The curvatures of lightlike hypersurfaces of an indefinite Kenmotsu manifold

Dae Ho Jin

Abstract. We study the forms of curvatures of lightlike hypersurfaces M of an indefinite Kenmotsu manifold \overline{M} subject to the conditions: (1) M is locally symmetric, i.e., the curvature tensor R of M be parallel on TM, or (2) M is a semi-symmetric manifold, i.e., R(X,Y)R = 0 on TM.

M.S.C. 2010: 53C25, 53C40, 53C50.

Key words: locally symmetric; semi-symmetric manifold; lightlike hypersurfaces; indefinite Kenmotsu manifold.

1 Introduction

In the classical theory of Sasakian manifolds, the following result is well-known: If a Sasakian manifold is locally symmetric, then it is of constant positive curvature 1 [9]. Recently we studied the forms of curvatures of locally symmetric lightlike hypersurfaces M of an indefinite Sasakian manifold [7]. We obtained the following result: If M is totally geodesic, then it is of constant positive curvature 1.

Further in 1971, K. Kenmotsu proved the following result [8]: If a Kenmotsu manifold is locally symmetric, then it is of constant negative curvature -1.

The objective of this paper is the study of curvatures of lightlike hypersurfaces of an indefinite Kenmotsu manifold subject to the conditions: (1) M is locally symmetric, i.e., the curvature tensor R of M be parallel on TM, or (2) M is a semi-symmetric manifold, i.e., R(X,Y)R = 0 on TM. We prove the following results:

Theorem 1.1. Let M be a locally symmetric lightlike hypersurface of an indefinite Kenmotsu manifold \overline{M} equipped with an almost contact metric structure $(J, \zeta, \theta, \overline{g})$.

- If the structure vector field ζ is tangent to M, then M is a totally geodesic space of constant negative curvature -1. In this case, the induced connection on M is a unique torsion-free metric connection, the transversal connection of M is flat and the Ricci type tensor of M is an induced symmetric Ricci tensor on M.
- (2) The screen distribution S(TM) of M is not totally geodesic in M.

Balkan Journal of Geometry and Its Applications, Vol.17, No.1, 2012, pp. 49-57. © Balkan Society of Geometers, Geometry Balkan Press 2012.

Theorem 1.2. Let M be a semi-symmetric lightlike hypersurface of an indefinite Kenmotsu manifold \overline{M} .

- If ζ is tangent to M, then M is a totally geodesic space of constant negative curvature -1. In this case, the induced connection on M is a unique torsionfree metric connection on M, the transversal connection of M is flat and the Ricci type tensor of M is an induced symmetric Ricci tensor on M.
- (2) If S(TM) is totally geodesic in M, the projection $\operatorname{Proj}\zeta$ of ζ on M is a null vector field on M. Moreover if the transversal connection of M is flat, then M is totally umbilical and the curvature tensor R of M is given by

$$R(X,Y)Z = 2\theta(Z)\{\theta(X)Y - \theta(Y)X\}, \quad \forall X, Y, Z \in \Gamma(TM).$$

2 Lightlike hypersurfaces

An odd dimensional semi-Riemannian manifold \overline{M} is said to be an *indefinite almost* contact metric manifold [8, 10] if there exist a structure set $(J, \zeta, \theta, \overline{g})$, where J is a (1, 1)-type tensor field, ζ is a vector field which called the characteristic vector field, θ is a 1-form and \overline{g} is the semi-Riemannian metric on \overline{M} such that

(2.1)
$$J^2 X = -X + \theta(X)\zeta, \quad J\zeta = 0, \quad \theta \circ J = 0, \quad \theta(\zeta) = 1, \\ \theta(X) = \bar{g}(\zeta, X), \quad \bar{g}(JX, JY) = \bar{g}(X, Y) - \theta(X)\theta(Y),$$

for any vector fields X, Y on \overline{M} . An indefinite almost contact metric manifold \overline{M} is called an *indefinite Kenmotsu manifold* [8, 10] if

(2.2)
$$\bar{\nabla}_X \zeta = -X + \theta(X)\zeta,$$

(2.3)
$$(\bar{\nabla}_X J)Y = -\bar{g}(JX,Y)\zeta + \theta(Y)JX,$$

for any vector fields X, Y on \overline{M} , where $\overline{\nabla}$ is the Levi-Civita connection of \overline{M} .

A hypersurface M of an indefinite Kenmotsu manifold \overline{M} is called a *lightlike* hypersurface if the normal bundle TM^{\perp} of M is a vector subbundle of the tangent bundle TM of M, of rank 1. Then there exists a non-degenerate complementary vector bundle S(TM) of TM^{\perp} in TM, called a screen distribution on M, such that

(2.4)
$$TM = TM^{\perp} \oplus_{orth} S(TM),$$

where \oplus_{orth} denotes the orthogonal direct sum. We denote such a lightlike hypersurface by M = (M, g, S(TM)). Denote by $F(\bar{M})$ the algebra of smooth functions on \bar{M} and by $\Gamma(E)$ the $F(\bar{M})$ module of smooth sections of a vector bundle E over \bar{M} . It is well-known [2] that, for any null section ξ of TM^{\perp} on a coordinate neighborhood $\mathcal{U} \subset M$, there exists a unique null section N of a unique vector bundle tr(TM) of rank 1 in the orthogonal complement $S(TM)^{\perp}$ of S(TM) in \bar{M} satisfying

$$\bar{g}(\xi, N) = 1, \quad \bar{g}(N, N) = \bar{g}(N, X) = 0, \quad \forall X \in \Gamma(S(TM)).$$

In this case, the tangent bundle $T\overline{M}$ of \overline{M} is decomposed as follow:

(2.5)
$$T\overline{M} = TM \oplus tr(TM) = \{TM^{\perp} \oplus tr(TM)\} \oplus_{orth} S(TM).$$

We call tr(TM) and N the transversal vector bundle and the null transversal vector field of M with respect to the screen S(TM) respectively.

Let P be the projection morphism of $\Gamma(TM)$ on $\Gamma(S(TM))$ with respect to the decomposition (2.4). Then the local Gauss and Weingartan formulas of M and S(TM) are given respectively by

(2.6)
$$\overline{\nabla}_X Y = \nabla_X Y + B(X, Y)N,$$

(2.7)
$$\bar{\nabla}_X N = -A_N X + \tau(X) N;$$

(2.8)
$$\nabla_X PY = \nabla_X^* PY + C(X, PY)\xi,$$

(2.9)
$$\nabla_X \xi = -A_{\xi}^* X - \tau(X)\xi,$$

for all $X, Y \in \Gamma(TM)$, where ∇ and ∇^* are the liner connections on TM and S(TM)respectively, B and C are the local second fundamental forms on TM and S(TM)respectively, A_N and A_{ξ}^* are the shape operators on TM and S(TM) respectively and τ is a 1-form on TM. Since $\overline{\nabla}$ is torsion-free, ∇ is also torsion-free and B is symmetric on TM. From the fact that $B(X,Y) = \overline{g}(\overline{\nabla}_X Y, \xi)$ for all $X, Y \in \Gamma(TM)$, we show that B is independent of the choice of a screen distribution and satisfies

(2.10)
$$B(X,\xi) = 0, \quad \forall X \in \Gamma(TM).$$

Two local second fundamental forms B and C are related to their shape operators by

(2.11)
$$B(X,Y) = g(A_{\xi}^*X,Y), \qquad \bar{g}(A_{\xi}^*X,N) = 0,$$

(2.12)
$$C(X, PY) = g(A_N X, PY), \quad \bar{g}(A_N X, N) = 0.$$

From (2.11), the operator A_{ξ}^* is S(TM)-valued self-adjoint such that $A_{\xi}^*\xi = 0$.

Definition 2.1. [2, 3, 4, 5, 6]. We say that M is *totally umbilical* if, on any coordinate neighborhood \mathcal{U} , there is a smooth function β such that

$$B(X,Y) = \beta g(X,Y), \quad \forall X, Y \in \Gamma(TM).$$

We say that M is totally geodesic if B = 0 on \mathcal{U} . We also say that S(TM) is totally geodesic in M if C = 0 on \mathcal{U} .

Example. In the case dim M = 2, we have the following example. The lightlike cone Λ_0^2 of R_1^3 is a 2-dimensional totally umbilical lightlike hypersurface [2]. Except for this example, there are many examples of 2-dimensional totally umbilical 1-lightlike submanifolds. About it, see Example 1 and 2 in [3] and Example 6 in [4].

The induced connection ∇ of M is not metric and satisfies

(2.13)
$$(\nabla_X g)(Y,Z) = B(X,Y) \,\eta(Z) + B(X,Z) \,\eta(Y),$$

for any $X, Y, Z \in \Gamma(TM)$, where η is a 1-form such that

(2.14)
$$\eta(X) = \bar{g}(X, N), \quad \forall X \in \Gamma(TM).$$

But the connection ∇^* on S(TM) is metric. Using (2.6), (2.7) and (2.8), (2.9), for all $X, Y, Z \in \Gamma(TM)$, we get the Gauss-Codazzi equations of M and S(TM)

$$\begin{array}{ll} (2.15) & \bar{R}(X,Y)Z = R(X,Y)Z + B(X,Z)A_{N}Y - B(Y,Z)A_{N}X \\ & & + \{(\nabla_{X}B)(Y,Z) - (\nabla_{Y}B)(X,Z) + \tau(X)B(Y,Z) - \tau(Y)B(X,Z)\}N, \\ (2.16) & \bar{R}(X,Y)N = -\nabla_{X}(A_{N}Y) + \nabla_{Y}(A_{N}X) + A_{N}[X,Y] + \tau(X)A_{N}Y \\ & & - \tau(Y)A_{N}X + \{B(Y,A_{N}X) - B(X,A_{N}Y) + 2d\tau(X,Y)\}N; \end{array}$$

(2.17)
$$R(X,Y)\xi = -\nabla_X^*(A_\xi^*Y) + \nabla_Y^*(A_\xi^*X) + A_\xi^*[X,Y] - \tau(X)A_\xi^*Y + \tau(Y)A_\xi^*X + \{C(Y,A_\xi^*X) - C(X,A_\xi^*Y) - 2d\tau(X,Y)\}\xi.$$

A lightlike hypersurface $M = (M, g, \nabla)$ equipped with a degenerate metric g and a linear connection ∇ is said to be of *constant curvature* c if there exists a constant csuch that the curvature tensor R of ∇ satisfies

(2.18)
$$R(X,Y)Z = c\{g(Y,Z)X - g(X,Z)Y\}, \quad \forall X, Y, Z \in \Gamma(TM).$$

The induced Ricci type tensor $R^{(0,2)}$ of (M, g, ∇) is defined by

$$R^{(0,2)}(X,Y) = trace\{Z \longmapsto R(Z,X)Y\}, \quad \forall X, Y \in \Gamma(TM).$$

In general, $R^{(0,2)}$ is not symmetric [2, 4, 5]. A tensor field $R^{(0,2)}$ of M is called its *induced Ricci tensor*, denote *Ric*, of M if it is symmetric. It is well known that $R^{(0,2)}$ is symmetric if and only if the 1-form τ is closed, i.e., $d\tau = 0$ on TM [2].

For any $X \in \Gamma(TM)$, let $\nabla_X^{\perp} N = Q(\bar{\nabla}_X N)$, where Q is the projection morphism of $T\bar{M}$ on tr(TM) with respect to the decomposition (2.5). Then ∇^{\perp} is a linear connection on the transversal vector bundle tr(TM) of M. We say that ∇^{\perp} is the *transversal connection* of M. We define the curvature tensor R^{\perp} of tr(TM) by

(2.19)
$$R^{\perp}(X,Y)N = \nabla_X^{\perp}\nabla_Y^{\perp}N - \nabla_Y^{\perp}\nabla_X^{\perp}N - \nabla_{[X,Y]}^{\perp}N, \quad \forall X, Y \in \Gamma(TM).$$

If R^{\perp} vanishes identically, then the transversal connection ∇^{\perp} is said to be *flat* [7].

Theorem 2.1. Let M be a lightlike hypersurface of a semi-Riemannian manifold \overline{M} . The following assertions are equivalent:

- (1) The transversal connection of M is flat, i.e., $R^{\perp} = 0$.
- (2) The 1-form τ is closed, i.e., $d\tau = 0$, on any $\mathcal{U} \subset M$.

(3) The Ricci type tensor $R^{(0,2)}$ is an induced Ricci tensor of M.

Proof. From (2.7) and the definition of the transversal connection ∇^{\perp} , we have

$$\nabla_X^{\perp} N = \tau(X) N, \quad \forall X \in \Gamma(TM).$$

Substituting this equation into the right side of (2.19), we get

$$R^{\perp}(X,Y)N = 2d\tau(X,Y)N, \quad \forall X, Y \in \Gamma(TM).$$

From this result we deduce our assertion.

3 Proof of Theorems

Proof of Theorem 1.1

Case (1): Step 1. Let ζ be tangent to M. It is well known [1] that if ζ is tangent to M, then it belongs to S(TM). Replacing Y by ζ to (2.6) and using (2.2), we have

(3.1)
$$\nabla_X \zeta = -X + \theta(X)\zeta, \quad B(X,\zeta) = 0, \quad \forall X \in \Gamma(TM).$$

Substituting the first equation of (3.1) [denote $(3.1)_1$] into the right side of

$$R(X,Y)\zeta = \nabla_X \nabla_Y \zeta - \nabla_Y \nabla_X \zeta - \nabla_{[X,Y]} \zeta, \quad \forall X, Y \in \Gamma(TM)$$

and using (2.15), (3.1) and the fact ∇ is torsion-free, we have

$$\bar{R}(X,Y)\zeta = R(X,Y)\zeta = \theta(X)Y - \theta(Y)X + 2d\theta(X,Y)\zeta, \ \forall X, Y \in \Gamma(TM).$$

Taking the scalar product with ζ to this equation and using $g(\bar{R}(X,Y)\zeta,\zeta) = 0$ and (2.1), we show that the 1-form θ is closed on TM, i.e., $d\theta = 0$ on TM. Thus we get

(3.2)
$$R(X,Y)\zeta = \theta(X)Y - \theta(Y)X, \quad \forall X, Y \in \Gamma(TM).$$

Applying $\overline{\nabla}_X$ to $\theta(Y) = g(Y, \zeta)$ and using (2.2), (2.6) and $\overline{g}(\zeta, N) = 0$, we have

(3.3)
$$(\nabla_X \theta)(Y) = -g(X, Y) + \theta(X)\theta(Y), \quad \forall X, Y \in \Gamma(TM).$$

Step 2. Assume that M is locally symmetric. Apply ∇_Z to (3.2), we have

$$R(X,Y)\nabla_Z \zeta = (\nabla_Z \theta)(X)Y - (\nabla_Z \theta)(Y)X, \quad \forall X, Y \in \Gamma(TM).$$

Substituting $(3.1)_1$ and (3.3) in this equation and using (3.2), we obtain

$$(3.4) R(X,Y)Z = g(X,Z)Y - g(Y,Z)X, \quad \forall X, Y, Z \in \Gamma(TM).$$

Thus M is a space of constant negative curvature -1.

Applying ∇_U to (3.4) and using (3.4) and the fact $\nabla_U R = 0$, we have

$$(\nabla_U g)(X, Z)Y = (\nabla_U g)(Y, Z)X, \quad \forall X, Y, Z, U \in \Gamma(TM).$$

Taking $Z = Y = \xi$ to this equation and using (2.10) and (2.13), we have

$$B(X, Y) = 0, \quad \forall X, Y \in \Gamma(TM).$$

Thus M is totally geodesic. By (2.13), ∇ is a torsion-free metric connection of M. Consider quasi-orthonormal frame fields $F = \{\xi, N, W_a\}$ and $F' = \{\xi', N', W'_a\}$ of $T\bar{M}$ induced on $\mathcal{U} \subset M$ by $\{S(TM), ltr(TM)\}$ and $\{S'(TM), ltr'(TM)\}$ respectively. By straightforward calculations [2, 5], we obtain the relationship between ∇ and ∇' induced by the Gauss and Weingarten equations with respect to S(TM) and S'(TM) as follows:

$$\nabla'_X Y = \nabla_X Y + B(X, Y) \left\{ \frac{1}{2} \left(\sum_{a=1}^m \epsilon_a (\mathbf{f}_a)^2 \right) \xi - \sum_{a=1}^m \mathbf{f}_a W_a \right\},\$$

for all $X, Y \in \Gamma(TM)$, where ϵ_a is signature of W_a for each a and \mathbf{f}_a are smooth functions on \mathcal{U} such that $\mathbf{f}_a = \overline{g}(N', W_a)$. From this results we show that the induced connection ∇ of M is a unique torsion-free metric connection on M because of B = 0.

As B = 0, we have $A_{\xi}^{*} = 0$ due to (2.11). From (2.17), we get $R(X, Y)\xi = -2d\tau(X, Y)\xi$. Replacing Z by ξ to (3.4), we have $R(X, Y)\xi = 0$. This results imply $d\tau = 0$ on TM. We also obtain the relationship between τ and τ' induced by the Gauss and Weingarten equations with respect to S(TM) and S'(TM) as follows:

$$\tau'(X) = \tau(X) + B(X, N' - N), \quad \forall X \in \Gamma(TM).$$

Thus we have $d\tau = d\tau'$. Consequently we show that the Ricci type tensor $R^{(0,2)}$ is an induced symmetric Ricci tensor on M.

Case (2): Step 1. In case ζ is tangent to M: By Călin [1], ζ belongs to S(TM). If S(TM) is totally geodesic in M, then we have $A_N = 0$ due to (2.12). Applying $\bar{\nabla}_X$ to $g(\zeta, N) = 0$ with $X \in \Gamma(TM)$ and using (2.2) and (2.7), we have $\eta(X) = 0$. It is a contradiction to $\eta(\xi) = 1$. Thus S(TM) is not totally geodesic in M.

In case ζ is not tangent to M: By the decomposition (2.5), ζ is decomposed by

$$(3.5)\qquad \qquad \zeta = W + fN,$$

where W is a smooth non-vanishing vector field on M and $f = \theta(\xi) \neq 0$ is a smooth function. Applying $\overline{\nabla}_X$ to (3.5) and using (2.2), (2.6) and (2.7), we have

(3.6)
$$\nabla_X W = -X + \theta(X)W + fA_N X, \quad \forall X \in \Gamma(TM)$$

(3.7)
$$Xf + f\tau(X) + B(X, W) = f\theta(X), \quad \forall X \in \Gamma(TM).$$

Substituting (3.7) into [X, Y]f = X(Yf) - Y(Xf) and using (3.6) and (3.7), we have

(3.8)
$$(\nabla_X B)(Y,W) - (\nabla_Y B)(X,W) + \tau(X)B(Y,W) - \tau(Y)B(X,W) + f\{B(Y,A_NX) - B(X,A_NY) + 2d\tau(X,Y)\} = 2fd\theta(X,Y),$$

for all $X, Y \in \Gamma(TM)$. Using (2.15), (2.16) and (3.5), the equation (3.8) reduce to

(3.9)
$$2fd\theta(X,Y) = \bar{g}(\bar{R}(X,Y)\zeta,\xi), \quad \forall X, Y \in \Gamma(TM)$$

Substituting (3.6) into $R(X, Y)W = \nabla_X \nabla_Y W - \nabla_Y \nabla_X W - \nabla_{[X, Y]} W$ and using (2.15), (2.16), (3.5), (3.6), (3.7), (3.9) and the fact ∇ is torsion-free, we have

(3.10)
$$\bar{R}(X,Y)\zeta = \theta(X)Y - \theta(Y)X + 2d\theta(X,Y)\zeta, \quad \forall X, Y \in \Gamma(TM).$$

Taking the scalar product with ζ to (3.10) and using $g(\bar{R}(X,Y)\zeta,\zeta) = 0$ and (2.1), we show that the 1-form θ is closed on TM, i.e., $d\theta = 0$ on TM.

Step 2. Assume that S(TM) is totally geodesic in M. Substituting (2.15) with Z = W and (2.16) into (3.10) and using (3.5), (3.8) and $d\theta = 0$, we have

(3.11)
$$R(X,Y)W = \theta(X)Y - \theta(Y)X, \quad \forall X, Y \in \Gamma(TM).$$

Applying $\overline{\nabla}_X$ to $\theta(Y) = g(Y, \zeta)$ and using (2.2) and (2.6), we have

(3.12)
$$(\nabla_X \theta)(Y) = eB(X,Y) - g(X,Y) + \theta(X)\theta(Y), \quad \forall X, Y \in \Gamma(TM),$$

where $e = \bar{g}(\zeta, N)$. Assume that e = 0. Applying ∇_X to $g(\zeta, N) = 0$ with $X \in \Gamma(TM)$ and using (2.2) and (2.7), we have $\eta(X) = 0$. It is a contradiction to $\eta(\xi) = 1$. Thus e is non-vanishing function.

Step 3. Assume that M is locally symmetric. Applying ∇_Z to (3.11), we have

$$R(X,Y)\nabla_Z W = (\nabla_Z \theta)(X)Y - (\nabla_Z \theta)(Y)X, \quad \forall X, Y \in \Gamma(TM).$$

Substituting (3.6) and (3.12) in this equation and using (3.11), we obtain

(3.13)
$$R(X,Y)Z = \{g(X,Z) - eB(X,Z)\}Y - \{g(Y,Z) - eB(Y,Z)\}X,$$

for all $X, Y, Z \in \Gamma(TM)$. Replacing Z by W to (3.13) and then, comparing this result with (3.11) and using the fact $\theta(X) = g(X, W) + f\eta(X)$, we have

$$\{f\eta(X) + eB(X, W)\}Y = \{f\eta(Y) + eB(Y, W)\}X, \quad \forall X, Y \in \Gamma(TM).$$

Replacing Y by ξ to this equation and using the fact $X = PX + \eta(X)\xi$, we have

$$f PX = e B(X, W)\xi, \quad \forall X \in \Gamma(TM).$$

The left term of this equation belongs to S(TM) and the right term belongs to TM^{\perp} . This imply fPX = 0 and eB(X, W) = 0 for all $X \in \Gamma(TM)$. From the first equation of this results we deduce f = 0. It is contradiction to $f \neq 0$. Thus S(TM) is not totally geodesic in M.

Corollary 3.1. Let M be a lightlike hypersurface of an indefinite Kenmotsu manifold \overline{M} . Then the structure 1-form θ is closed on TM, i.e., we have $d\theta = 0$ on TM.

Proof of Theorem 1.2

Case (1): Let ζ be tangent to M. Then we can use all equations and results of Step 1 in (1) of Theorem 1.1. Applying ∇_Z to (3.2) and using (3.1)₁ and (3.3), we have

(3.14)
$$(\nabla_Z R)(X,Y)\zeta = R(X,Y)Z - g(X,Z)Y + g(Y,Z)X.$$

Substituting (3.14) into $(R(U,Z)R)(X,Y)\zeta = 0$ and using (3.1)₁ and (3.14), we have

$$(3.15) \quad 0 = (R(U,Z)R)(X,Y)\zeta = \theta(Z)(\nabla_U R)(X,Y)\zeta - \theta(U)(\nabla_Z R)(X,Y)\zeta + \{B(U,Y)\eta(Z) - B(Z,Y)\eta(U)\}X - \{B(U,X)\eta(Z) - B(Z,X)\eta(U)\}Y,$$

for all X, Y, Z, $U \in \Gamma(TM)$. Replacing U by ζ to (3.15) and using $(\nabla_{\zeta} R)(X, Y)\zeta = 0$ due to (3.2) and (3.14), we have $(\nabla_Z R)(X, Y)\zeta = 0$. From this and (3.14), we get

$$(3.16) R(X,Y)Z = g(X,Z)Y - g(Y,Z)X, \quad \forall X, Y, Z \in \Gamma(TM).$$

Thus M is a space of constant negative curvature -1. Replacing U by ξ to (3.15) and using (2.10), (3.16) and $(\nabla_Z R)(X, Y)\zeta = 0$, we have

$$B(Y,Z)X = B(X,Z)Y, \quad \forall X, Y, Z \in \Gamma(TM).$$

Replacing Y by ξ to this equation and using (2.10), we have

$$B(X, Y) = 0, \quad \forall X, Y \in \Gamma(TM).$$

Thus M is totally geodesic. Therefore we show that ∇ is a unique torsion-free metric connection on M by (2.13). As B = 0, we have $A_{\xi}^* = 0$ due to (2.11). From (2.19), we get $R(X,Y)\xi = -2d\tau(X,Y)\xi$ for all $X, Y \in \Gamma(TM)$. Replacing Z by ξ to (3.16), we have $R(X,Y)\xi = 0$. This results imply $d\tau = 0$. Thus the transversal connection ∇^{ℓ} is flat and $R^{(0,2)}$ is an induced symmetric Ricci tensor on M.

Case (2): Let S(TM) be totally geodesic in M. Then we can use all equations and results of Step 1 and 2 in (2) of Theorem 1.1. Thus $f = \bar{g}(\zeta, \xi)$ and $e = \bar{g}(\zeta, N)$ are non-vanishing functions. Substituting (3.5) into (3.10) and using (2.17), we have

(3.17)
$$\bar{R}(X,Y)W = \theta(X)Y - \theta(Y)X - 2fd\tau(X,Y)N, \quad \forall X, Y \in \Gamma(TM).$$

Taking the scalar product with W to this equation and using the facts g(W, N) = e, $g(X, W) = \theta(X) - f\eta(X)$ and $g(\overline{R}(X, Y)W, W) = 0$, we have

(3.18)
$$2e \, d\tau(X,Y) = \theta(Y)\eta(X) - \theta(X)\eta(Y), \quad \forall X, Y \in \Gamma(TM).$$

Applying ∇_Z to (3.11) and using (3.6), (3.11) and (3.12), we have

(3.19)
$$(\nabla_Z R)(X,Y)W = R(X,Y)Z + \{g(Y,Z) - eB(Y,Z)\}X - \{g(X,Z) - eB(X,Z)\}Y, \quad \forall X, Y, Z, U \in \Gamma(TM).$$

Applying $\overline{\nabla}_X$ to $e = \overline{g}(\zeta, N)$ with $X \in \Gamma(TM)$ and using (2.2) and (2.7), we have

(3.20)
$$Xe = e\{\theta(X) + \tau(X)\} - \eta(X), \quad \forall X \in \Gamma(TM).$$

Substituting (3.19) into (R(U,Z)R)(X,Y)W = 0 and using (2.13), (3.6), (3.19), (3.20) and the fact $\bar{R}(U,Z)X = \bar{R}(X,Z)U + \bar{R}(U,X)Z$ for all $X, Z, U \in \Gamma(TM)$, we have

$$(3.21) \quad 0 = \theta(Z)\{R(X,Y)U + g(Y,U)X - g(X,U)Y\} - \theta(U)\{R(X,Y)Z + g(Y,Z)X - g(X,Z)Y\} + e\{\bar{g}(\bar{R}(X,Z)U + \bar{R}(U,X)Z, \xi)Y - \bar{g}(\bar{R}(Y,Z)U + \bar{R}(U,Y)Z, \xi)X\},\$$

for all X, Y, Z, $U \in \Gamma(TM)$. Taking $U = \xi$ and Z = W to (3.21) and using (3.17), (3.18) and the fact $\bar{g}(\bar{R}(X,Y)\xi,\xi) = 0$, we have

$$\theta(W)R(X,Y)\xi = f\{\theta(X)Y - \theta(Y)X\}, \ \forall X, Y \in \Gamma(TM).$$

Taking the scalar product with N to this equation and using (2.19), we have

(3.22)
$$2\theta(W)d\tau(X,Y) = f\{\theta(Y)\eta(X) - \theta(X)\eta(Y)\}, \quad \forall X, Y \in \Gamma(TM).$$

From the facts $\theta(W) = \bar{g}(\zeta, W) = g(W, W) + ef$ and $1 = \bar{g}(\zeta, \zeta) = g(W, W) + 2ef$, we have $\theta(W) = 1 - ef$. Substituting $\theta(W) = 1 - ef$ and (3.18) into (3.22), we have

(3.23)
$$d\tau(X,Y) = f\{\theta(Y)\eta(X) - \theta(X)\eta(Y)\}, \quad \forall X, Y \in \Gamma(TM).$$

Comparing (3.18) and (3.23), we have 2ef = 1, i.e., g(W, W) = 0. Thus the projection W of the structure vector field ζ on M is a null vector field.

If the transversal connection ∇^{\perp} is flat, then, by Theorem 2.1, we get $d\tau = 0$ on TM. Replacing Y by ξ to (3.18) with $d\tau = 0$, we also have

$$g(X, W) = 0, \quad \forall X \in \Gamma(TM).$$

This implies $W = e\xi$ and B(X, W) = 0. Thus ζ is decomposed by $\zeta = e\xi + fN$ and 2ef = 1. Applying $\overline{\nabla}_X$ to g(Y, W) = 0 and using (2.6) and (3.6), we have

$$eB(X,Y) = g(X,Y), \quad \forall X, Y \in \Gamma(TM)$$

Thus M is totally umbilical with $\beta = 2f$. Using this, (3.12), (3.19) and (3.21) reduce

(3.24)
$$(\nabla_X \theta)(Y) = \theta(X)\theta(Y), \quad (\nabla_Z R)(X,Y)W = R(X,Y)Z, (R(U,Z)R)(X,Y)W = \theta(Z)R(X,Y)U - \theta(U)R(X,Y)Z = 0,$$

for all X, Y, $Z \in \Gamma(TM)$. Replacing U by W to (3.24) and using $\theta(W) = \frac{1}{2}$, we have

$$R(X,Y)Z = 2\theta(Z)\{\theta(X)Y - \theta(Y)X\}, \quad \forall X, Y, Z \in \Gamma(TM).$$

References

- C. Călin, Contributions to the Geometry of CR-Submanifolds, Thesis, University of Iasi (Romania, 1998).
- [2] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
- K. L. Duggal and D. H. Jin, *Half-lightlike submanifolds of codimension 2*, Math. J. Toyama Univ. 22 (1999) 121-161.
- [4] K. L. Duggal and D. H. Jin, *Totally umbilical lightlike submanifolds*, Kodai Math. J. 26 (2003) 49-68.
- [5] K. L. Duggal and D. H. Jin, Null Curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, 2007.
- [6] K. L. Duggal and B. Sahin, Differential Geometry of Lightlike Submanifolds, Birkhäused Verlag AG, 2010.
- [7] D. H. Jin, Geometry of lightlike hypersurfaces of an indefinite Sasakian manifold, Indian J. of Pure and Applied Math., 41, 4 (2010) 569-581.
- [8] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tôhoku Math. J., 21 (1972) 93-103.
- [9] M. Okumura, Some remarks on space with a certain contact structure, Tohoku Math. J., 14, 2 (1962) 135-145.
- [10] R. Shankar Gupta and A. Sharfuddin, Lightlike submanifolds of indefinite Kenmotsu manifold, Int. J. Contemp. Math. Sciences, 5, 10 (2010) 475-496.

Author's address:

Dae Ho Jin Department of Mathematics, Dongguk University, Gyeongju 780-714, Korea. E-mail: jindh@dongguk.ac.kr