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Abstract. A higher order Lagrangian or an affine Hamiltonian is totally
singular if its vertical Hessian vanishes. A natural duality relation between
totally singular Lagrangians and affine Hamiltonians is studied in the pa-
per. We prove that the energy of a totally singular affine Hamiltonian
has as a dual a suitable first order totally singular Lagrangian. Relations
between the solutions of Euler and Hamilton equations of dual objects are
studied by mean of semi-sprays. In order to generate examples for k > 1,
some natural lift procedures are constructed.
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1 Introduction

Some results and constructions from [14] are extended in this paper from the case
k = 2 to the general case, k ≥ 2. Some physical and mathematical aspects that
motivate the study of totally singular Lagrangians in the second order case can be
found also in [1, 8, 7] and the references therein.

For hyperregular Lagrangians of higher order, the Legendre duality between La-
grangians and Hamiltonians was studied in various papers (see [16] for recent results
and references). But the class of hyperregular Lagrangians and Hamiltonians is too
restrictive. We study Lagrangians and Hamiltonians of higher order that have null
vertical Hessians, called in the paper as totally singular; they are the ,,most singular”
Lagrangians and Hamiltonians. We consider in the paper that a totally singular La-
grangian of order k is allowed if it is in duality with a totally singular Hamiltonian of
order k. An allowed totally singular Lagrangian has a dual allowed totally singular
Hamiltonian; for the converse situation, Theorem 2.1 asserts that, assuming some
conditions, an allowed totally singular Hamiltonian of order k has a dual allowed to-
tally singular Lagrangian of order k and both can be related to ordinary dual (allowed
totally singular) Lagrangians and Hamiltonians of first order on T k−1M .
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In order to have consistent examples of totally singular Lagrangians and Hamil-
tonians of higher order, lifting procedures are given in the last section. In this way,
certain examples considered in [14, 9, 4] can be lifted to totally singular Lagrangians
and Hamiltonians of higher order. Following [17], in an analogous manner one can
study the time-dependent case. Further investigations on general jet spaces, complex
spaces or using linear frames can be made following approaches in [6], [13] and [3]
respectively.

2 Higher order Hamiltonians and Lagrangians

Let M be a differentiable manifold. We use a coordinate construction of T kM , k ≥ 2,
as in [11], [12] or [16]. The fibered manifold (T kM,πk, T k−1M) is an affine bundle,
for k ≥ 2. A section S : T kM → T k+1M of the affine bundle (T k+1M, πk+1, T

kM)
is called a semi-spray of order k on M ; S can be seen as well as a vector field on the
manifold T kM . A Lagrangian of order k on M is a differentiable function L : T kM →
IR or L : W → IR, where W ⊂ T kM is an open fibered submanifold. For example, in
[11] and [12] W = T̃ kM = T kM\{0} (where {0} is the image of the ,,null” section,
i.e. the section of null velocities) and L : T kM → IR is continuous.

The totally singular Hamiltonians of order k ≥ 2, studied in our paper, are affine
Hamiltonians as in [16]. Let us consider the affine bundle T kM

πk→ T k−1M and
u ∈ T k−1M . The fiber T k

u M = π−1
k (u) ⊂ T kM is a real affine space, modelled on

the real vector space Tπ(u)M . The vectorial dual of the affine space T k
u M is T k†

u M =
Aff(T k

u M, IR), where Aff denotes affine morphisms. Denoting by T k†M = ∪
u∈T k−1M

T k†
u M and π† : T k†M → T k−1M the canonical projection, then (T k†M,π†, T k−1M)

is a vector bundle. There is a canonical vector bundle morphism Π : T k†M → T k∗M ,
over the base T k−1M . This projection is also a canonical projection of an affine
bundle with type fiber IR. An affine Hamiltonian of order k on M is a section h :
T k∗M → T k†M of this affine bundle (or of an open fibered submanifold W ⊂ T k∗M),
i.e. Π ◦ h = 1T k∗M (or Π ◦ h = 1W respectively). Thus an affine Hamiltonian is not a
real function, but a section in an affine bundle with a one dimensional fiber.

Considering some local coordinates (xi) on M , (xi, y(1)i, . . . , y(k−1)i) on T k−1M ,
and (xi, y(1)i, . . . , y(k−1)i, pi, T ) on T k†M , then the coordinates pi and T change ac-
cording to the rules

pi′ =
∂xi

∂xi′ pi; T ′ = T +
1
k

Γ(k−1)
U (y(k−1)i′)

∂xi

∂xi′ pi,

where
Γ(k−1)

U = y(1)i ∂

∂xi
+ · · ·+ (k − 1)y(k−1)i ∂

∂y(k−2)i
.

The the affine Hamiltonian h : T̃ k∗M → T̃ k†M has the local form

(2.1) h(xi, y(1)i, . . . , y(k−1)i, pi) = (xi, . . . , y(k−1)i, pi,H0(xi, . . . , y(k−1)i, pi))

and the local function H0 changes according to the rule

H ′
0(x

i′ , y(1)i′ , . . . , y(k−1)i′ , pi′) = H0(xi, y(1)i, . . . , y(k−1)i, pi) +
1
k

Γ(k−1)
U (y(k−1)i′)

∂xi

∂xi′ pi.
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There is a co-Legendre map H : T k∗M → T kM , locally given by

H(xi, y(1)i, . . . , y(k−1)i, pi) = (xi, y(1)i, . . . , y(k−1)i,

Hi(xi, y(1)i, . . . , y(k−1)i, pi) =
∂H0

∂pi
(xi, y(1)i, . . . , y(k−1)i, pi)).

Since ∂2H′
0

∂pi′∂pj′
= ∂xi′

∂xi
∂xj′

∂xj
∂2H0

∂pi∂pj
, it follows that hij = ∂2H0

∂pi∂pj
defines a symmetric

bilinear d-form on T k−1M , called the vertical Hessian of h.
For an affine Hamiltonian h of order k (k ≥ 2) and the local domain of coordinates

U , one can consider the local functions on T ∗T k−1M :

(2.2) EU = p(0)iy
(1)i + · · ·+ (k − 1)p(k−1)iy

(k)i + kH0(xi, y(1)i, . . . , y(k−1)i, p(1)i).

It can be easily proved (as in [16]) that the local functions EU glue together to a global

function E0 : T ∗T̃ k−1M → IR, called the energy of h.
We say that an affine Hamiltonian is totally singular if its vertical Hessian is

null. Notice that the difference of two affine Hamiltonians of order k is a vectorial
Hamiltonian of order k (i.e. a real function on T k∗M , see [16]) and every affine
Hamiltonian of order k is a sum of an affine totally singular Hamiltonian of order k
and a vectorial Hamiltonian of order k. If a totally singular affine Hamiltonian h of
order k on M has a local form (2.1), then the local function H0 has the form

H0(xj , y(1)j , . . . , y(k−1)j , pi) = piS
i(xj , y(1)j , . . . , y(k−1)j) +

f(xj , y(1)j , . . . , y(k−1)j),(2.3)

where (Si) defines an affine section S : T k−1M → T kM given locally by

(xi, y(1)i, . . . , y(k−1)i) S→ (xi, y(1)i, . . . , y(k−1)i, Si) and f ∈ F(T k−1M).

It defines a semi-spray Γ0 ∈ X (T k−1M), called the associated semi-spray of h:

(2.4) Γ0 = y(1)i ∂

∂xi
+ · · ·+ (k − 1)y(k−1)i ∂

∂y(k−2)i
+ kSi ∂

∂y(k−1)i
.

Let us consider some examples.
1◦. Let Γ0, given by formula (2.4), be the local form of a semi-spray. Then the for-

mula H0(xi, y(1)i, . . . , y(k−1)i, pi) = Sipi defines a totally singular affine Hamiltonian
of order k.

2◦. Let L0 : T k−1M → IR be a regular Lagrangian of order k − 1 and let Γ0 be
the semi-spray defined by L0 (see [11]). Then, using the above example, a totally
singular affine Hamiltonian of order k is obtained.

Let L : TM → IR and H : T ∗M → IR be a totally singular Lagrangian and
Hamiltonian respectively, of first order, having local forms

L(xi, yi) = αi(xj)yi + β(xj), H(xi, pi) = piϕ
i(xj) + γ(xj),

where α = αidxi ∈ X ∗(M), ϕ = ϕi ∂
∂xi ∈ X (M) and β, γ ∈ F(M) (see [14]). Accord-

ing also to [14], L and H are in duality if iϕdα = dβ and L(x, ϕ) + H(x, α)− α(ϕ) =
const.
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The energy of a totally singular affine Hamiltonian h given by (2.3) is

E = p(0)iy
(1)i + . . . + (k − 1)p(k−2)iy

(k−1)i + kp(k−1)iS
i + kf.

We can view E as a totally singular Hamiltonian E : T ∗T k−1M → IR. Let us look in
that follows for a totally singular Lagrangian on T k−1M , that is in duality with E .

Proposition 2.1. Locally, there is a (first order) totally singular Lagrangian L :
Ū ⊂ TT k−1M → IR, which is dual to the (first order) totally singular Hamiltonian
E : TT k−1M → IR.

Proof. The vector field on T k−1M , that corresponds to E is ϕ = Γ0, the semi-
spray defined by h, given by formula (2.4). We denote ϕ(0)i = y(1)i,. . .,ϕ(k−2)i =
(k − 1)y(k−1)i, ϕ(k−1)i = kSi(xj , y(1)j , . . . , y(k−1)j) and γ = f . Let us take α := ᾱ,
with

(2.5) ᾱ = α(0)idxi + α(1)idy(1)i + · · ·+ α(k−1)idy(k−1)i

and denote
H0(xi, y(1)j , . . . , , y(k−1)j , p(k−1)j) = Sip(k−1)i + f.

The equality iϕdα = dβ gives the following system of partial differential equations:
(2.6){

k ∂H0
∂xi (xi, y(1)j , . . . , , y(k−1)j , α(k−1)j) + Γ0(α(0)j) = 0,

α(0)i + k ∂H0
∂y(1)i + Γ0(α(1)j) = 0, . . . , α(k−2)i + k ∂H0

∂y(k−1)i + Γ0(α(k−1)j) = 0.

Eliminating successively α(k−2)i,. . ., α(0)i in the last k − 1 equations, the first
equation becomes:

Γk−1
0 (α(k−1)i) = (−1)kk

∂H0

∂xi
(xi, y(1)i, . . . , y(k−1)i, α(k−1)i) +

(−1)k−1kΓ0

(
∂H0

∂y(1)i

)
+ · · · − kΓk−1

0

(
∂H0

∂y(k−1)i

)
.(2.7)

Let us denote by Fi ∈ F(T k∗M) the right side of this equation. Let {zα}
α=1,(k+1)m

be a system of local coordinates on the manifold T k∗M such that Γ0 = ∂
∂z1 . Then

the local form of the differential equation (2.7) is ∂k−1α(k−1)i

∂(z1)k−1 = Fi(zα, α(k−1)i). Since
this differential equation has local solutions, the conclusion follows. ¤

Let us consider the canonical projections T k†M Π→ T k∗M = T k−1M ×M T ∗M
p1→

T k−1M . For a d-form α = (αi(xj , y(1)j , . . . , y(k−1)j)) on T k−1M , we denote by α′ :
T k−1M → T k∗M = T k−1M ×M T ∗M the map defined by α′(z) = (z, αz). We say
that a map hα : T k−1M → T k†M is an α-Hamiltonian if Π ◦ hα = α′. Using local
coordinates, the local form of hα is

(xj , y(1)j , . . . , y(k−1)j) h→ (xj , y(1)j , . . . , y(k−1)j , αi(xj , y(1)j , . . . , y(k−1)j),
−h0(xj , y(1)j , . . . , y(k−1)j))
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and the local functions h0 change on the intersection of two coordinate charts accord-
ing to the rule

kh′0(x
j′ , y(1)j′ , . . . , y(k−1)j′) = kh0(xj , y(1)j , . . . , y(k−1)j) + ΓU (y(k−1)i′)αi′ .

For example, if χ : T k∗M → T k†M is an affine Hamiltonian and
α : T k−1M → T ∗M is a d-form on T k−1M , then hα = χ ◦ α′ is an α-Hamiltonian.

Proposition 2.2. Let α = (αi) be a d-form on T k−1M , h0 be the local function of
an α-Hamiltonian hα and

(2.8) L(xj , y(1)j , . . . , y(k)j) = ky(k)iαi(x
j , y(1)j , . . . , y(k−1)j)− kh0(x

j , y(1)j , . . . , y(k−1)j).

Then L ∈ F(T kM).

Proof. Indeed, we have: L(xj′ , y(1)j′ , . . . , y(k−1)j′) = ky(k)i′αi′−kh′0 = k ∂xi′

∂xi y(k)iαi′+
ΓU (y(k−1)I′)αi′ − kh0 − ΓU (y(k−1)I′)αi′ = ky(k)iαi − kh0 = L(xj , y(1)j , . . . , y(k)j). ¤

For a curve γ : I → M , t → (γi(t)), its k-tangent lift is a curve
γ(k) : I → T kM that has the local form

t → (γi(t),
dγi

dt
(t), . . . ,

1
k!

dkγi

dtk
(t)).

Let L : T kM → IR be a Lagrangian of order k. The critical curves
γ : [0, 1] → M , t

γ→ (xi(t)), of its integral action

I(γ) =
∫ 1

0

L

(
xi,

dxi

dt
, . . . ,

1
k!

dkxi

dtk

)
dt,

are solutions of the Lagrange equation

(2.9)
∂L

∂xi
− 1

1!
d

dt

∂L

∂y(1)i
+ · · ·+ (−1)k 1

k!
dk

dtk
∂L

∂y(k)i
= 0.

The integral action of the affine Hamiltonian h along a curve
γ : [0, 1] → T ∗M , t

γ→ (xi(t), pi(t)), is defined in [16] by the formula:

(2.10) I(γ) =
∫ 1

0

[
pi

1
(k − 1)!

dkxi

dtk
− kH0

(
xi,

dxi

dt
, . . . ,

1
(k − 1)!

dk−1xi

dtk−1
, pi

)]
dt.

The critical condition (or Fermat condition in the case of an extremum) for γ, gives
the Hamilton equation for h in the condensed form:

(2.11)





(−1)k

k!
dkpi

dtk
− ∂H0

∂xi
+

d

dt

∂H0

∂y(1)i
− · · ·+ (−1)k−1

(k − 1)!
dk−1

dtk−1

∂H0

∂y(k−1)i
= 0,

1
k!

dkxi

dtk
− ∂H0

∂pi
= 0.

Let h and L be totally singular of order k, having the local forms (2.3) and (2.8)
respectively. Then a d-form α = (αi(xj , y(1)j , . . . , y(k−1)j)) on T k−1M corresponds to
L and a semi-spray Γ0 of order k − 1, given by (2.4), corresponds to h. We say that
L is in duality with h if the formula (2.7) holds, with α(k−1)i = αi and hα = h ◦ α′

(i.e. the α-Hamiltonian hα corresponds to h and α).
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Lemma 2.1. If L is in duality with h, then for a = 1, k − 1 one have

∂H0

∂xi
(xi, y(1)i, . . . , y(k−1)i, αi) = − ∂L

∂xi
(xi, y(1)i, . . . , y(k−1)i, Si),

∂H0

∂y(a)i
(xi, y(1)i, . . . , y(k−1)i, αi) = − ∂L

∂y(a)i
(xi, y(1)i, . . . , y(k−1)i, Si).

Proof. It suffices to prove only the first relation, since the proof of each of the
other relations follows the same idea. Using relations h0 = h◦α′ and (2.8), we obtain
L(xj , y(1)j , . . . , y(k)j) = kαj(y(k)j − Si)− f . Thus the first relation holds. ¤

We say also that a totally singular Lagrangian of order k is allowed if there is a
semi-spray Γ0, of order k − 1, and a d-form α = (αi) such that the following formula
holds:

Γk−1
0 (αi) = (−1)k−1k

∂L

∂xi
(xi, y(1)i, . . . , y(k−1)i, Si) + (−1)k−2kΓ0

(
∂L

∂y(1)i

)
+

· · · − kΓk−1
0

(
∂L

∂y(k−1)i

)
.

It is easy to see that a totally singular Lagrangian of order k is allowed if it is in
duality with a totally singular Hamiltonian of order k. Thus a local dual of a totally
singular Hamiltonian of order k is allowed. The following result can be proved by a
straightforward verification, using local coordinates.

Proposition 2.3. Let α = (αi(xj , y(1)j , . . . , y(k−1)j)) be a d-form on T k−1M and h :
T k−1M → T k†M be an α-Hamiltonian such that there is a 1-form ᾱ ∈ X ∗(T k−1M)
where α is the top component of ᾱ, i.e. ᾱ = α(0)idxi+α(1)idy(1)i+· · ·+α(k−1)idy(k−1)i,
with α(k−1)i = αi. Then the formula

(2.12)
L(xj , y(1)j , . . . , y(k−1)j , Y (0)i, Y (1)i, . . . , Y (k−1)i) = (Y (0)i − y(1)i)α(0)i+

· · ·+ (Y (k−2)i − y(k−1)i)α(k−2)i + Y (k−1)iα(k−1)i − h

defines a totally singular Lagrangian on T k−1M .

The restriction of L to T kM has the form L0(xj , . . . , y(k)j) = y(k)iαi − h. Thus if
a totally singular Lagrangian L0 on T kM has the property that α = (αi) is the top
component of a 1-form α′ on T k−1M , then L0 is the restriction to T kM of a totally
singular Lagrangian L on T k−1M (since T kM ⊂ TT k−1M).

Let h be a totally singular Hamiltonian of order k on M , having the correspond-
ing local function H0(xj , y(1)j , . . . , y(k−1)j , pi) = piS

i(xj , y(1)j , . . . , y(k−1)j) + f(xj ,
y(1)j , . . . , y(k−1)j). We can consider the local 1-form
ᾱ = α(0)idxi + α(1)idy(1)i+ · · · +α(k−1)idy(k−1)i that is a solution of the system
(2.6). Considering the d-form α on T k−1M , defined by its top component, we can
construct a totally singular Lagrangian of order k on M .

Theorem 2.1. Let h be a totally singular affine Hamiltonian of order k. If the
system (2.7) has a d-form α = (α(k−1)i) on T k−1M as a global solution, then there is
an allowed totally singular Lagrangian, L : TT k−1M → IR (on T k−1M), such that:

1. The energy E of h is a dual Hamiltonian of L.
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2. The restriction of L to T kM ⊂ TT k−1M is an allowed totally singular La-
grangian L1 : T kM → IR (of order k on M).

3. The pairs (h,L1) and (E , L) are each dual pairs.

Proof. Using α(k−1)i in (2.6), one obtain a 1-form ᾱ ∈ X ∗(T k−1M) given by (2.5).
Using Proposition 2.3, one obtains L. The definitions of E in 2.2 and L from 2.12,
prove the first statement. One has L1(xj , y(1)j , . . . , y(k−1)j , y(k)i) = y(k)iα(k−1)i−hᾱ,
where α is the d-form on T k−1M defined by (α(k−1)i) and the α-Hamiltonian is
hα = h◦α′, Using Proposition 2.2 one obtain the second statement. The construction
of ᾱ shows that L1 is in duality with h; the last statement follows using 1. ¤
We notice that Theorem 2.1 can be adapted in the case when the d-form
α = (α(k−1)i) is a solution of the system (2.7) on an open fibered submanifold of
T k∗M → T k−1M .

Proposition 2.4. Let t
γ1→ (γi

1(t), γ
(1)i
1 (t), . . . , γ(k−1)i

1 (t)) be an integral curve of the
semi-spray Γ0. Then:

1. the curve γ1 is the (k − 1)-tangent lift of a curve t
γ→ (γi(t)), i.e. γ1 = γ(k−1);

2. the curve t
γ2→ (γi, ωi) in T ∗M , where

ωi(t) = αi(γi(t),
dγ

dt
(t), . . . ,

1
(k − 1)!

dk−1γ

dtk−1
(t))

is a solution of the Hamilton equation of h;

3. the curve γ is a solution of the Euler equation of L.

Proof. The first assertion follows using that Γ0 is a semi-spray. Along the curve
γ(k−1) one have d

dt = Γ0. The conclusion of the second statement follows using relation
(2.7). In order to prove the third statement one use Lemma 2.1 and 2. ¤
According to [14], not all the solutions of the Lagrange equation of a totally singular
Lagrangian of order 2 come from the integral curves of a semi-spray of order 1. More
precisely, let L : T 2M → IR,

L(xi, y(1)i, y(2)i) = 2y(2)iαi(xj , y(1)j)− 2β(xi, y(1)i)

be a totally singular Lagrangian of second order. In [14] it is proved that the solutions
of its Lagrange equations are the integral curves of a second order semi-spray on M ,
provided that the skew symmetric d-tensor ᾱ given by ᾱij = ∂αj

∂y(1)i − ∂αi

∂y(1)j is non-
degenerate.

3 Lifting procedures

In order to have consistent examples of totally singular Lagrangians and affine Hamil-
tonians of order k ≥ 2, we give in this section some algorithms that allow to lift an
totally singular Lagrangian of order k ≥ 1, that is s-non-degenerated, to an allowed
non-singular Lagrangian of order k + 1, also s-non-degenerated.



Totally singular Lagrangians and affine Hamiltonians of higher order 129

We recall that if ᾱ ∈ X ∗(T k−1M) has the local expression ᾱ = α(0)idxi +
α(1)idy(1)i+ · · · +α(k−1)idy(k−1)i, then the d-form α defined by (α(k−1)i) is called
its top component. We say that the d-form α on T k−1M is non-degenerated if the
matrix (

αij =
∂αi

∂y(k−1)j

)

i,j=1,m

is non-degenerate in every point of T k−1M of coordinates (xj , y(1)j , . . . , y(k−1)j). We
denote (αij) = (αij)−1. Notice that the condition does not depend on coordinates.

We say that the d-form α on T k−1M is s-non-degenerated (the initial s comes from
skew-symmetric) if the matrix

(3.1)
(

α̃ij =
∂αi

∂y(k−1)j
− ∂αj

∂y(k−1)i

)

i,j=1,m

is non-degenerate in every point of T k−1M of coordinates (xj , y(1)j , . . . , y(k−1)j). We
denote (α̃ij) = (α̃ij)−1. Notice also that this condition does not depend on coordi-
nates.

Let L be a totally singular Lagrangian of order k ≥ 2 having the form (2.8), such
that α is non-degenerated. Let us consider the local functions

(3.2) ti = α̃ij

(
Γ(n−1)

U (αj) +
∂h0

∂y(k−1)j

)
.

The following result can be proved by a straightforward verification using local
coordinates.

Proposition 3.1. There is a global affine section t : T k−1M → T kM ,

t = Γ(k−1)
U + ti

∂

∂y(k)i
.

We can consider the affine Hamiltonian h of order k given by

kH0(xj , y(1)j , . . . , y(k−1)j , pj) = pit
i − L(xi, . . . , y(k−1)i, ti) =

pit
i − ktiαi + kh0 = tipi + k(h0 − tiαi).

A d-form on T k−1M can be viewed as a section ω : T kM → π∗kT ∗M of the
vector bundle π∗kT ∗M → T kM , where πk : T kM → M is the canonical projec-
tion of a fibered manifold. A section ω̃ : T kM → π̃∗kT ∗TM of the vector bundle
π̃∗kT ∗TM → T kM is called a second d-form on T k−1M , where π̃k : T kM → TM is
the canonical projection of a fibered manifold. Notice that π∗kT ∗M = T kM ×M T ∗M
and π̃∗kT ∗TM = T kM ×TM T ∗TM , as fibered products. There is a canonical epi-
morphism (i.e. a surjection on fibers) of vector bundles f1 : T ∗TM → T ∗M (of
cotangent vector bundles T ∗TM → TM and T ∗M → M , over the canonical base
map TM). (It can be also obtained as a composition T ∗TM → TT ∗M → T ∗M ,
where T ∗TM → TT ∗M is the canonical flip and TT ∗M → T ∗M is the canonical
projection.) Using local coordinates, f1 is given by (xi, yj , pi, qj)

f1→ (xi, pi). Then
there is an induced vector bundle epimorphism f̃1 : π̃∗kT ∗TM → π∗kT ∗M . A second
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d-form ω̃ : T kM → π̃∗kT ∗TM induces a d-form ω = ω̃ ◦ f̃1; we say that ω is the d-form
associated with ω̃. We say that a second d-form is non-degenerated if its associated
d-form is non-degenerated.

As an example, a form ω : T kM → T ∗T kM on T kM defines canonically a second
d-form ω̃ : T kM → π̃∗kT ∗TM by the formula ω̃ = f∗2 ◦ ω, where f∗2 : T ∗T kM →
π̃∗kT ∗TM is induced by the map f2 : T ∗T kM → T ∗TM . Using local coordinates, we
have:

(xi, y(1)i, . . . , y(k)i, p(0)i, . . . , p(k)i)
f2→ (xi, y(1)i, . . . , y(k)i, p(k−1)i, p(k)i),

(xi, y(1)i, . . . , y(k)i) ω→ (xi, y(1)i, . . . , y(k)i, ω(0)i, . . . , ω(k)i),

(xi, y(1)i, . . . , y(k)i) ω̃→ (xi, y(1)i, . . . , y(k)i, ω(k−1)i, ω(k)i).

If ω̃ is a non-degenerate second d-form that has the local expression
(xi, y(1)i, . . . , y(k)i) ω̃→ (xi, y(1)i, . . . , y(k)i, βi(xi, . . . , y(k)i), αi(xi, . . . , y(k)i)),
we can construct a semi-spray S : T kM → T k+1M using the formula

(3.3) (k + 1)Si = αij
(
Γ(k) (αj)− βj

)
.

The fact that S is a semi-spray can be proved by a straightforward calculation, using
that the change rule of local functions {αi, βj} is

αi =
∂xi′

∂xi
αi′ , βi =

∂y
(1)i′

∂xi
αi′ +

∂xi′

∂xi
βi′ , Γ(k)′ = Γ(k) − Γ(k)(y(k)i′)

∂

∂y(k)i′ .

We have seen that a second d-form on T k−1M defines a d-form on T k−1M . It can
be easily proved that any d-form on T k−1M is the top d-form of a form on T k−1M ,
thus it is associated with the corresponding second d-form; these associations are not
unique. But there are situations when if a d-form is given, one can construct in a
canonical way a second d-form associated with. For example, if the d-form s is exact,
i.e. there is a global function L ∈ F(T kM) such that, using coordinates, ωi = ∂L

∂y(k)i ,
then ω is the top form of the differential dL and ω is associated with the second
d-form ω̃ given locally by ( ∂L

∂y(k−1)i , ∂L
∂y(k)i ). Below we consider a less trivial situation.

Let ω be a bilinear d-form on T k−1M and t : T k−1M → T kM be an affine
section (or a semi-spray of order k − 1). We consider the d-vector field of order k,
z : T kM → π∗kTM , given by

zi(xi, y(1)i, . . . , y(k)i) = y(k)i − ti(xi, y(1)i, . . . , y(k−1)i).

Then ω̄ = izω is a d-form on T kM , having the local form (xi, y(1)i, . . . , y(k)i) ω̄→
(xi, y(1)i, . . . , y(k)i, zjωji).

Proposition 3.2. If k > 1, let us suppose that ω is a skew-symmetric bilinear d-form
on T k−1M and t : T k−1M → T kM is an affine section. Then there is a canonical
non-degenerate second d-form ω̃ on T k−1M , associated with ω and t.

Proof. We use local coordinates. We denote ω̄i = zjωji, θ̄i = − ∂ω̄j

∂y(k−1)i z
j , where

zj = y(k)j − tj We have to prove that (ω̄i, θ̄i) defines a second d-form ω̃, as claimed
in the Proposition. The condition that (ω̄i, θ̄i) comes from a second d-form is that

(3.4)

{
ω̄i = ∂xi′

∂xi ω̄i′ ,

θ̄i = ∂xi′

∂xi θ̄i′ + ∂y(1)i′

∂xi ω̄i′ ,
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if the coordinates change. The first relation is obviously fulfilled. Since ∂
∂y(k−1)i =

∂xi′

∂xi
∂

∂y(k−1)i′ + ∂y(1)i′

∂xi
∂

∂y(k)i′ , then, for k > 1, we have θ̄i = − ∂ω̄j

∂y(k−1)i z
j =

−∂xi′

∂xi

∂ω̄j′
∂y(k−1)i′

∂xj′

∂xj zj− ∂y(1)i′

∂xi

∂ω̄j′
∂y(k)i′

∂xj′

∂xj zj = −∂xi′

∂xi

∂ω̄j′
∂y(k−1)i′ z

j′− ∂y(1)i′

∂xi ωi′j′z
j′ =

∂xi′

∂xi θ̄i′ + ∂y(1)i′

∂xi ω̄i′ , thus the second relation also holds. ¤
Notice that if ω is a symmetric bilinear d-form on T k−1M , then denoting by

ω̄i = zjωji, θ̄i = ∂ω̄j

∂y(k−1)i z
j we obtain in a similar way a canonical non-degenerate

second d-form ω̃, associated with ω and an affine section t.
Let L be a totally singular Lagrangian of order k ≥ 2 having the form (2.8).

Considering the section t : T k−1M → T kM defined by the formula (3.2) and the
skew symmetric and non-degenerate bilinear form α̃ on T kM defined by formula
(3.1), we can construct a non-degenerate second d-form of order k and a section
S : T kM → T k+1M , as above. Taking ᾱi = αij · (y(k)j − tj(xj , y(1)j , . . . , y(k−1)j)),
then we define a new Lagrangian L̄ of order k + 1, using the formula

(3.5) L̄(xj , y(1)j , . . . , y(k+1)j) = (k + 1)(y(k+1)i − Si)ᾱi(xj , y(1)j , . . . , y(k)j).

Then ᾱ = (ᾱi) is an s-non-degenerate d-form on T kM , since ∂ᾱi

∂y(k)j − ∂ᾱj

∂y(k)i = 2αij

is a non-degenerated bilinear form. Notice that the ᾱ-Hamiltonian of L̄ is defined by
the local functions h̄0 = Siᾱi. We call L̄ as the lift of L; it is easy to see that L̄ is
also s-non-degenerated (i.e. ᾱ is s-non-degenerated).

In the case k = 1, let L : TM → IR, L(xi, y(1)i) = αi(xj)y(1)i + β(xj) be a totally
singular Lagrangian, where α ∈ X ∗(M), β ∈ F(M). Then the formula

L̄(xi, y(1)i, y(2)i) = 2(y(2)i − Si(xj , y(1)j))ω̄i + β(xj),

where ω̄i = y(1)jαij , αij = (dα)ij = ∂αi

∂xj − ∂αj

∂xi , defines a Lagrangian of second order
on M that has a null Hessian. If L is non-degenerated, then L̄ is s-non-degenerated,
since ∂ω̄i

∂y(1)j − ∂ω̄j

∂y(1)i = 2αij .
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