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Abstract. Let M be an (n+ 1)-dimensional contact CR-submanifold of
an odd-dimensional unit sphere S2m+1 of (n− q) contact CR-dimension.
We study the condition h(FX, Y )+h(X,FY ) = 0 on the structure tensor
F which is naturally induced from the almost contact structure ϕ of the
ambient manifold and the second fundamental form h of the submanifold
M . We obtain two results on codimension reduction for such submanifolds.
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1 Brief overview

Let M be a (2m + 1)-dimensional Sasakian manifold with the Sasakian structure
tensors (ϕ, ξ, η, g) satisfying:

ϕ2X = −X + η(X)ξ, ϕξ = 0, η(ξ) = 1, η(ϕX) = 0,(1.1)

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ),(1.2)

for any vector fields X and Y on M [8]. Let M be a submanifold tangent to the
structure vector field ξ isometrically immersed in the Sasakian manifold M . Then M
is called a contact CR-submanifold of M if there exists a differentiable distribution
D : x −→ Dx ⊂ TxM on M such that: (i) D is invariant with respect to ϕ, i.e.,
ϕDx ⊂ Dx; (ii) the complementary orthogonal distribution D⊥ : x −→ D⊥

x ⊂ TxM
is anti-invariant with respect to ϕ, i.e., ϕD⊥

x ⊂ T⊥
x M , for x ∈M .

If dimD = 0, then the contact CR-submanifold M is called an anti-invariant sub-
manifold ofM tangent to ξ. If dimD⊥ = 0, thenM is an invariant submanifold ofM
[8]. Contact CR-submanifold of maximal CR-dimension in an odd-dimensional unit
sphere has been studied in [5], [6] and [7].
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In the present article we study connected (n + 1)-dimensional real submanifolds
of codimension (2m−n) of the odd-dimensional unit sphere S2m+1 which are contact
CR-submanifolds of contact CR-dimension (n− q), that is, dimD⊥ = q + 1.

In Section 2 we collect some basic relations concerning submanifolds, in particular
we discuss the notion of contact CR-submanifolds of the Sasakian manifold S2m+1.

Section 3 is devoted to the study of contact CR-submanifolds which satisfy the
condition h(FX, Y )+h(X,FY ) = 0 on the structure tensor F naturally induced from
the almost contact structure ϕ of the ambient manifold and on the second fundamental
form h of a submanifold M . M. Djoric studied these complex space forms in [2].

Finally, in Section 4, using the codimension reduction theorem in [4], we obtain
codimension reduction results for contact CR-submanifolds of an odd-dimensional
unit sphere similar to that in [2] and [5].

2 Preliminaries

Let S2m+1 be a (2m+ 1)-unit sphere and z ∈ S2m+1. We put ξ = Jz where J is the
complex structure of the complex (m + 1)-space Cm+1. We consider the orthogonal
projection π : TzCm+1 → TzS

2m+1, and put ϕ = π ◦J . Then we see that (ϕ, ξ, η, g) is
a Sasakian structure on S2m+1, where η is an 1-form dual to ξ and g is the standard
metric tensor field on S2m+1. Hence, S2m+1 can be regarded as a Sasakian manifold
of constant ϕ-sectional curvature 1 [1],[9].

Consider M , an (n + 1)-dimensional contact CR-submanifold in S2m+1 which is
tangent to the structure vector field ξ. The subspace Dx is the ϕ-invariant subspace
TxM ∩ ϕTxM of the tangent space TxM of M at x ∈M . Then ξ is not in Dx at any
x in M . Let D⊥

x denote the complementary orthogonal subspace to Dx in TxM . For
any nonzero vectors Uα orthogonal to ξ and contained in D⊥

x , we have ϕUα normal
to M . In the following we assume that dimDx = n − q and dimD⊥

x = q + 1, at
each point x in M . We observe that the definition for a contact CR-submanifold of
S2m+1 given in [5], states that the maximal ϕ-invariant subspace Dx has constant
dimension, for any x ∈M . For the definition given above, the subspace Dx obviously
has constant dimension for any x ∈ M , since D is a distribution. When the contact
CR-submanifold is of maximal CR-dimension, the two definition are equivalent. In
the general case this need not be so, see [3].

We denote by ν(M) the complementary orthogonal subbundle of ϕD⊥ in the
normal bundle TM⊥. We have the following orthogonal direct sum decomposition
TM⊥ = ϕD⊥ ⊕ ν(M). It is easy to see that ν(M) is ϕ-invariant. For Y ∈ ν(M),
ϕY ∈ TM⊥ and writing ϕY = Y1 + Y2 with Y1 ∈ ϕD⊥ and Y2 ∈ ν(M), we obtain
that Y1 = 0 by using (1.1) and hence ϕY ∈ ν(M). We choose local orthonormal
vector fields N1, . . . , Nq, λ1, . . . , λ2m−n−q normal to M , such that N1, . . . , Nq span
ϕD⊥ while λ1, . . . , λ2m−n−q span ν(M) at each point.

For X tangent to M , we have the following decomposition into tangential and
normal components:

(2.1) ϕX = FX +

q∑
α=1

uα(X)Nα,

where FX is just the tangential component of ϕX, while for X tangent to M , the
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normal component is in ϕD⊥ hence the second term in the expression on the right of
(2.1). As Nα ∈ ϕD⊥ , we have Nα = ϕUα, for some Uα ∈ D⊥, hence

(2.2) ϕNα = −Uα, α = 1, . . . , q

Since ν(M) is ϕ-invariant, then

ϕλc =

2m−n−q∑
k=1

γckλk, c = 1, . . . , 2m− n− q ,

where F is a skew-symmetric linear endomorphism acting on TxM ,γck are real valued
functions and Uα and uα, are tangent vector fields and 1-forms on M , respectively.
Since ξ is tangent to M from (1.1), (1.2) and (2.1), we conclude that:

g(X,Uα) = uα(X), F ξ = 0, uα(ξ) = 0, FUα = 0, uα(Uα) = 1.

Using (2.1) again, we get:

(2.3) F 2X = −X + η(X)ξ +

q∑
α=1

uα(X)Uα.

Let us denote by ∇ and ∇ the Riemannian connection of S2m+1 and M , respec-
tively and by ∇⊥ the normal connection induced from ∇ in the normal bundle of M .
Then the Gauss and Weingarten formulas for M are given by:

∇XY = ∇XY + h(X,Y ),

∇XN = −ANX +∇⊥
XN,

for any vector fields X,Y tangent to M and any vector field N normal to M , where
h denotes the second fundamental form and AN denotes the shape operator (second
fundamental tensor) corresponding to N .

Suppose that ν(M) is not necessarily invariant with respect to the normal con-
nection, then the Weingarten formula becomes:

(2.4) ∇Xλc = −AcX +

q∑
β=1

Scβ∗(X)Nβ +

2m−n−q∑
d=1

Scd(X)λd

(2.5) ∇XNα = −Aα∗X +

q∑
β=1

Sα∗β∗(X)Nβ +

2m−n−q∑
c=1

Sα∗c(X)λc

where c = 1, . . . , 2m−n− q, α = 1, ..., q and the S’s are the coefficients of the normal
connection ∇⊥ and Ac, Aα∗ , are the shape operators corresponding to the normals
λc, Nα, respectively. Furthermore

∇Xξ = ϕX,

and hence, ∇Xξ + h(X, ξ) = FX +
∑q

α=1 u
α(X)Nα, and so ∇Xξ = FX. Moreover,

(2.6) Aα∗ξ = Uα, α = 1, . . . , q.
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Also,

(2.7) Acξ = 0, c = 1, . . . , 2m− n− q.

In addition from the equation of Ricci:

g(R(X,Y )λc, Nα) = g(R⊥(X,Y )λc, Nα) + g([Aα, Ac]X,Y ),

where R and R⊥ are the curvature tensors with respect to ∇ and ∇⊥ respectively.
Because the ambient space is Sasakian, we have:

(2.8) (∇Xϕ)Y = −g(X,Y )ξ + η(Y )X.

From ϕ(∇Xλc) = ∇X(ϕλc) − (∇Xϕ)λc, using (2.1), (2.2),(2.4), (2.5) and (2.8), we
obtain:

ϕ(−AcX +

q∑
α=1

Scα∗(X)Nα +

2m−n−q∑
d=1

Scd(X)λd) = ∇Xϕλc.

Thus,

−FAcX −
∑q

α=1 u
α(AcX)Nα −

∑q
α=1 Scα∗(X)Uα +

∑2m−n−q
d=1

∑2m−n−q
k=1 γdkScd(X)λk

=
∑2m−n−q

k=1 {(Xγck)λk + γck(−AkX +
∑q

α=1 Skα∗(X)Nα +
∑2m−n−q

d=1 Skd(X)λd)},

for X tangent to M . Comparing the tangential part and the coefficients of Nα, we
get:

(2.9) FAcX =

2m−n−q∑
k=1

γckAkX −
q∑

α=1

Scα∗(X)Uα,

uα(AcX) = −
2m−n−q∑

k=1

γckSkα∗(X).

Applying F to both sides of the relation (2.9) and using (2.3), we have:

AcX =

q∑
α=1

uα(AcX)Uα −
2m−n−q∑

k=1

γckFAkX,

for all X tangent to M and c = 1, . . . , 2m− n− q.

From now on we suppose that µ(M), dimµ(M) = e, is a subbundle of ν(M) which
is not necessarily ϕ-invariant, but invariant with respect to the normal connection.
We can select a local orthonormal frame λ1, . . . , λ2m−n−q for ν(M) so that λ1, . . . , λe
form a local orthonormal frame for µ(M). Then the Weingarten equation is:

(2.10) ∇Xλi = −AiX +

e∑
j=1

Sij(X)λj , i = 1, . . . , e.

Since (2.4) is true for c = i, we have:

∇Xλi = −AiX +

q∑
α=1

Siα∗(X)Nα +

2m−n−q∑
d=1

Sid(X)λd.
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Comparing the last relation and (2.10) we conclude that:

(2.11) Siα∗(X) = 0, i = 1, . . . , e

and Sid(X) = 0, d = e+ 1, . . . , 2m− n− q. Since S2m+1 is of constant curvature 1,
we have

R(X,Y )Z = g(Y, Z)X − g(X,Z)Y,

for all X,Y, Z tangent to M . Since µ(M) is invariant with respect to the normal
connection then from the equation of Ricci we get:

g((AiAα∗ −Aα∗Ai)X,Y ) = 0

and hence,

(2.12) AiAα∗X = Aα∗AiX,

for all X tangent to M , α = 1, . . . , q and i = 1, . . . , e.

3 Contact CR-submanifolds of odd-dimensional unit sphere
satisfying h(FX, Y ) + h(X,FY ) = 0

Let M be a connected (n + 1)-dimensional contact CR-submanifold of S2m+1 with
dimD⊥

x = q+1. In this section we study submanifolds M which satisfy the condition

(3.1) h(FX, Y ) + h(X,FY ) = 0, for all X, Y tangent to M.

The second fundamental form h and the shape operators Aα∗ , Ac corresponding to
normals Nα ∈ ϕD⊥ and λc ∈ ν(M), c = 1, . . . , 2m − n − q, respectively, are related
by:

h(X,Y ) =

q∑
α=1

g(Aα∗X,Y )Nα +

2m−n−q∑
c=1

g(AcX,Y )λc,

for all X,Y in TM . Hence,

h(FX, Y ) + h(X,FY ) = 0 =
∑q

α=1{g(Aα∗FX, Y ) + g(Aα∗X,FY )}Nα

+
∑2m−n−q

c=1 {g(AcFX, Y ) + g(AcX,FY )}λc.

Since F is skew-symmetric, (3.1) is equivalent to Aα∗F = FAα∗ , i.e.,

(3.2) AcF = FAc,

with α = 1, . . . , q, c = 1, . . . , 2m− n− q.

Lemma 3.1. Let M be a connected (n+ 1)-dimensional contact CR-submanifold of
contact CR-dimension (n − q) of S2m+1. Suppose the subbundle µ(M) is invariant
with respect to the normal connection. If the condition (3.1) is satisfied, then FAi =
0 = AiF , i = 1, . . . , e, where Ai are the shape operators for the normals λi and
e = dimµ(M).
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Proof. Using (3.2) we have:

g(FAcX,Y )− g(X,FAcY ) = g((FAc +AcF )X,Y ) = 2g(FAcX,Y )

and, using (2.9), we get

2g(FAcX,Y ) =
∑2m−n−q

k=1 γckg(AkX,Y )−
∑q

α=1 Scα∗(X)uα(Y )

−
∑2m−n−q

k=1 γckg(AkY,X) +
∑q

α=1 Scα∗(Y )uα(X).

Since the shape operators are self-adjoint, then the last relation reduces to:

2g(FAcX,Y ) = −
q∑

α=1

Scα∗(X)uα(Y ) +

q∑
α=1

Scα∗(Y )uα(X).

Then, using (2.11) we get:

2g(FAiX,Y ) = −
q∑

α=1

Siα∗(X)uα(Y ) +

q∑
α=1

Siα∗(Y )uα(X) = 0

and hence, FAiX = 0, i = 1, . . . , e. �

Lemma 3.2. Let M be a connected (n+ 1)-dimensional contact CR-submanifold of
contact CR-dimension (n − q) of S2m+1. Suppose the subbundle µ(M) is invariant
with respect to the normal connection. If the condition (3.1) is satisfied, then Ai = 0,
i = 1, . . . , e, where Ai are the shape operators for the normals λi and e = dimµ(M).

Proof. Replacing X with ξ in equation (2.12) and using equations (2.6) and (2.7)
we get AiAα∗ξ = Aα∗Aiξ = 0, that is, AiUα = 0, i = 1, . . . , e. From (2.3) and
Lemma 3.1 we have AiX =

∑q
α=1 u

α(AiX)Uα. Then, from the last two equations
we conclude that AiX = 0, for all X tangent to M and i = 1, . . . , e. �

4 Codimension reduction of contact CR-submanifolds in
odd-dimensional unit sphere

In this section, we apply the Erbacher’s reduction of codimension theorem to contact
CR-submanifold in an odd-dimensional unit sphere.

Let M be a connected submanifold in a Riemannian manifold. The first normal
space N1(x) is defined to be the orthogonal complement of the set N0(x) = {ζ ∈
T⊥
x M |Aζ = 0} in T⊥

x M [9]. Erbacher proved the following theorem [4]:

Theorem 4.1. Let ψ : Mn −→ M
n+p

(c̃) be an isometric immersion of a connected
n-dimensional Riemannian manifold into an n+p-dimensional Riemannian manifold

M
n+p

(c̃) of constant sectional curvature c̃. If N ⊃ N1 and N is a subbundle of TM⊥

invariant with respect to the normal connection and l is the dimension of N , then there

exists a totally geodesic submanifold Nn+l of M
n+p

(c̃) such that ψ(Mn) ⊂ Nn+l.
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Let M be a connected contact CR-submanifold of S2m+1 whose contact CR-
dimension is (n−q), i.e, dimD⊥ = q+1. For any orthogonal direct sum decomposition
TM⊥ = V1 ⊕ V2, it is easy to see that V1 is invariant with respect to the normal
connection if and only if V2 is invariant with respect to the normal connection.

Using the results of the previous section and Theorem 4.1, we have the following
result without assuming that M is of maximal CR-dimension as was the case in
[6, 7, 5].

Theorem 4.2. Let M be an (n+1)-dimensional contact CR-submanifold of contact
CR-dimension (n − q) of S2m+1. If ϕD⊥ is invariant with respect to the normal
connection and if the condition (3.1) is satisfied, then there exists a totally geodesic
unit sphere of dimension (n+ q + 1) of S2m+1 such that M ⊂ Sn+q+1.

Proof. By Lemma 3.2, the first normal space N1(x) = ϕD⊥
x . Hence, by Theorem

4.1 we can conclude that there exists a (n+ q + 1)-dimensional totally geodesic unit
sphere Sn+q+1 such that M ⊂ Sn+q+1. �

Suppose µ(M) is a subbundle which is invariant with respect to the normal con-
nection with λ1, . . . , λe forming a local orthonormal frame for µ(M). At each point
x ∈M , consider the subspace µ̃(M)x of TxM given by

µ̃(M)x = span{λ1(x), . . . , λe(x), ϕλ1(x), . . . , ϕλe(x)}.

Then we have the following:

Lemma 4.3. Let µ(M) be a subbundle of ν(M) invariant with respect to the normal
connection. There is a ϕ-invariant subbundle µ̃(M) invariant with respect to the
normal connection with µ(M) ⊂ µ̃(M) ⊂ ν(M), such that Aλ = 0, for any normal
vector field λ in µ̃(M).

Proof. We first observe that

−AϕλiX +∇⊥
X(ϕλi) = ∇X(ϕλi) = ϕ(∇Xλi) = ϕ(−AiX +∇⊥

Xλi) = ϕ(∇⊥
Xλi).

This shows that ϕµ(M) is invariant relative to the normal connection and Aϕλi = 0.

Let γ : [a, b] → M be a smooth curve with γ(a) = x and γ(b) = y. Consider
orthonormal parallel vector fields λ1, · · · , λe in µ(M) along γ. Then ϕλ1, · · · , ϕλe
are orthonormal parallel vector fields in ϕµ(M) along γ. Suppose dim µ̃(M)x = r,
{v1, · · · , vr} an orthonormal basis for µ̃(M)x and V1 · · · , Vr parallel vector fields
along γ with V1(a) = v1, · · · , Vr(a) = vr. Since each vj is a linear combination
of λ1(a), · · · , λe(a), ϕλ1(a), · · · , ϕλe(a), each Vj is a linear combination of λ1, · · · , λe,
ϕλ1, · · · , ϕλe, this shows that µ̃(M) is invariant under parallel transport with re-
spect to the normal connection and so {V1(b), · · · , Vr(b)} is orthonormal in µ̃(M)y.
Hence, dim µ̃(M)y ≥ r = dim µ̃(M)x. By switching the role of x and y, we see that
dim µ̃(M)x ≥ dim µ̃(M)y and so dim µ̃(M)x = dim µ̃(M)y.

In general, any two points x, y ∈ M can be joined by a piecewise smooth curve,
since M is connected. We can deduce that µ̃(M) has constant dimension at each
point in M and conclude that µ̃(M) defines a vector subbundle of ν(M). Moreover,
it is clear that µ̃(M) is ϕ-invariant with µ(M) ⊂ µ̃(M) ⊂ ν(M). Then by Lemma 3.2
we obtain Aλ = 0, for any normal vector field λ in µ̃(M). Also, µ̃(M) is a maximal
subbundle of ν(M) which is invariant with respect to the normal connection. If
∇⊥

XN = 0, then N ∈ µ̃(M). Let {λ1(p), . . . , λe(p)}. �
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We now have a result similar to that in [2]. We do not assume that µ(M) is
ϕ-invariant and M is of maximal CR-dimension.

Theorem 4.4. Let M be an (n+1)-dimensional contact CR-submanifold of contact
CR-dimension (n − q) of S2m+1. Let µ(M) be a subbundle of ν(M) which is also
invariant with respect to the normal connection with dimµ(M) = e. If the condition
(3.1) is satisfied, then there exists a totally geodesic odd-dimensional unit sphere of
dimension (2m+ 1− l) in S2m+1 such that M ⊂ S2m+1−l with l ≥ e.

Proof. From Lemma 4.3 we have a ϕ-invariant subbundle µ̃(M) which is invariant
with respect to the normal connection with µ(M) ⊂ µ̃(M) ⊂ ν(M). Since µ̃(M) is ϕ-
invariant, it is of even dimension and dim ν(M) ≥ dim µ̃(M) = l ≥ e. Also since µ̃(M)
is invariant with respect to the normal connection, we have µ̃(M)x ⊂ N0(x). Hence
the first normal space N1(x) ⊂ Nx = ϕD⊥

x ⊕ σ(M)x where ν(M) = µ̃(M) ⊕ σ(M).
Since µ̃(M) is invariant with respect to the normal connection, so is N . Applying
Theorem 4.1, there exists a totally geodesic odd-dimensional unit sphere S2m+1−l

such that M ⊂ S2m+1−l. �
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