions N =
(
N
1

(a)
(i)b, N2

(a)
(i)j

)
on E∗, where

(4.6)

N
1

(a)
(i)b = κa

cbp
c
i ,

N
2

(a)
(i)j =

hab

4

[
∂gij

∂xk

∂H

∂pb
k

− ∂gij

∂pb
k

∂H

∂xk
+ gik

∂2H

∂xj∂pb
k

+ gjk
∂2H

∂xi∂pb
k

]
,

represents a nonlinear connection on E∗, which is called the canonical nonlinear con-
nection of the multi-time Hamilton space MHn

m = (E∗,H).

Proof. Taking into account the classical transformation rules of the Christoffel sym-
bols κa

bc of the temporal semi-Riemannian metric hab, by direct local computations, we
deduce that the temporal components N

1

(a)
(i)b from (4.6) verify the first transformation

rules from (3.5) (please see also the Corollary 3.20).
In the particular case when m = dim T = 1, the spatial components

N
2

(1)
(i)j =

h11

4

[
∂gij

∂xk

∂H

∂pk
− ∂gij

∂pk

∂H

∂xk
+ gik

∂2H

∂xj∂pk
+ gjk

∂2H

∂xi∂pk

]
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become (except the multiplication factor h11) exactly the canonical nonlinear connec-
tion from the classical Hamilton geometry (please see [11] or [13, pp. 127]).

For m = dim T ≥ 2, the Theorem 4.7 (more exactly, the formula (4.4)) leads us
to the following expression for the spatial components N

2

(a)
(i)j from (4.6):

(4.7) N
2

(a)
(i)j = −Γk

ijp
a
k + T

(a)
(i)j ,

where

T
(a)
(i)j =

hab

4


∂gij

∂xk
U

(k)
(b) + gik

∂U
(k)
(b)

∂xj
+ gjk

∂U
(k)
(b)

∂xi


 .

Because T
(a)
(i)j is a d-tensor on E∗ (we prove this by local computations, studying

the local transformation laws of T
(a)
(i)j), it follows that the spatial components N

2

(a)
(i)j

given by (4.7) transform as in the second laws of (3.5).

Corollary 4.11. For m = dim T ≥ 2, the canonical nonlinear connection N of a
multi-time Hamilton space MHn

m = (E∗,H) (given by (4.4)) has the components

N
1

(a)
(i)b = κa

cbp
c
i , N

2

(a)
(i)j = −Γk

ijp
a
k +

hab

4
(Uib•j + Ujb•i) ,

where Uib = gikU
(k)
(b) and

Ukb•r =
∂Ukb

∂xr
− UsbΓs

kr.

Proof. Using the expression (4.7), by computations, we find the required result.
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