The curvatures of lightlike hypersurfaces of an indefinite Kenmotsu manifold

Dae Ho Jin

Abstract

We study the forms of curvatures of lightlike hypersurfaces M of an indefinite Kenmotsu manifold \bar{M} subject to the conditions: (1) M is locally symmetric, i.e., the curvature tensor R of M be parallel on $T M$, or (2) M is a semi-symmetric manifold, i.e., $R(X, Y) R=0$ on $T M$.

M.S.C. 2010: 53C25, 53C40, 53C50.

Key words: locally symmetric; semi-symmetric manifold; lightlike hypersurfaces; indefinite Kenmotsu manifold.

1 Introduction

In the classical theory of Sasakian manifolds, the following result is well-known: If a Sasakian manifold is locally symmetric, then it is of constant positive curvature 1 [9]. Recently we studied the forms of curvatures of locally symmetric lightlike hypersurfaces M of an indefinite Sasakian manifold [7]. We obtained the following result: If M is totally geodesic, then it is of constant positive curvature 1.

Further in 1971, K. Kenmotsu proved the following result [8]: If a Kenmotsu manifold is locally symmetric, then it is of constant negative curvature -1 .

The objective of this paper is the study of curvatures of lightlike hypersurfaces of an indefinite Kenmotsu manifold subject to the conditions: (1) M is locally symmetric, i.e., the curvature tensor R of M be parallel on $T M$, or (2) M is a semi-symmetric manifold, i.e., $R(X, Y) R=0$ on $T M$. We prove the following results:

Theorem 1.1. Let M be a locally symmetric lightlike hypersurface of an indefinite Kenmotsu manifold \bar{M} equipped with an almost contact metric structure $(J, \zeta, \theta, \bar{g})$.
(1) If the structure vector field ζ is tangent to M, then M is a totally geodesic space of constant negative curvature -1. In this case, the induced connection on M is a unique torsion-free metric connection, the transversal connection of M is flat and the Ricci type tensor of M is an induced symmetric Ricci tensor on M.
(2) The screen distribution $S(T M)$ of M is not totally geodesic in M.

[^0]Theorem 1.2. Let M be a semi-symmetric lightlike hypersurface of an indefinite Kenmotsu manifold \bar{M}.
(1) If ζ is tangent to M, then M is a totally geodesic space of constant negative curvature -1 . In this case, the induced connection on M is a unique torsionfree metric connection on M, the transversal connection of M is flat and the Ricci type tensor of M is an induced symmetric Ricci tensor on M.
(2) If $S(T M)$ is totally geodesic in M, the projection Proj ζ of ζ on M is a null vector field on M. Moreover if the transversal connection of M is flat, then M is totally umbilical and the curvature tensor R of M is given by

$$
R(X, Y) Z=2 \theta(Z)\{\theta(X) Y-\theta(Y) X\}, \quad \forall X, Y, Z \in \Gamma(T M)
$$

2 Lightlike hypersurfaces

An odd dimensional semi-Riemannian manifold \bar{M} is said to be an indefinite almost contact metric manifold $[8,10]$ if there exist a structure set $(J, \zeta, \theta, \bar{g})$, where J is a $(1,1)$-type tensor field, ζ is a vector field which called the characteristic vector field, θ is a 1 -form and \bar{g} is the semi-Riemannian metric on \bar{M} such that

$$
\begin{align*}
& J^{2} X=-X+\theta(X) \zeta, \quad J \zeta=0, \quad \theta \circ J=0, \quad \theta(\zeta)=1 \tag{2.1}\\
& \theta(X)=\bar{g}(\zeta, X), \quad \bar{g}(J X, J Y)=\bar{g}(X, Y)-\theta(X) \theta(Y)
\end{align*}
$$

for any vector fields X, Y on \bar{M}. An indefinite almost contact metric manifold \bar{M} is called an indefinite Kenmotsu manifold [8, 10] if

$$
\begin{gather*}
\bar{\nabla}_{X} \zeta=-X+\theta(X) \zeta \tag{2.2}\\
\left(\bar{\nabla}_{X} J\right) Y=-\bar{g}(J X, Y) \zeta+\theta(Y) J X \tag{2.3}
\end{gather*}
$$

for any vector fields X, Y on \bar{M}, where $\bar{\nabla}$ is the Levi-Civita connection of \bar{M}.
A hypersurface M of an indefinite Kenmotsu manifold \bar{M} is called a lightlike hypersurface if the normal bundle $T M^{\perp}$ of M is a vector subbundle of the tangent bundle $T M$ of M, of rank 1 . Then there exists a non-degenerate complementary vector bundle $S(T M)$ of $T M^{\perp}$ in $T M$, called a screen distribution on M, such that

$$
\begin{equation*}
T M=T M^{\perp} \oplus_{o r t h} S(T M) \tag{2.4}
\end{equation*}
$$

where $\oplus_{\text {orth }}$ denotes the orthogonal direct sum. We denote such a lightlike hypersurface by $M=(M, g, S(T M))$. Denote by $F(\bar{M})$ the algebra of smooth functions on \bar{M} and by $\Gamma(E)$ the $F(\bar{M})$ module of smooth sections of a vector bundle E over \bar{M}. It is well-known [2] that, for any null section ξ of $T M^{\perp}$ on a coordinate neighborhood $\mathcal{U} \subset M$, there exists a unique null section N of a unique vector bundle $\operatorname{tr}(T M)$ of rank 1 in the orthogonal complement $S(T M)^{\perp}$ of $S(T M)$ in \bar{M} satisfying

$$
\bar{g}(\xi, N)=1, \quad \bar{g}(N, N)=\bar{g}(N, X)=0, \quad \forall X \in \Gamma(S(T M)) .
$$

In this case, the tangent bundle $T \bar{M}$ of \bar{M} is decomposed as follow:

$$
\begin{equation*}
T \bar{M}=T M \oplus \operatorname{tr}(T M)=\left\{T M^{\perp} \oplus \operatorname{tr}(T M)\right\} \oplus_{\text {orth }} S(T M) \tag{2.5}
\end{equation*}
$$

We call $\operatorname{tr}(T M)$ and N the transversal vector bundle and the null transversal vector field of M with respect to the screen $S(T M)$ respectively.

Let P be the projection morphism of $\Gamma(T M)$ on $\Gamma(S(T M))$ with respect to the decomposition (2.4). Then the local Gauss and Weingartan formulas of M and $S(T M)$ are given respectively by

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y) N \tag{2.6}\\
& \bar{\nabla}_{X} N=-A_{N} X+\tau(X) N \tag{2.7}\\
& \nabla_{X} P Y=\nabla_{X}^{*} P Y+C(X, P Y) \xi \tag{2.8}\\
& \nabla_{X} \xi=-A_{\xi}^{*} X-\tau(X) \xi \tag{2.9}
\end{align*}
$$

for all $X, Y \in \Gamma(T M)$, where ∇ and ∇^{*} are the liner connections on $T M$ and $S(T M)$ respectively, B and C are the local second fundamental forms on $T M$ and $S(T M)$ respectively, A_{N} and A_{ξ}^{*} are the shape operators on $T M$ and $S(T M)$ respectively and τ is a 1 -form on $T M$. Since $\bar{\nabla}$ is torsion-free, ∇ is also torsion-free and B is symmetric on $T M$. From the fact that $B(X, Y)=\bar{g}\left(\bar{\nabla}_{X} Y, \xi\right)$ for all $X, Y \in \Gamma(T M)$, we show that B is independent of the choice of a screen distribution and satisfies

$$
\begin{equation*}
B(X, \xi)=0, \quad \forall X \in \Gamma(T M) \tag{2.10}
\end{equation*}
$$

Two local second fundamental forms B and C are related to their shape operators by

$$
\begin{array}{ll}
B(X, Y)=g\left(A_{\xi}^{*} X, Y\right), & \bar{g}\left(A_{\xi}^{*} X, N\right)=0 \\
C(X, P Y)=g\left(A_{N} X, P Y\right), & \bar{g}\left(A_{N} X, N\right)=0 \tag{2.12}
\end{array}
$$

From (2.11), the operator A_{ξ}^{*} is $S(T M)$-valued self-adjoint such that $A_{\xi}^{*} \xi=0$.
Definition 2.1. $[2,3,4,5,6]$. We say that M is totally umbilical if, on any coordinate neighborhood \mathcal{U}, there is a smooth function β such that

$$
B(X, Y)=\beta g(X, Y), \quad \forall X, Y \in \Gamma(T M)
$$

We say that M is totally geodesic if $B=0$ on \mathcal{U}. We also say that $S(T M)$ is totally geodesic in M if $C=0$ on \mathcal{U}.

Example. In the case $\operatorname{dim} M=2$, we have the following example. The lightlike cone Λ_{0}^{2} of R_{1}^{3} is a 2-dimensional totally umbilical lightlike hypersurface [2]. Except for this example, there are many examples of 2-dimensional totally umbilical 1-lightlike submanifolds. About it, see Example 1 and 2 in [3] and Example 6 in [4].

The induced connection ∇ of M is not metric and satisfies

$$
\begin{equation*}
\left(\nabla_{X} g\right)(Y, Z)=B(X, Y) \eta(Z)+B(X, Z) \eta(Y) \tag{2.13}
\end{equation*}
$$

for any $X, Y, Z \in \Gamma(T M)$, where η is a 1 -form such that

$$
\begin{equation*}
\eta(X)=\bar{g}(X, N), \quad \forall X \in \Gamma(T M) . \tag{2.14}
\end{equation*}
$$

But the connection ∇^{*} on $S(T M)$ is metric. Using (2.6), (2.7) and (2.8), (2.9), for all $X, Y, Z \in \Gamma(T M)$, we get the Gauss-Codazzi equations of M and $S(T M)$

$$
\begin{align*}
& \bar{R}(X, Y) Z=R(X, Y) Z+B(X, Z) A_{N} Y-B(Y, Z) A_{N} X \tag{2.15}\\
& \quad+\left\{\left(\nabla_{X} B\right)(Y, Z)-\left(\nabla_{Y} B\right)(X, Z)+\tau(X) B(Y, Z)-\tau(Y) B(X, Z)\right\} N \\
& \bar{R}(X, Y) N=-\nabla_{X}\left(A_{N} Y\right)+\nabla_{Y}\left(A_{N} X\right)+A_{N}[X, Y]+\tau(X) A_{N} Y \tag{2.16}\\
& \quad-\tau(Y) A_{N} X+\left\{B\left(Y, A_{N} X\right)-B\left(X, A_{N} Y\right)+2 d \tau(X, Y)\right\} N \\
& R(X, Y) \xi=-\nabla_{X}^{*}\left(A_{\xi}^{*} Y\right)+\nabla_{Y}^{*}\left(A_{\xi}^{*} X\right)+A_{\xi}^{*}[X, Y]-\tau(X) A_{\xi}^{*} Y \tag{2.17}\\
& \quad+\tau(Y) A_{\xi}^{*} X+\left\{C\left(Y, A_{\xi}^{*} X\right)-C\left(X, A_{\xi}^{*} Y\right)-2 d \tau(X, Y)\right\} \xi
\end{align*}
$$

A lightlike hypersurface $M=(M, g, \nabla)$ equipped with a degenerate metric g and a linear connection ∇ is said to be of constant curvature c if there exists a constant c such that the curvature tensor R of ∇ satisfies

$$
\begin{equation*}
R(X, Y) Z=c\{g(Y, Z) X-g(X, Z) Y\}, \quad \forall X, Y, Z \in \Gamma(T M) \tag{2.18}
\end{equation*}
$$

The induced Ricci type tensor $R^{(0,2)}$ of (M, g, ∇) is defined by

$$
R^{(0,2)}(X, Y)=\operatorname{trace}\{Z \longmapsto R(Z, X) Y\}, \quad \forall X, Y \in \Gamma(T M)
$$

In general, $R^{(0,2)}$ is not symmetric [2, 4, 5]. A tensor field $R^{(0,2)}$ of M is called its induced Ricci tensor, denote Ric, of M if it is symmetric. It is well known that $R^{(0,2)}$ is symmetric if and only if the 1 -form τ is closed, i.e., $d \tau=0$ on $T M$ [2].

For any $X \in \Gamma(T M)$, let $\nabla \frac{1}{X} N=Q\left(\bar{\nabla}_{X} N\right)$, where Q is the projection morphism of $T \bar{M}$ on $\operatorname{tr}(T M)$ with respect to the decomposition (2.5). Then ∇^{\perp} is a linear connection on the transversal vector bundle $\operatorname{tr}(T M)$ of M. We say that ∇^{\perp} is the transversal connection of M. We define the curvature tensor R^{\perp} of $\operatorname{tr}(T M)$ by

$$
\begin{equation*}
R^{\perp}(X, Y) N=\nabla_{X}^{\perp} \nabla_{Y}^{\perp} N-\nabla \frac{\perp}{Y} \nabla_{X}^{\perp} N-\nabla_{[X, Y]}^{\perp} N, \quad \forall X, Y \in \Gamma(T M) \tag{2.19}
\end{equation*}
$$

If R^{\perp} vanishes identically, then the transversal connection ∇^{\perp} is said to be flat [7].
Theorem 2.1. Let M be a lightlike hypersurface of a semi-Riemannian manifold \bar{M}. The following assertions are equivalent:
(1) The transversal connection of M is flat, i.e., $R^{\perp}=0$.
(2) The 1 -form τ is closed, i.e., $d \tau=0$, on any $\mathcal{U} \subset M$.
(3) The Ricci type tensor $R^{(0,2)}$ is an induced Ricci tensor of M.

Proof. From (2.7) and the definition of the transversal connection ∇^{\perp}, we have

$$
\nabla \stackrel{\perp}{X} N=\tau(X) N, \quad \forall X \in \Gamma(T M)
$$

Substituting this equation into the right side of (2.19), we get

$$
R^{\perp}(X, Y) N=2 d \tau(X, Y) N, \quad \forall X, Y \in \Gamma(T M)
$$

From this result we deduce our assertion.

3 Proof of Theorems

Proof of Theorem 1.1

Case (1): Step 1. Let ζ be tangent to M. It is well known [1] that if ζ is tangent to M, then it belongs to $S(T M)$. Replacing Y by ζ to (2.6) and using (2.2), we have

$$
\begin{equation*}
\nabla_{X} \zeta=-X+\theta(X) \zeta, \quad B(X, \zeta)=0, \quad \forall X \in \Gamma(T M) \tag{3.1}
\end{equation*}
$$

Substituting the first equation of (3.1) [denote (3.1) ${ }_{1}$] into the right side of

$$
R(X, Y) \zeta=\nabla_{X} \nabla_{Y} \zeta-\nabla_{Y} \nabla_{X} \zeta-\nabla_{[X, Y]} \zeta, \quad \forall X, Y \in \Gamma(T M)
$$

and using (2.15), (3.1) and the fact ∇ is torsion-free, we have

$$
\bar{R}(X, Y) \zeta=R(X, Y) \zeta=\theta(X) Y-\theta(Y) X+2 d \theta(X, Y) \zeta, \forall X, Y \in \Gamma(T M)
$$

Taking the scalar product with ζ to this equation and using $g(\bar{R}(X, Y) \zeta, \zeta)=0$ and (2.1), we show that the 1 -form θ is closed on $T M$, i.e., $d \theta=0$ on $T M$. Thus we get

$$
\begin{equation*}
R(X, Y) \zeta=\theta(X) Y-\theta(Y) X, \quad \forall X, Y \in \Gamma(T M) \tag{3.2}
\end{equation*}
$$

Applying $\bar{\nabla}_{X}$ to $\theta(Y)=g(Y, \zeta)$ and using (2.2), (2.6) and $\bar{g}(\zeta, N)=0$, we have

$$
\begin{equation*}
\left(\nabla_{X} \theta\right)(Y)=-g(X, Y)+\theta(X) \theta(Y), \quad \forall X, Y \in \Gamma(T M) \tag{3.3}
\end{equation*}
$$

Step 2. Assume that M is locally symmetric. Apply ∇_{Z} to (3.2), we have

$$
R(X, Y) \nabla_{Z} \zeta=\left(\nabla_{Z} \theta\right)(X) Y-\left(\nabla_{Z} \theta\right)(Y) X, \quad \forall X, Y \in \Gamma(T M)
$$

Substituting (3.1) $)_{1}$ and (3.3) in this equation and using (3.2), we obtain

$$
\begin{equation*}
R(X, Y) Z=g(X, Z) Y-g(Y, Z) X, \quad \forall X, Y, Z \in \Gamma(T M) \tag{3.4}
\end{equation*}
$$

Thus M is a space of constant negative curvature -1 .
Applying ∇_{U} to (3.4) and using (3.4) and the fact $\nabla_{U} R=0$, we have

$$
\left(\nabla_{U} g\right)(X, Z) Y=\left(\nabla_{U} g\right)(Y, Z) X, \quad \forall X, Y, Z, U \in \Gamma(T M)
$$

Taking $Z=Y=\xi$ to this equation and using (2.10) and (2.13), we have

$$
B(X, Y)=0, \quad \forall X, Y \in \Gamma(T M)
$$

Thus M is totally geodesic. By (2.13), ∇ is a torsion-free metric connection of M. Consider quasi-orthonormal frame fields $F=\left\{\xi, N, W_{a}\right\}$ and $F^{\prime}=\left\{\xi^{\prime}, N^{\prime}, W_{a}^{\prime}\right\}$ of $T \bar{M}$ induced on $\mathcal{U} \subset M$ by $\{S(T M), \operatorname{ltr}(T M)\}$ and $\left\{S^{\prime}(T M), l t r^{\prime}(T M)\right\}$ respectively. By straightforward calculations [2, 5], we obtain the relationship between ∇ and ∇^{\prime} induced by the Gauss and Weingarten equations with respect to $S(T M)$ and $S^{\prime}(T M)$ as follows:

$$
\nabla_{X}^{\prime} Y=\nabla_{X} Y+B(X, Y)\left\{\frac{1}{2}\left(\sum_{a=1}^{m} \epsilon_{a}\left(\mathbf{f}_{a}\right)^{2}\right) \xi-\sum_{a=1}^{m} \mathbf{f}_{a} W_{a}\right\}
$$

for all $X, Y \in \Gamma(T M)$, where ϵ_{a} is signature of W_{a} for each a and \mathbf{f}_{a} are smooth functions on \mathcal{U} such that $\mathbf{f}_{a}=\bar{g}\left(N^{\prime}, W_{a}\right)$. From this results we show that the induced connection ∇ of M is a unique torsion-free metric connection on M because of $B=0$.

As $B=0$, we have $A_{\xi}^{*}=0$ due to (2.11). From (2.17), we get $R(X, Y) \xi=$ $-2 d \tau(X, Y) \xi$. Replacing Z by ξ to (3.4), we have $R(X, Y) \xi=0$. This results imply $d \tau=0$ on $T M$. We also obtain the relationship between τ and τ^{\prime} induced by the Gauss and Weingarten equations with respect to $S(T M)$ and $S^{\prime}(T M)$ as follows:

$$
\tau^{\prime}(X)=\tau(X)+B\left(X, N^{\prime}-N\right), \quad \forall X \in \Gamma(T M)
$$

Thus we have $d \tau=d \tau^{\prime}$. Consequently we show that the Ricci type tensor $R^{(0,2)}$ is an induced symmetric Ricci tensor on M.

Case (2): Step 1. In case ζ is tangent to M : By Cǎlin [1], ζ belongs to $S(T M)$. If $S(T M)$ is totally geodesic in M, then we have $A_{N}=0$ due to (2.12). Applying $\bar{\nabla}_{X}$ to $g(\zeta, N)=0$ with $X \in \Gamma(T M)$ and using (2.2) and (2.7), we have $\eta(X)=0$. It is a contradiction to $\eta(\xi)=1$. Thus $S(T M)$ is not totally geodesic in M.

In case ζ is not tangent to M : By the decomposition (2.5), ζ is decomposed by

$$
\begin{equation*}
\zeta=W+f N \tag{3.5}
\end{equation*}
$$

where W is a smooth non-vanishing vector field on M and $f=\theta(\xi) \neq 0$ is a smooth function. Applying $\bar{\nabla}_{X}$ to (3.5) and using (2.2), (2.6) and (2.7), we have

$$
\begin{align*}
& \nabla_{X} W=-X+\theta(X) W+f A_{N} X, \quad \forall X \in \Gamma(T M) \tag{3.6}\\
& X f+f \tau(X)+B(X, W)=f \theta(X), \quad \forall X \in \Gamma(T M) \tag{3.7}
\end{align*}
$$

Substituting (3.7) into $[X, Y] f=X(Y f)-Y(X f)$ and using (3.6) and (3.7), we have

$$
\begin{align*}
& \left(\nabla_{X} B\right)(Y, W)-\left(\nabla_{Y} B\right)(X, W)+\tau(X) B(Y, W)-\tau(Y) B(X, W) \tag{3.8}\\
& +f\left\{B\left(Y, A_{N} X\right)-B\left(X, A_{N} Y\right)+2 d \tau(X, Y)\right\}=2 f d \theta(X, Y)
\end{align*}
$$

for all $X, Y \in \Gamma(T M)$. Using (2.15), (2.16) and (3.5), the equation (3.8) reduce to

$$
\begin{equation*}
2 f d \theta(X, Y)=\bar{g}(\bar{R}(X, Y) \zeta, \xi), \quad \forall X, Y \in \Gamma(T M) \tag{3.9}
\end{equation*}
$$

Substituting (3.6) into $R(X, Y) W=\nabla_{X} \nabla_{Y} W-\nabla_{Y} \nabla_{X} W-\nabla_{[X, Y]} W$ and using (2.15), (2.16), (3.5), (3.6), (3.7), (3.9) and the fact ∇ is torsion-free, we have

$$
\begin{equation*}
\bar{R}(X, Y) \zeta=\theta(X) Y-\theta(Y) X+2 d \theta(X, Y) \zeta, \quad \forall X, Y \in \Gamma(T M) \tag{3.10}
\end{equation*}
$$

Taking the scalar product with ζ to (3.10) and using $g(\bar{R}(X, Y) \zeta, \zeta)=0$ and (2.1), we show that the 1 -form θ is closed on $T M$, i.e., $d \theta=0$ on $T M$.

Step 2. Assume that $S(T M)$ is totally geodesic in M. Substituting (2.15) with $Z=W$ and (2.16) into (3.10) and using (3.5), (3.8) and $d \theta=0$, we have

$$
\begin{equation*}
R(X, Y) W=\theta(X) Y-\theta(Y) X, \quad \forall X, Y \in \Gamma(T M) \tag{3.11}
\end{equation*}
$$

Applying $\bar{\nabla}_{X}$ to $\theta(Y)=g(Y, \zeta)$ and using (2.2) and (2.6), we have

$$
\begin{equation*}
\left(\nabla_{X} \theta\right)(Y)=e B(X, Y)-g(X, Y)+\theta(X) \theta(Y), \quad \forall X, Y \in \Gamma(T M) \tag{3.12}
\end{equation*}
$$

where $e=\bar{g}(\zeta, N)$. Assume that $e=0$. Applying $\bar{\nabla}_{X}$ to $g(\zeta, N)=0$ with $X \in \Gamma(T M)$ and using (2.2) and (2.7), we have $\eta(X)=0$. It is a contradiction to $\eta(\xi)=1$. Thus e is non-vanishing function.

Step 3. Assume that M is locally symmetric. Applying ∇_{Z} to (3.11), we have

$$
R(X, Y) \nabla_{Z} W=\left(\nabla_{Z} \theta\right)(X) Y-\left(\nabla_{Z} \theta\right)(Y) X, \quad \forall X, Y \in \Gamma(T M)
$$

Substituting (3.6) and (3.12) in this equation and using (3.11), we obtain

$$
\begin{equation*}
R(X, Y) Z=\{g(X, Z)-e B(X, Z)\} Y-\{g(Y, Z)-e B(Y, Z)\} X \tag{3.13}
\end{equation*}
$$

for all $X, Y, Z \in \Gamma(T M)$. Replacing Z by W to (3.13) and then, comparing this result with (3.11) and using the fact $\theta(X)=g(X, W)+f \eta(X)$, we have

$$
\{f \eta(X)+e B(X, W)\} Y=\{f \eta(Y)+e B(Y, W)\} X, \quad \forall X, Y \in \Gamma(T M)
$$

Replacing Y by ξ to this equation and using the fact $X=P X+\eta(X) \xi$, we have

$$
f P X=e B(X, W) \xi, \quad \forall X \in \Gamma(T M)
$$

The left term of this equation belongs to $S(T M)$ and the right term belongs to $T M^{\perp}$. This imply $f P X=0$ and $e B(X, W)=0$ for all $X \in \Gamma(T M)$. From the first equation of this results we deduce $f=0$. It is contradiction to $f \neq 0$. Thus $S(T M)$ is not totally geodesic in M.

Corollary 3.1. Let M be a lightlike hypersurface of an indefinite Kenmotsu manifold \bar{M}. Then the structure 1 -form θ is closed on $T M$, i.e., we have $d \theta=0$ on $T M$.

Proof of Theorem 1.2

Case (1): Let ζ be tangent to M. Then we can use all equations and results of Step 1 in (1) of Theorem 1.1. Applying ∇_{Z} to (3.2) and using (3.1) $)_{1}$ and (3.3), we have

$$
\begin{equation*}
\left(\nabla_{Z} R\right)(X, Y) \zeta=R(X, Y) Z-g(X, Z) Y+g(Y, Z) X \tag{3.14}
\end{equation*}
$$

Substituting (3.14) into $(R(U, Z) R)(X, Y) \zeta=0$ and using (3.1) $)_{1}$ and (3.14), we have

$$
\begin{align*}
0 & =(R(U, Z) R)(X, Y) \zeta=\theta(Z)\left(\nabla_{U} R\right)(X, Y) \zeta-\theta(U)\left(\nabla_{Z} R\right)(X, Y) \zeta \tag{3.15}\\
& +\{B(U, Y) \eta(Z)-B(Z, Y) \eta(U)\} X-\{B(U, X) \eta(Z)-B(Z, X) \eta(U)\} Y
\end{align*}
$$

for all $X, Y, Z, U \in \Gamma(T M)$. Replacing U by ζ to (3.15) and using $\left(\nabla_{\zeta} R\right)(X, Y) \zeta=0$ due to (3.2) and (3.14), we have $\left(\nabla_{Z} R\right)(X, Y) \zeta=0$. From this and (3.14), we get

$$
\begin{equation*}
R(X, Y) Z=g(X, Z) Y-g(Y, Z) X, \quad \forall X, Y, Z \in \Gamma(T M) \tag{3.16}
\end{equation*}
$$

Thus M is a space of constant negative curvature -1 . Replacing U by ξ to (3.15) and using (2.10), (3.16) and $\left(\nabla_{Z} R\right)(X, Y) \zeta=0$, we have

$$
B(Y, Z) X=B(X, Z) Y, \quad \forall X, Y, Z \in \Gamma(T M)
$$

Replacing Y by ξ to this equation and using (2.10), we have

$$
B(X, Y)=0, \quad \forall X, Y \in \Gamma(T M)
$$

Thus M is totally geodesic. Therefore we show that ∇ is a unique torsion-free metric connection on M by (2.13). As $B=0$, we have $A_{\xi}^{*}=0$ due to (2.11). From (2.19), we get $R(X, Y) \xi=-2 d \tau(X, Y) \xi$ for all $X, Y \in \Gamma(T M)$. Replacing Z by ξ to (3.16), we have $R(X, Y) \xi=0$. This results imply $d \tau=0$. Thus the transversal connection ∇^{ℓ} is flat and $R^{(0,2)}$ is an induced symmetric Ricci tensor on M.

Case (2): Let $S(T M)$ be totally geodesic in M. Then we can use all equations and results of Step 1 and 2 in (2) of Theorem 1.1. Thus $f=\bar{g}(\zeta, \xi)$ and $e=\bar{g}(\zeta, N)$ are non-vanishing functions. Substituting (3.5) into (3.10) and using (2.17), we have

$$
\begin{equation*}
\bar{R}(X, Y) W=\theta(X) Y-\theta(Y) X-2 f d \tau(X, Y) N, \quad \forall X, Y \in \Gamma(T M) \tag{3.17}
\end{equation*}
$$

Taking the scalar product with W to this equation and using the facts $g(W, N)=e$, $g(X, W)=\theta(X)-f \eta(X)$ and $g(\bar{R}(X, Y) W, W)=0$, we have

$$
\begin{equation*}
2 e d \tau(X, Y)=\theta(Y) \eta(X)-\theta(X) \eta(Y), \quad \forall X, Y \in \Gamma(T M) \tag{3.18}
\end{equation*}
$$

Applying ∇_{Z} to (3.11) and using (3.6), (3.11) and (3.12), we have

$$
\begin{align*}
& \left(\nabla_{Z} R\right)(X, Y) W=R(X, Y) Z+\{g(Y, Z)-e B(Y, Z)\} X \tag{3.19}\\
& \quad-\{g(X, Z)-e B(X, Z)\} Y, \quad \forall X, Y, Z, U \in \Gamma(T M) .
\end{align*}
$$

Applying $\bar{\nabla}_{X}$ to $e=\bar{g}(\zeta, N)$ with $X \in \Gamma(T M)$ and using (2.2) and (2.7), we have

$$
\begin{equation*}
X e=e\{\theta(X)+\tau(X)\}-\eta(X), \quad \forall X \in \Gamma(T M) . \tag{3.20}
\end{equation*}
$$

Substituting (3.19) into $(R(U, Z) R)(X, Y) W=0$ and using (2.13), (3.6), (3.19), (3.20) and the fact $\bar{R}(U, Z) X=\bar{R}(X, Z) U+\bar{R}(U, X) Z$ for all $X, Z, U \in \Gamma(T M)$, we have

$$
\begin{align*}
0 & =\theta(Z)\{R(X, Y) U+g(Y, U) X-g(X, U) Y\} \tag{3.21}\\
& -\theta(U)\{R(X, Y) Z+g(Y, Z) X-g(X, Z) Y\} \\
& +e\{\bar{g}(\bar{R}(X, Z) U+\bar{R}(U, X) Z, \xi) Y-\bar{g}(\bar{R}(Y, Z) U+\bar{R}(U, Y) Z, \xi) X\}
\end{align*}
$$

for all $X, Y, Z, U \in \Gamma(T M)$. Taking $U=\xi$ and $Z=W$ to (3.21) and using (3.17), (3.18) and the fact $\bar{g}(\bar{R}(X, Y) \xi, \xi)=0$, we have

$$
\theta(W) R(X, Y) \xi=f\{\theta(X) Y-\theta(Y) X\}, \quad \forall X, Y \in \Gamma(T M)
$$

Taking the scalar product with N to this equation and using (2.19), we have

$$
\begin{equation*}
2 \theta(W) d \tau(X, Y)=f\{\theta(Y) \eta(X)-\theta(X) \eta(Y)\}, \quad \forall X, Y \in \Gamma(T M) \tag{3.22}
\end{equation*}
$$

From the facts $\theta(W)=\bar{g}(\zeta, W)=g(W, W)+e f$ and $1=\bar{g}(\zeta, \zeta)=g(W, W)+2 e f$, we have $\theta(W)=1-e f$. Substituting $\theta(W)=1-e f$ and (3.18) into (3.22), we have

$$
\begin{equation*}
d \tau(X, Y)=f\{\theta(Y) \eta(X)-\theta(X) \eta(Y)\}, \quad \forall X, Y \in \Gamma(T M) \tag{3.23}
\end{equation*}
$$

Comparing (3.18) and (3.23), we have $2 e f=1$, i.e., $g(W, W)=0$. Thus the projection W of the structure vector field ζ on M is a null vector field.

If the transversal connection ∇^{\perp} is flat, then, by Theorem 2.1, we get $d \tau=0$ on $T M$. Replacing Y by ξ to (3.18) with $d \tau=0$, we also have

$$
g(X, W)=0, \quad \forall X \in \Gamma(T M)
$$

This implies $W=e \xi$ and $B(X, W)=0$. Thus ζ is decomposed by $\zeta=e \xi+f N$ and $2 e f=1$. Applying $\bar{\nabla}_{X}$ to $g(Y, W)=0$ and using (2.6) and (3.6), we have

$$
e B(X, Y)=g(X, Y), \quad \forall X, Y \in \Gamma(T M)
$$

Thus M is totally umbilical with $\beta=2 f$. Using this, (3.12), (3.19) and (3.21) reduce

$$
\begin{align*}
& \left(\nabla_{X} \theta\right)(Y)=\theta(X) \theta(Y), \quad\left(\nabla_{Z} R\right)(X, Y) W=R(X, Y) Z \\
& (R(U, Z) R)(X, Y) W=\theta(Z) R(X, Y) U-\theta(U) R(X, Y) Z=0, \tag{3.24}
\end{align*}
$$

for all $X, Y, Z \in \Gamma(T M)$. Replacing U by W to (3.24) and using $\theta(W)=\frac{1}{2}$, we have

$$
R(X, Y) Z=2 \theta(Z)\{\theta(X) Y-\theta(Y) X\}, \quad \forall X, Y, Z \in \Gamma(T M)
$$

References

[1] C. Cǎlin, Contributions to the Geometry of CR-Submanifolds, Thesis, University of Iasi (Romania, 1998).
[2] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
[3] K. L. Duggal and D. H. Jin, Half-lightlike submanifolds of codimension 2, Math. J. Toyama Univ. 22 (1999) 121-161.
[4] K. L. Duggal and D. H. Jin, Totally umbilical lightlike submanifolds, Kodai Math. J. 26 (2003) 49-68.
[5] K. L. Duggal and D. H. Jin, Null Curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, 2007.
[6] K. L. Duggal and B. Sahin, Differential Geometry of Lightlike Submanifolds, Birkhäused Verlag AG, 2010.
[7] D. H. Jin, Geometry of lightlike hypersurfaces of an indefinite Sasakian manifold, Indian J. of Pure and Applied Math., 41, 4 (2010) 569-581.
[8] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tôhoku Math. J., 21 (1972) 93-103.
[9] M. Okumura, Some remarks on space with a certain contact structure, Tohoku Math. J., 14, 2 (1962) 135-145.
[10] R. Shankar Gupta and A. Sharfuddin, Lightlike submanifolds of indefinite Kenmotsu manifold, Int. J. Contemp. Math. Sciences, 5, 10 (2010) 475-496.

Author's address:
Dae Ho Jin
Department of Mathematics, Dongguk University,
Gyeongju 780-714, Korea.
E-mail: jindh@dongguk.ac.kr

[^0]: Balkan Journal of Geometry and Its Applications, Vol.17, No.1, 2012, pp. 49-57.
 (C) Balkan Society of Geometers, Geometry Balkan Press 2012.

