Codimension reduction on the contact $C R$-submanifolds of an odd-dimensional unit sphere

E. Abedi, M. Asadollahzadeh, G. Haghighatdoost

Abstract

Let M be an $(n+1)$-dimensional contact $C R$-submanifold of an odd-dimensional unit sphere $S^{2 m+1}$ of $(n-q)$ contact $C R$-dimension. We study the condition $h(F X, Y)+h(X, F Y)=0$ on the structure tensor F which is naturally induced from the almost contact structure ϕ of the ambient manifold and the second fundamental form h of the submanifold M. We obtain two results on codimension reduction for such submanifolds.

M.S.C. 2010: 53C25, 53B25.

Key words: Contact $C R$-submanifold; odd-dimensional unit sphere; second fundamental form.

1 Brief overview

Let \bar{M} be a $(2 m+1)$-dimensional Sasakian manifold with the Sasakian structure tensors (ϕ, ξ, η, g) satisfying:

$$
\begin{align*}
& \phi^{2} X=-X+\eta(X) \xi, \phi \xi=0, \eta(\xi)=1, \eta(\phi X)=0, \tag{1.1}\\
& g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \eta(X)=g(X, \xi), \tag{1.2}
\end{align*}
$$

for any vector fields X and Y on $\bar{M}[8]$. Let M be a submanifold tangent to the structure vector field ξ isometrically immersed in the Sasakian manifold \bar{M}. Then M is called a contact $C R$-submanifold of \bar{M} if there exists a differentiable distribution $D: x \longrightarrow D_{x} \subset T_{x} M$ on M such that: (i) D is invariant with respect to ϕ, i.e., $\phi D_{x} \subset D_{x}$; (ii) the complementary orthogonal distribution $D^{\perp}: x \longrightarrow D_{x}^{\perp} \subset T_{x} M$ is anti-invariant with respect to ϕ, i.e., $\phi D_{x}^{\perp} \subset T_{x}^{\perp} M$, for $x \in M$.
If $\operatorname{dim} D=0$, then the contact $C R$-submanifold M is called an anti-invariant submanifold of \bar{M} tangent to ξ. If $\operatorname{dim} D^{\perp}=0$, then M is an invariant submanifold of \bar{M} [8]. Contact $C R$-submanifold of maximal $C R$-dimension in an odd-dimensional unit sphere has been studied in [5], [6] and [7].

[^0]In the present article we study connected $(n+1)$-dimensional real submanifolds of codimension $(2 m-n)$ of the odd-dimensional unit sphere $S^{2 m+1}$ which are contact $C R$-submanifolds of contact $C R$-dimension $(n-q)$, that is, $\operatorname{dim} D^{\perp}=q+1$.

In Section 2 we collect some basic relations concerning submanifolds, in particular we discuss the notion of contact $C R$-submanifolds of the Sasakian manifold $S^{2 m+1}$.

Section 3 is devoted to the study of contact $C R$-submanifolds which satisfy the condition $h(F X, Y)+h(X, F Y)=0$ on the structure tensor F naturally induced from the almost contact structure ϕ of the ambient manifold and on the second fundamental form h of a submanifold M. M. Djoric studied these complex space forms in [2].

Finally, in Section 4, using the codimension reduction theorem in [4], we obtain codimension reduction results for contact $C R$-submanifolds of an odd-dimensional unit sphere similar to that in [2] and [5].

2 Preliminaries

Let $S^{2 m+1}$ be a $(2 m+1)$-unit sphere and $z \in S^{2 m+1}$. We put $\xi=J z$ where J is the complex structure of the complex $(m+1)$-space \mathbb{C}^{m+1}. We consider the orthogonal projection $\pi: T_{z} \mathbb{C}^{m+1} \rightarrow T_{z} S^{2 m+1}$, and put $\phi=\pi \circ J$. Then we see that (ϕ, ξ, η, g) is a Sasakian structure on $S^{2 m+1}$, where η is an 1-form dual to ξ and g is the standard metric tensor field on $S^{2 m+1}$. Hence, $S^{2 m+1}$ can be regarded as a Sasakian manifold of constant ϕ-sectional curvature 1 [1], [9].

Consider M, an $(n+1)$-dimensional contact $C R$-submanifold in $S^{2 m+1}$ which is tangent to the structure vector field ξ. The subspace D_{x} is the ϕ-invariant subspace $T_{x} M \cap \phi T_{x} M$ of the tangent space $T_{x} M$ of M at $x \in M$. Then ξ is not in D_{x} at any x in M. Let D_{x}^{\perp} denote the complementary orthogonal subspace to D_{x} in $T_{x} M$. For any nonzero vectors U_{α} orthogonal to ξ and contained in D_{x}^{\perp}, we have ϕU_{α} normal to M. In the following we assume that $\operatorname{dim} D_{x}=n-q$ and $\operatorname{dim} D_{x}^{\perp}=q+1$, at each point x in M. We observe that the definition for a contact $C R$-submanifold of $S^{2 m+1}$ given in [5], states that the maximal ϕ-invariant subspace D_{x} has constant dimension, for any $x \in M$. For the definition given above, the subspace D_{x} obviously has constant dimension for any $x \in M$, since D is a distribution. When the contact $C R$-submanifold is of maximal $C R$-dimension, the two definition are equivalent. In the general case this need not be so, see [3].

We denote by $\nu(M)$ the complementary orthogonal subbundle of ϕD^{\perp} in the normal bundle $T M^{\perp}$. We have the following orthogonal direct sum decomposition $T M^{\perp}=\phi D^{\perp} \oplus \nu(M)$. It is easy to see that $\nu(M)$ is ϕ-invariant. For $Y \in \nu(M)$, $\phi Y \in T M^{\perp}$ and writing $\phi Y=Y_{1}+Y_{2}$ with $Y_{1} \in \phi D^{\perp}$ and $Y_{2} \in \nu(M)$, we obtain that $Y_{1}=0$ by using (1.1) and hence $\phi Y \in \nu(M)$. We choose local orthonormal vector fields $N_{1}, \ldots, N_{q}, \lambda_{1}, \ldots, \lambda_{2 m-n-q}$ normal to M, such that N_{1}, \ldots, N_{q} span ϕD^{\perp} while $\lambda_{1}, \ldots, \lambda_{2 m-n-q}$ span $\nu(M)$ at each point.

For X tangent to M, we have the following decomposition into tangential and normal components:

$$
\begin{equation*}
\phi X=F X+\sum_{\alpha=1}^{q} u^{\alpha}(X) N_{\alpha} \tag{2.1}
\end{equation*}
$$

where $F X$ is just the tangential component of ϕX, while for X tangent to M, the
normal component is in ϕD^{\perp} hence the second term in the expression on the right of (2.1). As $N_{\alpha} \in \phi D^{\perp}$, we have $N_{\alpha}=\phi U_{\alpha}$, for some $U_{\alpha} \in D^{\perp}$, hence

$$
\begin{equation*}
\phi N_{\alpha}=-U_{\alpha}, \quad \alpha=1, \ldots, q \tag{2.2}
\end{equation*}
$$

Since $\nu(M)$ is ϕ-invariant, then

$$
\phi \lambda_{c}=\sum_{k=1}^{2 m-n-q} \gamma_{c k} \lambda_{k}, \quad c=1, \ldots, 2 m-n-q,
$$

where F is a skew-symmetric linear endomorphism acting on $T_{x} M, \gamma_{c k}$ are real valued functions and U_{α} and u^{α}, are tangent vector fields and 1-forms on M, respectively. Since ξ is tangent to M from (1.1), (1.2) and (2.1), we conclude that:

$$
g\left(X, U_{\alpha}\right)=u^{\alpha}(X), \quad F \xi=0, \quad u^{\alpha}(\xi)=0, \quad F U_{\alpha}=0, \quad u^{\alpha}\left(U_{\alpha}\right)=1
$$

Using (2.1) again, we get:

$$
\begin{equation*}
F^{2} X=-X+\eta(X) \xi+\sum_{\alpha=1}^{q} u^{\alpha}(X) U_{\alpha} . \tag{2.3}
\end{equation*}
$$

Let us denote by $\bar{\nabla}$ and ∇ the Riemannian connection of $S^{2 m+1}$ and M, respectively and by ∇^{\perp} the normal connection induced from $\bar{\nabla}$ in the normal bundle of M. Then the Gauss and Weingarten formulas for M are given by:

$$
\begin{aligned}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), \\
& \bar{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{\perp} N,
\end{aligned}
$$

for any vector fields X, Y tangent to M and any vector field N normal to M, where h denotes the second fundamental form and A_{N} denotes the shape operator (second fundamental tensor) corresponding to N.

Suppose that $\nu(M)$ is not necessarily invariant with respect to the normal connection, then the Weingarten formula becomes:

$$
\begin{gather*}
\bar{\nabla}_{X} \lambda_{c}=-A_{c} X+\sum_{\beta=1}^{q} S_{c \beta^{*}}(X) N_{\beta}+\sum_{d=1}^{2 m-n-q} S_{c d}(X) \lambda_{d} \tag{2.4}\\
\bar{\nabla}_{X} N_{\alpha}=-A_{\alpha^{*}} X+\sum_{\beta=1}^{q} S_{\alpha^{*} \beta^{*}}(X) N_{\beta}+\sum_{c=1}^{2 m-n-q} S_{\alpha^{*} c}(X) \lambda_{c} \tag{2.5}
\end{gather*}
$$

where $c=1, \ldots, 2 m-n-q, \alpha=1, \ldots, q$ and the S 's are the coefficients of the normal connection ∇^{\perp} and $A_{c}, A_{\alpha^{*}}$, are the shape operators corresponding to the normals λ_{c}, N_{α}, respectively. Furthermore

$$
\bar{\nabla}_{X} \xi=\phi X
$$

and hence, $\quad \nabla_{X} \xi+h(X, \xi)=F X+\sum_{\alpha=1}^{q} u^{\alpha}(X) N_{\alpha}$, and so $\nabla_{X} \xi=F X$. Moreover,

$$
\begin{equation*}
A_{\alpha^{*}} \xi=U_{\alpha}, \quad \alpha=1, \ldots, q \tag{2.6}
\end{equation*}
$$

Also,

$$
\begin{equation*}
A_{c} \xi=0, \quad c=1, \ldots, 2 m-n-q \tag{2.7}
\end{equation*}
$$

In addition from the equation of Ricci:

$$
g\left(\bar{R}(X, Y) \lambda_{c}, N_{\alpha}\right)=g\left(R^{\perp}(X, Y) \lambda_{c}, N_{\alpha}\right)+g\left(\left[A_{\alpha}, A_{c}\right] X, Y\right)
$$

where \bar{R} and R^{\perp} are the curvature tensors with respect to $\bar{\nabla}$ and ∇^{\perp} respectively. Because the ambient space is Sasakian, we have:

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \phi\right) Y=-g(X, Y) \xi+\eta(Y) X \tag{2.8}
\end{equation*}
$$

From $\phi\left(\bar{\nabla}_{X} \lambda_{c}\right)=\bar{\nabla}_{X}\left(\phi \lambda_{c}\right)-\left(\bar{\nabla}_{X} \phi\right) \lambda_{c}$, using (2.1), (2.2),(2.4), (2.5) and (2.8), we obtain:

$$
\phi\left(-A_{c} X+\sum_{\alpha=1}^{q} S_{c \alpha^{*}}(X) N_{\alpha}+\sum_{d=1}^{2 m-n-q} S_{c d}(X) \lambda_{d}\right)=\bar{\nabla}_{X} \phi \lambda_{c}
$$

Thus,

$$
\begin{aligned}
& -F A_{c} X-\sum_{\alpha=1}^{q} u^{\alpha}\left(A_{c} X\right) N_{\alpha}-\sum_{\alpha=1}^{q} S_{c \alpha^{*}}(X) U_{\alpha}+\sum_{d=1}^{2 m-n-q} \sum_{k=1}^{2 m-n-q} \gamma_{d k} S_{c d}(X) \lambda_{k} \\
& =\sum_{k=1}^{2 m-n-q}\left\{\left(X \gamma_{c k}\right) \lambda_{k}+\gamma_{c k}\left(-A_{k} X+\sum_{\alpha=1}^{q} S_{k \alpha^{*}}(X) N_{\alpha}+\sum_{d=1}^{2 m-n-q} S_{k d}(X) \lambda_{d}\right)\right\},
\end{aligned}
$$

for X tangent to M. Comparing the tangential part and the coefficients of N_{α}, we get:

$$
\begin{gather*}
F A_{c} X=\sum_{k=1}^{2 m-n-q} \gamma_{c k} A_{k} X-\sum_{\alpha=1}^{q} S_{c \alpha^{*}}(X) U_{\alpha} \tag{2.9}\\
u^{\alpha}\left(A_{c} X\right)=-\sum_{k=1}^{2 m-n-q} \gamma_{c k} S_{k \alpha^{*}}(X)
\end{gather*}
$$

Applying F to both sides of the relation (2.9) and using (2.3), we have:

$$
A_{c} X=\sum_{\alpha=1}^{q} u^{\alpha}\left(A_{c} X\right) U_{\alpha}-\sum_{k=1}^{2 m-n-q} \gamma_{c k} F A_{k} X
$$

for all X tangent to M and $c=1, \ldots, 2 m-n-q$.
From now on we suppose that $\mu(M), \operatorname{dim} \mu(M)=e$, is a subbundle of $\nu(M)$ which is not necessarily ϕ-invariant, but invariant with respect to the normal connection. We can select a local orthonormal frame $\lambda_{1}, \ldots, \lambda_{2 m-n-q}$ for $\nu(M)$ so that $\lambda_{1}, \ldots, \lambda_{e}$ form a local orthonormal frame for $\mu(M)$. Then the Weingarten equation is:

$$
\begin{equation*}
\bar{\nabla}_{X} \lambda_{i}=-A_{i} X+\sum_{j=1}^{e} S_{i j}(X) \lambda_{j}, \quad i=1, \ldots, e \tag{2.10}
\end{equation*}
$$

Since (2.4) is true for $c=i$, we have:

$$
\bar{\nabla}_{X} \lambda_{i}=-A_{i} X+\sum_{\alpha=1}^{q} S_{i \alpha^{*}}(X) N_{\alpha}+\sum_{d=1}^{2 m-n-q} S_{i d}(X) \lambda_{d} .
$$

Comparing the last relation and (2.10) we conclude that:

$$
\begin{equation*}
S_{i \alpha^{*}}(X)=0, \quad i=1, \ldots, e \tag{2.11}
\end{equation*}
$$

and $\quad S_{i d}(X)=0, d=e+1, \ldots, 2 m-n-q$. Since $S^{2 m+1}$ is of constant curvature 1, we have

$$
\bar{R}(X, Y) Z=g(Y, Z) X-g(X, Z) Y
$$

for all X, Y, Z tangent to \bar{M}. Since $\mu(M)$ is invariant with respect to the normal connection then from the equation of Ricci we get:

$$
g\left(\left(A_{i} A_{\alpha^{*}}-A_{\alpha^{*}} A_{i}\right) X, Y\right)=0
$$

and hence,

$$
\begin{equation*}
A_{i} A_{\alpha^{*}} X=A_{\alpha^{*}} A_{i} X \tag{2.12}
\end{equation*}
$$

for all X tangent to $M, \alpha=1, \ldots, q$ and $i=1, \ldots, e$.

3 Contact $C R$-submanifolds of odd-dimensional unit sphere satisfying $h(F X, Y)+h(X, F Y)=0$

Let M be a connected $(n+1)$-dimensional contact $C R$-submanifold of $S^{2 m+1}$ with $\operatorname{dim} D_{x}^{\perp}=q+1$. In this section we study submanifolds M which satisfy the condition

$$
\begin{equation*}
h(F X, Y)+h(X, F Y)=0, \text { for all } X, Y \text { tangent to } M \tag{3.1}
\end{equation*}
$$

The second fundamental form h and the shape operators $A_{\alpha^{*}}, A_{c}$ corresponding to normals $N_{\alpha} \in \phi D^{\perp}$ and $\lambda_{c} \in \nu(M), c=1, \ldots, 2 m-n-q$, respectively, are related by:

$$
h(X, Y)=\sum_{\alpha=1}^{q} g\left(A_{\alpha^{*}} X, Y\right) N_{\alpha}+\sum_{c=1}^{2 m-n-q} g\left(A_{c} X, Y\right) \lambda_{c}
$$

for all X, Y in $T M$. Hence,

$$
\begin{aligned}
& h(F X, Y)+h(X, F Y)=0=\sum_{\alpha=1}^{q}\left\{g\left(A_{\alpha^{*}} F X, Y\right)+g\left(A_{\alpha^{*}} X, F Y\right)\right\} N_{\alpha} \\
& \quad+\sum_{c=1}^{2 m-n-q}\left\{g\left(A_{c} F X, Y\right)+g\left(A_{c} X, F Y\right)\right\} \lambda_{c} .
\end{aligned}
$$

Since F is skew-symmetric, (3.1) is equivalent to $\quad A_{\alpha^{*}} F=F A_{\alpha^{*}}$, i.e.,

$$
\begin{equation*}
A_{c} F=F A_{c} \tag{3.2}
\end{equation*}
$$

with $\alpha=1, \ldots, q, c=1, \ldots, 2 m-n-q$.
Lemma 3.1. Let M be a connected $(n+1)$-dimensional contact $C R$-submanifold of contact $C R$-dimension $(n-q)$ of $S^{2 m+1}$. Suppose the subbundle $\mu(M)$ is invariant with respect to the normal connection. If the condition (3.1) is satisfied, then $F A_{i}=$ $0=A_{i} F, i=1, \ldots, e$, where A_{i} are the shape operators for the normals λ_{i} and $e=\operatorname{dim} \mu(M)$.

Proof. Using (3.2) we have:

$$
g\left(F A_{c} X, Y\right)-g\left(X, F A_{c} Y\right)=g\left(\left(F A_{c}+A_{c} F\right) X, Y\right)=2 g\left(F A_{c} X, Y\right)
$$

and, using (2.9), we get

$$
\begin{aligned}
& 2 g\left(F A_{c} X, Y\right)=\sum_{k=1}^{2 m-n-q} \gamma_{c k} g\left(A_{k} X, Y\right)-\sum_{\alpha=1}^{q} S_{c \alpha^{*}}(X) u^{\alpha}(Y) \\
& \quad-\sum_{k=1}^{2 m-n-q} \gamma_{c k} g\left(A_{k} Y, X\right)+\sum_{\alpha=1}^{q} S_{c \alpha^{*}}(Y) u^{\alpha}(X)
\end{aligned}
$$

Since the shape operators are self-adjoint, then the last relation reduces to:

$$
2 g\left(F A_{c} X, Y\right)=-\sum_{\alpha=1}^{q} S_{c \alpha^{*}}(X) u^{\alpha}(Y)+\sum_{\alpha=1}^{q} S_{c \alpha^{*}}(Y) u^{\alpha}(X)
$$

Then, using (2.11) we get:

$$
2 g\left(F A_{i} X, Y\right)=-\sum_{\alpha=1}^{q} S_{i \alpha^{*}}(X) u^{\alpha}(Y)+\sum_{\alpha=1}^{q} S_{i \alpha^{*}}(Y) u^{\alpha}(X)=0
$$

and hence, $F A_{i} X=0, i=1, \ldots, e$.
Lemma 3.2. Let M be a connected $(n+1)$-dimensional contact $C R$-submanifold of contact CR-dimension $(n-q)$ of $S^{2 m+1}$. Suppose the subbundle $\mu(M)$ is invariant with respect to the normal connection. If the condition (3.1) is satisfied, then $A_{i}=0$, $i=1, \ldots, e$, where A_{i} are the shape operators for the normals λ_{i} and $e=\operatorname{dim} \mu(M)$.

Proof. Replacing X with ξ in equation (2.12) and using equations (2.6) and (2.7) we get $A_{i} A_{\alpha^{*}} \xi=A_{\alpha^{*}} A_{i} \xi=0$, that is, $A_{i} U_{\alpha}=0, i=1, \ldots, e$. From (2.3) and Lemma 3.1 we have $A_{i} X=\sum_{\alpha=1}^{q} u^{\alpha}\left(A_{i} X\right) U_{\alpha}$. Then, from the last two equations we conclude that $A_{i} X=0$, for all X tangent to M and $i=1, \ldots, e$.

4 Codimension reduction of contact $C R$-submanifolds in odd-dimensional unit sphere

In this section, we apply the Erbacher's reduction of codimension theorem to contact $C R$-submanifold in an odd-dimensional unit sphere.

Let M be a connected submanifold in a Riemannian manifold. The first normal space $N_{1}(x)$ is defined to be the orthogonal complement of the set $N_{0}(x)=\{\zeta \in$ $\left.T_{x}^{\perp} M \mid A_{\zeta}=0\right\}$ in $T_{x}^{\perp} M$ [9]. Erbacher proved the following theorem [4]:

Theorem 4.1. Let $\psi: M^{n} \longrightarrow \bar{M}^{n+p}(\widetilde{c})$ be an isometric immersion of a connected n-dimensional Riemannian manifold into an $n+p$-dimensional Riemannian manifold $\bar{M}^{n+p}(\widetilde{c})$ of constant sectional curvature \widetilde{c}. If $N \supset N_{1}$ and N is a subbundle of $T M^{\perp}$ invariant with respect to the normal connection and l is the dimension of N, then there exists a totally geodesic submanifold N^{n+l} of $\bar{M}^{n+p}(\widetilde{c})$ such that $\psi\left(M^{n}\right) \subset N^{n+l}$.

Let M be a connected contact $C R$-submanifold of $S^{2 m+1}$ whose contact $C R$ dimension is $(n-q)$, i.e, $\operatorname{dim} D^{\perp}=q+1$. For any orthogonal direct sum decomposition $T M^{\perp}=V_{1} \oplus V_{2}$, it is easy to see that V_{1} is invariant with respect to the normal connection if and only if V_{2} is invariant with respect to the normal connection.

Using the results of the previous section and Theorem 4.1, we have the following result without assuming that M is of maximal $C R$-dimension as was the case in $[6,7,5]$.
Theorem 4.2. Let M be an $(n+1)$-dimensional contact $C R$-submanifold of contact $C R$-dimension $(n-q)$ of $S^{2 m+1}$. If ϕD^{\perp} is invariant with respect to the normal connection and if the condition (3.1) is satisfied, then there exists a totally geodesic unit sphere of dimension $(n+q+1)$ of $S^{2 m+1}$ such that $M \subset S^{n+q+1}$.

Proof. By Lemma 3.2, the first normal space $N_{1}(x)=\phi D_{x}^{\perp}$. Hence, by Theorem 4.1 we can conclude that there exists a $(n+q+1)$-dimensional totally geodesic unit sphere S^{n+q+1} such that $M \subset S^{n+q+1}$.

Suppose $\mu(M)$ is a subbundle which is invariant with respect to the normal connection with $\lambda_{1}, \ldots, \lambda_{e}$ forming a local orthonormal frame for $\mu(M)$. At each point $x \in M$, consider the subspace $\widetilde{\mu}(M)_{x}$ of $T_{x} M$ given by

$$
\widetilde{\mu}(M)_{x}=\operatorname{span}\left\{\lambda_{1}(x), \ldots, \lambda_{e}(x), \phi \lambda_{1}(x), \ldots, \phi \lambda_{e}(x)\right\} .
$$

Then we have the following:
Lemma 4.3. Let $\mu(M)$ be a subbundle of $\nu(M)$ invariant with respect to the normal connection. There is a ϕ-invariant subbundle $\widetilde{\mu}(M)$ invariant with respect to the normal connection with $\mu(M) \subset \widetilde{\mu}(M) \subset \nu(M)$, such that $A_{\lambda}=0$, for any normal vector field λ in $\widetilde{\mu}(M)$.
Proof. We first observe that

$$
-A_{\phi \lambda_{i}} X+\nabla_{X}^{\perp}\left(\phi \lambda_{i}\right)=\bar{\nabla}_{X}\left(\phi \lambda_{i}\right)=\phi\left(\bar{\nabla}_{X} \lambda_{i}\right)=\phi\left(-A_{i} X+\nabla_{X}^{\perp} \lambda_{i}\right)=\phi\left(\nabla_{X}^{\perp} \lambda_{i}\right)
$$

This shows that $\phi \mu(M)$ is invariant relative to the normal connection and $A_{\phi \lambda_{i}}=0$.
Let $\gamma:[a, b] \rightarrow M$ be a smooth curve with $\gamma(a)=x$ and $\gamma(b)=y$. Consider orthonormal parallel vector fields $\lambda_{1}, \cdots, \lambda_{e}$ in $\mu(M)$ along γ. Then $\phi \lambda_{1}, \cdots, \phi \lambda_{e}$ are orthonormal parallel vector fields in $\phi \mu(M)$ along γ. Suppose $\operatorname{dim} \tilde{\mu}(M)_{x}=r$, $\left\{v_{1}, \cdots, v_{r}\right\}$ an orthonormal basis for $\tilde{\mu}(M)_{x}$ and $V_{1} \cdots, V_{r}$ parallel vector fields along γ with $V_{1}(a)=v_{1}, \cdots, V_{r}(a)=v_{r}$. Since each v_{j} is a linear combination of $\lambda_{1}(a), \cdots, \lambda_{e}(a), \phi \lambda_{1}(a), \cdots, \phi \lambda_{e}(a)$, each V_{j} is a linear combination of $\lambda_{1}, \cdots, \lambda_{e}$, $\phi \lambda_{1}, \cdots, \phi \lambda_{e}$, this shows that $\widetilde{\mu}(M)$ is invariant under parallel transport with respect to the normal connection and so $\left\{V_{1}(b), \cdots, V_{r}(b)\right\}$ is orthonormal in $\widetilde{\mu}(M)_{y}$. Hence, $\operatorname{dim} \tilde{\mu}(M)_{y} \geq r=\operatorname{dim} \tilde{\mu}(M)_{x}$. By switching the role of x and y, we see that $\operatorname{dim} \tilde{\mu}(M)_{x} \geq \operatorname{dim} \tilde{\mu}(M)_{y}$ and so $\operatorname{dim} \tilde{\mu}(M)_{x}=\operatorname{dim} \tilde{\mu}(M)_{y}$.

In general, any two points $x, y \in M$ can be joined by a piecewise smooth curve, since M is connected. We can deduce that $\widetilde{\mu}(M)$ has constant dimension at each point in M and conclude that $\tilde{\mu}(M)$ defines a vector subbundle of $\nu(M)$. Moreover, it is clear that $\widetilde{\mu}(M)$ is ϕ-invariant with $\mu(M) \subset \widetilde{\mu}(M) \subset \nu(M)$. Then by Lemma 3.2 we obtain $A_{\lambda}=0$, for any normal vector field λ in $\widetilde{\mu}(M)$. Also, $\widetilde{\mu}(M)$ is a maximal subbundle of $\nu(M)$ which is invariant with respect to the normal connection. If $\nabla \frac{1}{X} N=0$, then $N \in \widetilde{\mu}(M)$. Let $\left\{\lambda_{1}(p), \ldots, \lambda_{e}(p)\right\}$.

We now have a result similar to that in [2]. We do not assume that $\mu(M)$ is ϕ-invariant and M is of maximal $C R$-dimension.

Theorem 4.4. Let M be an $(n+1)$-dimensional contact $C R$-submanifold of contact $C R$-dimension $(n-q)$ of $S^{2 m+1}$. Let $\mu(M)$ be a subbundle of $\nu(M)$ which is also invariant with respect to the normal connection with $\operatorname{dim} \mu(M)=e$. If the condition (3.1) is satisfied, then there exists a totally geodesic odd-dimensional unit sphere of dimension $(2 m+1-l)$ in $S^{2 m+1}$ such that $M \subset S^{2 m+1-l}$ with $l \geq e$.
Proof. From Lemma 4.3 we have a ϕ-invariant subbundle $\widetilde{\mu}(M)$ which is invariant with respect to the normal connection with $\mu(M) \subset \widetilde{\mu}(M) \subset \nu(M)$. Since $\widetilde{\mu}(M)$ is ϕ invariant, it is of even dimension and $\operatorname{dim} \nu(M) \geq \operatorname{dim} \widetilde{\mu}(M)=l \geq e$. Also since $\widetilde{\mu}(M)$ is invariant with respect to the normal connection, we have $\widetilde{\mu}(M)_{x} \subset N_{0}(x)$. Hence the first normal space $N_{1}(x) \subset N_{x}=\phi D_{x}^{\perp} \oplus \sigma(M)_{x}$ where $\nu(M)=\widetilde{\mu}(M) \oplus \sigma(M)$. Since $\widetilde{\mu}(M)$ is invariant with respect to the normal connection, so is N. Applying Theorem 4.1, there exists a totally geodesic odd-dimensional unit sphere $S^{2 m+1-l}$ such that $M \subset S^{2 m+1-l}$.

References

[1] A. Bejancu, Geometry of CR-submanifolds, D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, Tokyo, 1986.
[2] M. Djoric, Codimension reduction and second fundamental form of CRsubmanifolds in complex space forms, J. Math. Anal. Appl. 356 (2009), 237-241.
[3] M. Djoric, M. Okumura, CR-Submanifolds of Complex Projective Spaces, Springer, New York, Dordrecht, Heidelberg, London, 2010.
[4] J. Erbacher, Reduction of the codimension of an isometric immersion, J. Differ. Geom. 5 (1971), 333-340.
[5] H. S. Kim, J. S. Pak, Certain contact CR-submanifolds of an odd-dimensional uint sphere, Bull. Korean Math. Soc. 44 (2007), 109-116.
[6] J. H. Kwon, J. S. Pak, On some contact CR-submanifolds of an odd dimensional unit sphere, Soochow J. Math. 26 (2000), 427-439.
[7] J. S. Pak, J. H. Kwon, H. S. Kim, Y. M. Kim, Contact CR-submanifolds of an odd-dimensional unit sphere, Geom. Dedic. 114 (2005), 1-11.
[8] K. Yano, M. Kon, Contact CR-submanifolds, Kodai Math. J. 5 (1982), 238-252.
[9] K. Yano, M. Kon, CR-submanifolds of Keahlerian and Sasakian manifolds, Brikhauser, Boston, Basel, Stuttgart, 1983.

Author's address:

Esmaiel Abedi, Ghorbanali Haghightdoost
Department of Mathematics,
Azarbaijan Shahid Madani University, Tabriz, Iran.
E-mail: esabedi@azaruniv.edu, gorbanali@azaruniv.edu
Mehri Asadollahzadeh
Institute of Mathematical Sciences,
University of Bonab, Iran.
E-mail: m.a.zadeh@bonabu.ac.ir

[^0]: Balkan Journal of Geometry and Its Applications, Vol.21, No.2, 2016, pp. 1-8.
 (c) Balkan Society of Geometers, Geometry Balkan Press 2016.

