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Abstract. Generalized Roter type manifolds form an extended class of
Roter type manifolds, which gives rise the form of the curvature tensor
in terms of algebraic combinations of the fundamental metric tensor and
Ricci tensors upto level 2. The object of the present paper is to investigate
the characterization of a warped product manifold to be a generalized
Roter-type (and hence as a special case for Roter type and conformally
flat) manifold. We also present an example by a metric which ensures the
existence of a warped product generalized Roter type manifold but is not
Roter type manifold.
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1 Introduction

Let M be an n (≥ 3)-dimensional connected semi-Riemannian smooth manifold
equipped with a semi-Riemannian metric g. We denote the Levi-Civita connection,
the Riemann-Christoffel curvature tensor, Ricci tensor, scalar curvature and the space
of all smooth functions on M by ∇, R, S, κ and C∞(M) respectively. The manifold
M is flat if R = 0 and M is of constant curvature if R is a constant multiple of the
Gaussian curvature tensor. For a conformally flat manifold M , R can be expressed
as

R = J1g ∧ g + J2g ∧ S,

where J1, J2 ∈ C∞(M). Especially, M is flat (resp., constant curvature and con-
formally flat) if J1 = J2 = 0 (resp., J1 = κ

n(n−1) , J2 = 0 and J1 = − κ
2(n−1)(n−2) ,

J2 = 1
n−2 ). The manifold M is Roter type (briefly, RTn; see [4, 17]) if R can be

expressed as a linear combination of g ∧ g, g ∧ S and S ∧ S. Very recently, Shaikh et
al. [25] introduced the notion of generalized Roter type manifold. A manifold is said
to be generalized Roter type (briefly, GRTn) if its curvature tensor can be expressed
as a linear combination of g ∧ g, g ∧ S, S ∧ S, g ∧ S2, S ∧ S2 and S2 ∧ S2. We note
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that the name “generalized Roter type” was first used in [25]. For general properties
of GRTn and its proper existence we refer the readers to see [28] and also references
therein.

The paper is organized as follows. Section 2 is concerned with preliminaries. Sec-
tion 3 deals with warped product manifolds and various curvature relations. Section 4
is devoted to the study of warped products GRTn and obtained the characterization
of such manifolds (see Theorem 4.1). We obtain the characterization of a warped
product manifold to be RTn and conformally flat. The last section deals with the
proper existence of such notion by an example with a suitable metric.

2 Preliminaries

Let M be an n (≥ 3)-dimensional semi-Riemannian manifold and S2 be its level 2
Ricci tensor of type (0,2). In terms of local coordinates, the tensor S2 can be expressed
as

S2
ij = gklSikSjl.

Similarly the Ricci tensors of level 3 and 4, S3 and S4 are respectively defined as

S3
ij = gklS2

ikSjl and S4
ij = gklS3

ikSjl.

Now for two (0, 2) tensors A and E, their Kulkarni-Nomizu product ([5], [7], [11],
[18]) A ∧ E is given by

(A ∧ E)ijkl = AilEjk +AjkEil −AikEjl −AjlEik.

In particular, we can define g ∧ g, g ∧S, S ∧S, g ∧S2, S ∧S2 and S2 ∧S2 as follows:

(g ∧ g)ijkl = 2(gilgjk − gikgjl), (g ∧ S)ijkl = gilSjk + Silgjk − gikSjl − Sikgjl,

(S ∧ S)ijkl = 2(SilSjk − SikSjl), (g ∧ S2)ijkl = gilS
2
jk + S2

ilgjk − gikS
2
jl − S2

ikgjl,

(S ∧S2)ijkl = SilS
2
jk +S2

ilSjk −SikS
2
jl −S2

ikSjl, (S2 ∧S2)ijkl = 2(S2
ilS

2
jk −S2

ikS
2
jl).

We note that the tensor 1
2 (g∧g) is known as Gaussian curvature tensor and is denoted

by G. A tensor D of type (0,4) on M is said to be generalized curvature tensor ([5],
[7], [11]), if

(i)Dijkl +Djikl = 0, (ii)Dijkl = Dklij , (iii)Dijkl +Djkil +Dkijl = 0.

Moreover if D satisfies the second Bianchi identity, i.e.,

Dijkl,m +Djmkl,i +Dmikl,j = 0,

then D is called a proper generalized curvature tensor, where ‘coma’ denotes the
covariant derivative. If A and B are two symmetric (0, 2) tensors, then A ∧ B is
obviously a generalized curvature tensor.

We mention that there are various generalized curvature tensors which are linear
combination of Riemann-Christoffel curvature tensor with Kulkarni-Nomizu products
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of some tensors. One such important curvature tensor is the conformal curvature
tensor C, and is given by

C = R− 1

n− 2
g ∧ S +

κ

2(n− 1)(n− 2)
g ∧ g.

We refer the readers to see [27] for details about the various curvature tensors and
geometric structures along with their equivalency.

Definition 2.1. Let M be a semi-Riemannian manifold satisfying the following con-
dition

(2.1) R = N1g ∧ g +N2g ∧ S +N3S ∧ S,

for some N1, N2 and N3 ∈ C∞(M). The above condition is called a Roter type
condition and M is called a Roter type manifold ([?, 6, 13, 15, 19, 21]) with N1, N2

and N3 as the associated scalars.

It may be mentioned that every conformally flat manifold of dimension ≥ 4, as
well as every 3-dimensional manifold are Roter type.

Definition 2.2. Let M be a semi-Riemannian manifold satisfying the following con-
dition

(2.2) R = L1g ∧ g + L2g ∧ S + L3S ∧ S + L4g ∧ S2 + L5S ∧ S2 + L6S
2 ∧ S2,

for some Li ∈ C∞(M), 1 6 i 6 6. The above condition is called a generalized Roter
type condition and M is called a generalized Roter type manifold ([25], [28]) with Li’s
as the associated scalars.

For details about the geometric properties of generalized Roter type manifold we
refer the readers to see [28]. We mention that such decompositions of R were already
investigated in [8], [12], [23] and very recently in [9], [10], [24]. Throughout this paper
by a proper GRTn we mean a GRTn which is not a RTn, and by a proper RTn we
mean a RTn which is not conformally flat. A GRTn or a RTn is said to be special if
one or more of their associated scalars are identically zero or assume some particular
values.

Again contracting the Roter type and generalized Roter type conditions Shaikh
and Kundu [28] presented some generalizations of Einstein metric conditions.

Definition 2.3. [1] If in a semi-Riemannian manifold M , S and g (resp., S2, S and
g; S3, S2, S and g; S4, S3, S2, S and g) are linearly dependent then it is called
Ein(1) (resp., Ein(2); Ein(3); Ein(4)) manifold. The Ein(1) manifold is known as
Einstein manifold and in this case we have S = κ

ng.

We note that every Ein(i) manifold is Ein(i+ 1) for i = 1, 2, 3 but not conversely
[25]. It is well known that every manifold of constant curvature is always Einstein.
Again a RTn is Ein(2) except N1 = − κ

2(n−1)(n−2) , N2 = 1
n−2 , N3 = 0; and a GRTn is

Ein(4) except L1 = 1
2

(
L4(κ2−κ(2))

n−1 − κ
(n−1)(n−2)

)
, L2 = 1

n−2−L4κ, L3 = 1
2L4(n−2),

L5 = 0, L6 = 0, where κ(2) = tr(S2).
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3 Warped product manifolds

Let (M, g) and (M̃, g̃) be two semi-Riemannian manifolds of dimension p and (n− p)

respectively (1 ≤ p ≤ n− 1). The product metric g̊ on M = M × M̃ is defined as

g̊ = π∗(g) + σ∗(g̃),

where π : M → M and σ : M → M̃ are the natural projections. Generalizing this
notion of product metric, Kruc̆kovic̆ [22] introduced the notion of semi-decomposable
metric g on M as

g = π∗(g) + (f ◦ π)σ∗(g̃),

where f is a positive smooth function on M . Again to construct a large class of
complete manifolds of negative curvature, Bishop and O’Neill [2] obtained the same
notion and named as warped product manifold. We mention that in the literature of
differential geometry the name warped product is more widely used and here we also
use the name ‘warped product manifold’.

Let M be the warped product manifold equipped with the warped product metric
g. If we consider a product chart(

U × V ;x1, x2, ..., xp, xp+1 = y1, xp+2 = y2, ..., xn = yn−p
)

on M , then in terms of local coordinates, g can be expressed as

gij =


gij for i = a and j = b,
f g̃ij for i = α and j = β,
0 otherwise,

(3.1)

where a, b ∈ {1, 2, ..., p} and α, β ∈ {p+ 1, p+ 2, ..., n}. We note that throughout
the paper we consider a, b, c, ... ∈ {1, 2, ..., p} and α, β, γ, ... ∈ {p+ 1, p+ 2, ..., n} and

i, j, k, ... ∈ {1, 2, ..., n}. Here M is called the base, M̃ is called the fiber and f is called
the warping function of M . If f = 1, then the warped product reduces to the product
manifold. Moreover, when Ω is a quantity formed with respect to g, we denote by Ω
and Ω̃, the similar quantities formed with respect to g and g̃ respectively.

The non-zero local components Rhijk of the Riemann-Christoffel curvature tensor
R, Sjk of the Ricci tensor S and the scalar curvature κ of M are given by

Rabcd = Rabcd, Raαbβ = fTabg̃αβ , Rαβγδ = fR̃αβγδ − f2PG̃αβγδ,(3.2)

Sab = Sab − (n− p)Tab, Sαβ = S̃αβ +Qg̃αβ , and(3.3)

κ = κ+
κ̃

f
− (n− p)[(n− p− 1)P − 2 tr(T )],(3.4)

where Gijkl = gilgjk − gikgjl are the components of Gaussian curvature and

Tab = − 1

2f
(fa,b −

1

2f
fafb), tr(T ) = gabTab,

P =
1

4f2
gabfafb, Q = −f((n− p− 1)P + tr(T )), fa = ∂af =

∂f

∂xa
.



86 A. A. Shaikh, H. Kundu

For more detail about warped product components of basic tensors we refer the readers
to see [20], [26] and also references therein.

Now from above results we can easily calculate the local components of various
necessary tensors. The non-zero local components of S2, (g ∧ g), (g ∧ S), (S ∧ S),
(g ∧ S2), (S ∧ S2) and (S2 ∧ S2) are given as follows:{

(i)S2
ab = S

2

ab + (n− p)(S · T )ab + (n− p)2T 2
ab,

(ii)S2
αβ = 1

f [S̃2
αβ + 2QS̃αβ +Q2g̃αβ ].

(3.5)

 (i)(g ∧ g)abcd = (g ∧ g)abcd,
(ii)(g ∧ g)aαbβ = −2fgabg̃αβ ,
(iii)(g ∧ g)αβγδ = f2(g̃ ∧ g̃)αβγδ.

(3.6)


(i)(g ∧ S)abcd = (g ∧ S)abcd − (n− p)(g ∧ T )abcd,

(ii)(g ∧ S)aαbβ = −gab(S̃αβ +Qg̃αβ) − fg̃αβ(Sab − (n− p)Tab),

(iii)(g ∧ S)αβγδ = f(g̃ ∧ S̃)αβγδ + 2fQG̃αβγδ.

(3.7)


(i)(S ∧ S)abcd = (S ∧ S)abcd − 2(n− p)(S ∧ T )abcd

+(n− p)2(T ∧ T )abcd,

(ii)(S ∧ S)aαbβ = −2(S̃αβ +Qg̃αβ)(Sab − (n− p)Tab),

(iii)(S ∧ S)αβγδ = (S̃ ∧ S̃)αβγδ + 2Q(S̃ ∧ g̃)αβγδ +Q2(g̃ ∧ g̃)αβγδ.

(3.8)



(i)(g ∧ S2)abcd = (g ∧ S2
)abcd + (n− p)(g ∧ (S · T ))abcd

+(n− p)2(g ∧ T 2)abcd,

(ii)(g ∧ S2)aαbβ = − 1
f gab(S̃

2
αβ + 2QS̃αβ +Q2g̃αβ)

−fg̃αβ(S
2

ab + (n− p)S · Tab + (n− p)2T 2
ab),

(iii)(g ∧ S2)αβγδ = (g̃ ∧ S̃2)αβγδ + 2Q(g̃ ∧ S̃)αβγδ +Q2(g̃ ∧ g̃)αβγδ.

(3.9)



(i)(S ∧ S2)abcd = (S ∧ S2
)abcd + (n− p)(S ∧ (S · T ))abcd

+(n− p)2(S ∧ T 2)abcd − (n− p)(S
2 ∧ T )abcd

−(n− p)2(T ∧ (S · T ))abcd
+(n− p)3(T ∧ T 2)abcd,

(ii)(S ∧ S2)aαbβ = − 1
f (Sab − (n− p)Tab)(S̃

2
αβ + 2QS̃αβ +Q2g̃αβ)

−(S̃αβ +Qg̃αβ)

(S
2

ab + (n− p)(S · T )ab + (n− p)2T 2
ab),

(iii)(S ∧ S2)αβγδ = 1
f [(S̃ ∧ S̃2)αβγδ + 4Q(S̃ ∧ S̃)αβγδ

+Q2(S̃ ∧ g̃)αβγδ +Q(g̃ ∧ S̃2)αβγδ
+2Q2(g̃ ∧ S̃)αβγδ + 2Q3(g̃ ∧ g̃)αβγδ].

(3.10)
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(i)(S2 ∧ S2)abcd = (S
2 ∧ S2

)abcd + (n− p)2((S · T ) ∧ (S · T ))abcd

+(n− p)2(T 2 ∧ T 2)abcd + 2(n− p)3(S
2 ∧ T 2)abcd

+2(n− p)3((S · T 2) ∧ T 2)abcd

+2(n− p)(S
2 ∧ (S · T ))abcd,

(ii)(S2 ∧ S2)aαbβ = − 2
f (S

2

ab + (n− p)(S · T )ab + (n− p)2T 2
ab)

(S̃2
αβ + 2QS̃αβ +Q2g̃αβ),

(iii)(S2 ∧ S2)αβγδ = 1
f2 [(S̃2 ∧ S̃2)αβγδ + 4Q2(S̃ ∧ S̃)αβγδ

+Q4(g̃ ∧ g̃)αβγδ + 4Q(S̃2 ∧ S̃)αβγδ
+2Q2(g̃ ∧ S̃2)αβγδ + 4Q3(g̃ ∧ S̃)αβγδ].

(3.11)

From above it follows that the components of g ∧ g, g ∧ S, S ∧ S, g ∧ S2, S ∧ S2

and S2 ∧ S2 are given in a quadratic form of Kulkarni-Nomizu product for base and
fiber part, and quadratic form of the product for the mixed part. So each of them
can be expressed by a matrix. For example, (g ∧ S)abcd, (g ∧ S)aαbβ and (g ∧ S)αβγδ
can respectively be expressed as

∧ g S S
2

T T 2 S · T
g 0 1

2 0 p−n
2 0 0

S 1
2 0 0 0 0 0

S
2

0 0 0 0 0 0

T p−n
2 0 0 0 0 0

T 2 0 0 0 0 0 0

S · T 0 0 0 0 0 0

,

g̃ S̃ S̃2

g −Q −1 0

S −f 0 0

S
2

0 0 0
T f(p − n) 0 0

T 2 0 0 0

S · T 0 0 0

and

∧ g̃ S̃ S̃2

g̃ fQ f
2 0

S̃ f
2 0 0

S̃2 0 0 0

.

Similarly, we can get the matrix representations of the components for the other
tensors g ∧ g, S ∧ S, g ∧ S2, S ∧ S2 and S2 ∧ S2.

4 Warped product generalized Roter-type manifolds

Theorem 4.1. If Mn = M
p×f M̃

n−p is a warped product manifold, then M satisfies
the generalized Roter type condition

(4.1) R = L1g ∧ g + L2g ∧ S + L3S ∧ S + L4g ∧ S2 + L5S ∧ S2 + L6S
2 ∧ S2

if and only if

(i) the Riemann-Christoffel curvature tensor R of M can be expressed as

∧ g S S
2

T T 2 S · T
g L1

L2
2

L4
2

1
2L2(p − n) 1

2L4(n − p)2 1
2L4(n − p)

S
L2
2 L4

L5
2 L4(p − n) 1

2L5(n − p)2 1
2L5(n − p)

S
2 L4

2
L5
2 L6

1
2L5(p − n) L6(n − p)2 L6(n − p)

T 1
2L2(p − n) L3(p − n) 1

2L5(p − n) L3(n − p)2 − 1
2L5(n − p)3 − 1

2L5(n − p)2

T 2 1
2L4(n − p)2 1

2L5(n − p)2 L6(n − p)2 − 1
2L5(n − p)3 L6(n − p)4 L6(n − p)3

S · T 1
2L4(n − p) 1

2L5(n − p) L6(n − p) − 1
2L5(n − p)2 L6(n − p)3 L6(n − p)2

(ii) fR̃, R̃ being the Riemann-Christoffel curvature tensor of M̃ , can be expressed as

∧ g̃ S̃ S̃2

g̃
L6Q4

f2 +
L5Q3

f + (L3 + L4)Q
2+ (L3 + L4)Q+ 1

2

(
L4 +

Q(fL5+2L6Q)

f2

)
fL2Q + f2L1 − fP

2
L2f3+3L5Q2f+4L6Q3

2f2

S̃ (L3 + L4)Q +
L2f3+3L5Q2f+4L6Q3

2f2 L3 +
2Q(fL5+2L6Q)

f2
fL5+4L6Q

2f2

S̃2 1
2

(
L4 +

Q(fL5+2L6Q)

f2

)
fL5+4L6Q

2f2
L6
f2
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(iii) the following expression vanishes identically on M :

g̃ S̃ S̃2

g −L4Q2

f − L2Q − 2fL1 −L2 − 2L4Q
f −L4

f

S −L5Q2

f − 2L3Q − fL2 − 2(fL3+L5Q)
f −L5

f

S
2 − 2L6Q2

f − L5Q − fL4 −L5 − 4L6Q
f − 2L6

f

T f(L2(p − n) − 1) +
L5Q2(p−n)

f + 2L3Q(p − n) − 2(n−p)(fL3+L5Q)
f

L5(p−n)
f

T 2 −
(n−p)2

(
L4f2+L5Qf+2L6Q2

)
f − (n−p)2(fL5+4L6Q)

f − 2L6(n−p)2

f

S · T −
(n−p)

(
L4f2+L5Qf+2L6Q2

)
f − (n−p)(fL5+4L6Q)

f
2L6(p−n)

f

.

Proof. In terms of local coordinates, (4.1) can be expressed as

Rijkl = L1(g ∧ g)ijkl + L2(g ∧ S)ijkl + L3(S ∧ S)ijkl(4.2)

+ L4(g ∧ S2)ijkl + L5(S ∧ S2)ijkl + L6(S2 ∧ S2)ijkl.

From (4.2) it follows that we can consider the following three cases:

(I) i = a, j = b, k = c, l = d;

(II) i = α, j = β, k = γ, l = δ;

(III) i = a, j = α, k = b, l = β.

Consider the case I: i = a, j = b, k = c, l = d in (4.2) and using (3.2)-(3.11), we get

Rabcd = L1(g ∧ g)abcd + L3((S − (n− p)T ) ∧ (S − (n− p)T ))abcd

+L2(g ∧ (S − (n− p)T ))abcd + L4(g ∧ (S − (n− p)S · T + (n− p)2T 2))abcd

+L5(S ∧ (S − (n− p)S · T + (n− p)2T 2))abcd

+L6((S − (n− p)S · T + (n− p)2T 2) ∧ (S − (n− p)S · T + (n− p)2T 2))abcd.

Now expressing the above in matrix form, we get (i). Similarly setting i = α, j =
β, k = γ, l = δ in (4.2), we get (ii).
Again putting i = a, j = α, k = b, l = β in (4.2) and using (3.2)-(3.11), we obtain

fTabg̃αβ = −2L1fgabg̃αβ − L2

[
gab(S̃αβ +Qg̃αβ) + fg̃αβ(Sab − (n− p)Tab)

]
−(Sab − (n− p)Tab)

[
2L3(S̃αβ +Qg̃αβ) +

L5

f
(S̃2

αβ + 2QS̃αβ +Q2g̃αβ)

]
−L4

f
gab(S̃

2
αβ + 2QS̃αβ +Q2g̃αβ)

−L4fg̃αβ(S
2

ab + (n− p)S · Tab + (n− p)2T 2
ab)

−L5(S
2

ab + (n− p)(S · T )ab + (n− p)2T 2
ab)(S̃αβ +Qg̃αβ),

−2L6

f
(S

2

ab + (n− p)(S · T )ab + (n− p)2T 2
ab)(S̃

2
αβ + 2QS̃αβ +Q2g̃αβ).

Now simplifying above and expressing in matrix form, we obtain (iii). This completes
the proof. �

The above theorem yields the following:
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Corollary 4.2. If Mn = M
p×f M̃

n−p is a warped product manifold with (n−p) ≥ 3
satisfying the generalized Roter-type condition (4.1), then

(i) the fiber M̃ is generalized Roter type.

(ii) the fiber M̃ is Roter type if J1 ̸= 0, where

J1 = − 1

f

[
L4p+ L5(tr(T )(n− p) + κ)

+2L6

(
tr(T 2)(n− p)2 + (n− p)tr(S · T ) + κ(2)

) ]
.

(iii) the fiber M̃ is of vanishing conformal curvature tensor if J1 ̸= 0 and

(J2)2L6

f2(J1)2
+
J2(fL5 + 4L6Q)

f2J1
+

2Q(fL5 + 2L6Q)

f2
+ L3 = 0,

where J2 = − 1

f

[
(fL5 + 4L6Q)

(
(n− p)

(
tr(T 2)(n− p) + tr(S · T )

)
+ κ(2)

)
+ p(fL2 + 2L4Q) + 2tr(T )(n− p)(fL3 + L5Q) + 2κ(fL3 + L5Q)

]
.

(iv) the fiber M̃ is of constant curvature if J1 = 0 and J2 ̸= 0.

Corollary 4.3. If Mn = M
p ×f M̃

n−p is a warped product manifold with p ≥ 3
satisfying generalized Roter-type condition (4.1), then the base M is generalized Roter
type if T can be expressed as a linear combination of g and S.

From Theorem 4.1 we can easily get the necessary and sufficient condition for a
warped product manifold to be Roter type.

Corollary 4.4. If Mn = M
p ×f M̃

n−p is a non-flat warped product manifold, then
M satisfies the Roter type condition

(4.3) R = N1g ∧ g +N2g ∧ S +N3S ∧ S

if and only if

(i) R =

∧ g S T

g N1
N2

2
1
2N2(p− n)

S N2

2 N3 N3(p− n)
T 1

2N2(p− n) N3(p− n) N3(n− p)2

,

(ii) fR̃ =

∧ g̃ S̃

g̃ N1f
2 +N2Qf +N3Q

2 − fP
2

fN2

2 +N3Q

S̃ fN2

2 +N3Q N3

,

(iii)

g S T
g̃ −2fN1 −N2Q −fN2 − 2N3Q −f(1 +N2(n− p)) − 2N3Q(n− p)

S̃ −N2 −2N3 2N3(p− n)

= 0.

Proof. The result follows from Theorem 4.1, by setting L1 = N1, L2 = N2, L3 = N3

and L4 = L5 = L6 = 0. �
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Corollary 4.5. If Mn = M
p ×f M̃

n−p is a non-flat warped product manifold with
(n− p) ≥ 3 satisfying the Roter type condition (4.3), then
(i) the fiber is of Roter type.
(ii) the fiber is of vanishing conformal curvature tensor if M is conformally flat.
(iii) the fiber is of constant curvature if −2(n− p)N3tr(T ) −N2p− 2N3κ ̸= 0.

Corollary 4.6. If Mn = M
p ×f M̃

n−p is a non-flat warped product manifold with
p ≥ 3 satisfying the Roter type condition (4.3), then the base is of Roter type if T , g
and S are linearly dependent with non-zero coefficient of T .

Recently, Deszcz et al. [14] studied the warped product Roter type manifold with
1-dimensional fiber and showed the following:

Corollary 4.7. [14] If Mn = M
n−1 ×f M̃

1 is a non-flat warped product manifold
satisfying the Roter type condition (4.3), then M realizes a Roter type condition at
those points, where it does not satisfy the Einstein metric condition.

Proof. Since the dimension of M̃ is n − p = 1, from the condition (iii) of Corollary
4.4, we get

(2fN1 +N2Q)g + (fN2 + 2N3Q)S + (f(1 +N2) + 2N3Q)T = 0.

If at x ∈M , S ̸= κ̄
n−1g, then (f(1 +N2) + 2N3Q) ̸= 0 at x and T can be expressed as

linear combination of S and g and hence by Corollary 4.6, M satisfies a Roter type
condition at x. This completes the proof. �

Now we can easily deduce the necessary and sufficient condition for a warped
product manifold to be conformally flat manifold, as follows:

Corollary 4.8. If Mn = M
p ×f M̃

n−p, 1 ≤ p ≤ n− 1 is a non-flat warped product
manifold, then M is conformally flat if and only if
(i) R = κ

2(n−1)(n−2)g ∧ g + 1
n−2g ∧ S − n−p

n−2g ∧ T ,

(ii) R̃ =
[

fκ
2(n−1)(n−2) + Q

n−2 − 1
2P
]
g̃ ∧ g̃ + 1

(n−2) g̃ ∧ S̃,

(iii)
[

2fκ
2(n−1)(n−2) + Q

n−2

]
gabg̃αβ+ 1

n−2gabS̃αβ+ f
n−2Sabg̃αβ+f

(
n−p
n−2 + 1

)
Tabg̃αβ = 0.

Proof. The result follows from Corollary 4.4 by taking N1 = κ
2(n−1)(n−2) , N2 = 1

n−2

and N3 = 0. �

From above we can state the following:

Corollary 4.9. [3] If Mn = M
p ×f M̃

n−p is a conformally flat warped product
manifold, then
(i) for (n− p) ≥ 2, the fiber is of constant curvature.
(ii) for p ≥ 2, the base is of vanishing conformal curvature tensor.

Proof. By contracting the condition (iii) of Corollary 4.8, it follows that T is a linear

combination of g and S, and S̃ is a scalar multiple of g̃. Putting these in the condition
(i) and (ii) of Corollary 4.8, we get the results. �
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Since for the decomposable manifold the warping function f is 1, we have T = 0,
P = 0 and Q = 0. Thus applying these values in (3.2) to (3.11) we get the non-zero
components of R, S, κ, S2, g∧g, g∧S, S∧S, g∧S2, S∧S2 and S2∧S2. Consequently,
from Theorem 4.1 we can state the following:

Corollary 4.10. If Mn = M
p × M̃n−p is a decomposable manifold, then M satisfies

the generalized Roter-type condition (4.1) if and only if

(i) R =

∧ g S S
2

g L1
L2
2

L4
2

S
L2
2 L4

L5
2

S
2 L4

2
L5
2 L6

, (ii) R̃ =

∧ g̃ S̃ S̃2

g̃ L1
L2
2

L4
2

S̃
L2
2 L3

L5
2

S̃2 L4
2

L5
2 L6

, (iii)

g̃ S̃ S̃2

g 2L1 L2 L4

S L2 2L3 L5

S
2

L4 L5 2L6

= 0.

Note. From the above corollary we can get the necessary and sufficient conditions
for a decomposable manifold to be Roter type by taking L4 = L5 = L6 = 0, and
conformally flat by taking L3 = L4 = L5 = L6 = 0, L1 = κ

2(n−1)(n−2) and L2 = 1
n−2 .

Again from the above results we see that the decompositions of a semi-Riemannian
product generalized Roter type manifold are also generalized Roter type manifold but
the converse is not necessarily true, in general. We also note that the same situations
arise for Roter type and conformally flat manifolds.

Remark 4.1. In this context we state the necessary and sufficient conditions of a
warped product manifold to be Einstein. Let Mn = M

p ×f M̃
n−p be a warped

product manifold ([1], see also [16]). Then M is Einstein if and only if

(i) S − (n− p)T = κ
ng and (ii) S̃ =

(
fκ
n −Q

)
g̃.

5 Examples

Example 5.1: Consider the warped product M = M ×f M̃ , where M is an open

interval of R with usual metric g = (dx1)2 in local coordinate x1 and M̃ is a 4-
dimensional manifold equipped with a semi-Riemannian metric

g̃ = (dx2)2 + h(dx3)2 + h(dx4)2 + hψ(dx5)2

in local coordinates (x2, x3, x4, x5), where the warping function f is a function of
x1, and h and ψ are everywhere non-zero functions of x2 and x3 respectively. We
can easily evaluate the local components of necessary tensors of M̃ . The non-zero
components of the Riemann-Christoffel curvature tensor R̃ and the Ricci tensor S̃ of
M̃ upto symmetry are

ψR̃1212 = ψR̃1313 = R̃1414 = ψ

(
(h′)

2 − 2hh′′
)

4h
, ψR̃2323 = R̃3434 = −ψ

4
(h′)

2
,

R̃2424 =
1

4

(
−ψ (h′)

2 − 2hψ′′ +
h (ψ′)

2

ψ

)
and

S̃11 =
3
(
2hh′′ − (h′)

2
)

4h2
, S̃22 =

1

4

(
2h′′ +

(h′)
2

h
− (ψ′)

2 − 2ψψ′′

ψ2

)
,
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S̃33 =
2hh′′ + (h′)

2

4h
, S̃44 =

1

4

(
2
(
ψh′′ + ψ′′)+ ψ (h′)

2

h
− (ψ′)

2

ψ

)
.

Then we can easily check that this manifold is generalized Roter type and Ein(3)
manifold. Again if
(i) (h′)2 − hh′′ = 0, i.e., h = c1e

c2x
2

, then it is a Ein(2) manifold and hence Roter
type;

(ii) (ψ′)2−2ψψ′′ = 0, i.e., ψ = (c1x
3+2c2)

2

4c2
, then it is a manifold of constant curvature,

where c1 and c2 are arbitrary constants.
Now by a straightforward calculation we can evaluate the components of vari-

ous necessary tensors of M . The non-zero components of the Riemann-Christoffel
curvature tensor R and the Ricci tensor S of M upto symmetry are

hψR1212 = ψR1313 = ψR1414 = R1515 = hψ
(f ′)

2 − 2ff ′′

4f
,

ψR2323 = ψR2424 = R2525 =
ψ

4

(
−h (f ′)

2 − 2fh′′ +
f (h′)

2

h

)
,

ψR3434 = R4545 = −ψ
4

(
h2 (f ′)

2
+ f (h′)

2
)
,

R3535 =
1

4

[
f

(
−ψ (h′)

2 − 2hψ′′ +
h (ψ′)

2

ψ

)
− h2ψ (f ′)

2

]
,

and

S11 = − (f ′)
2 − 2ff ′′

f2
, S22 =

1

4

(
2f ′′ +

2 (f ′)
2

f
+

6hh′′ − 3 (h′)
2

h2

)
,

ψS33 = S55 =
1

4

(
2hψf ′′ +

2hψ (f ′)
2

f
+ 2ψh′′ +

ψ (h′)
2

h
+ 2ψ′′ − (ψ′)

2

ψ

)
,

S44 =
1

4

(
2 (hf ′′ + h′′) +

2h (f ′)
2

f
+

(h′)
2

h

)
.

From these we can easily calculate the components of S2, S3, S4 and also the com-
ponents of G, g ∧ S, S ∧ S, g ∧ S2, S ∧ S2 and S2 ∧ S2. We observe that for every f ,
h and ψ, the manifold is Ein(4) but not of generalized Roter type. We now discuss
the results for particular value of the functions f , h and ψ step by step as follows:

Step I: If (h′)2 − hh′′ = 0, i.e., h = c1e
c2x

2

, then M is generalized Roter type and

Ein(3). We note that in this case fiber M̃ is proper Roter type and hence M is a
proper generalized Roter type warped product manifold with proper Roter type fiber.

Step II: Again consider

−2(f ′)2 + f(2f ′′ − 1) = 0, i.e., f =
1

16c21
e−

√
c1(x

1+c2)
(
e±

√
c1(x

1+c2) + 4c1

)2
,

where c1 and c2 are arbitrary non-zero constants. Then the manifold is a Ein(2)
manifold and hence the manifold is proper Roter type. In this case fiber remains also
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Roter type. So M is a warped product proper Roter type manifold with proper Roter
type fiber.

Step III: Finally, consider (ψ′)2 − 2ψψ′′ = 0, i.e., ψ = (c1x
3+2c2)

2

4c2
. Then M is of

constant curvature and in this case fiber is also of constant curvature.
If f = (x1)2, h = c2 cos2(x2 − 2c1) and ψ = ex

3

, then the manifold M is a special

generalized Roter type and is Ein(3). In this case the fiber M̃ is proper generalized
Roter type and is Ein(3). Hence M is a warped product generalized Roter type
manifold with proper generalized Roter type fiber.

6 Conclusions

The present paper is devoted to the study of warped product generalized Roter type
manifolds and obtained the necessary and sufficient conditions for a warped product
manifold to be of generalized Roter type manifold. As a particular case we obtain
the characterization of a warped product Roter type manifold. It is shown that the
fiber of a warped product GRTn (resp., RTn, conformally flat) is also generalized
Roter type (resp., Roter type, manifold of constant curvature). We find out the
conditions for which the fiber of a warped product GRTn is Roter type, conformally
flat or a manifold of constant curvature and the base is a generalized Roter type.
It is also shown that the two decompositions of a GRTn product manifold are both
generalized Roter type but the product of two generalized Roter type manifolds is
not always generalized Roter type. Finally by suitable metric, the existence of such
case is ensured by an example.
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