Locally maximal homoclinic classes for
generic diffeomorphisms

Manseob Lee

Abstract. Let M be a closed smooth d(> 2) dimensional Riemannian
manifold and let f : M — M be a diffeomorphism. For C' generic f, a
locally maximal homogeneous homoclinic class is hyperbolic.
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1 Introduction

Let M be a closed smooth d(> 2) dimensional Riemannian manifold and let f : M —
M be a diffeomorphism. Denote by Diff (M) the set of all diffeomorphisms of M
endowed with the C! topology. Let A be a closed f invariant set. We say that A is
hyperbolic if the tangent bundle Th M has a D f-invariant splitting £° @ E" and there
exist constants C' > 0 and 0 < A < 1 such that

1Dz f" ||| < CA" and |[Dyf™"|pu[ < CA"

for all x € A and n > 0. If A = M then f is said to be Anosov. A point p € M is
periodic if there is n > 0 such that f™(p) = p. Denote by P(f) the set of all periodic
points of f. It is well known that if p is a hyperbolic periodic point of f with period
7(p) then the sets

Wip)={z e M: f"P"(z) 5 pasn— oo} and
Whp)={zeM: fT™P"() = pasn— oo}

are C! injectively immersed submanifolds of M. A point x € W*(p) h W¥(p) is called
a homoclinic point of f associated to p. The closure of the homoclinic points of f
associated to p is called the homoclinic class of f associated to p, and it is denoted
by Hy(p). It is known that H(p) is closed, transitive and f-invariant sets. Let p
and ¢ be hyperbolic periodic points. We write p ~ ¢ if W*(p) h W%(q) # & and
W (p) h W*(q) # & . We say that p,q € P(f) are homoclinically related if p ~ q. It
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is clear that if ¢ ~ p then index(p) = index(q), where index(p) = dimW?#(p). Note that
a hyperbolic p € P(f), there are a C! neighborhood U(f) of f and a neighborhood U
of p such that for any g € U(f), pg = ez 9" (U), where p, is said to be continuation
of p.

We say that the homoclinic class Hy(p) is homogeneous if index(p) = index(q),
for any hyperbolic ¢ € Hf(p) N P(f), We say that A is locally mazimal if there is a
neighborhood U of A such that A = (1, ., f"(U). Here the neighborhood U is called
locally mazximal neighborhood of A.

We say that a subset G C Diff (M) is residual if G contains the intersection of
a countable family of open and dense subsets of Diff(M). In this case G is dense in
Diff (M). A property "P” is said to be (C!) generic if "P” holds for all diffeomorphisms
which belong to some residual subset of Diff (M).

We say that A admits a dominated splitting if the tangent bundle TA M has a
continuous D f-invariant splitting E®F and there exist constants C > 0and 0 < A < 1
such that

1D f" @) | - 1 Daf " (gl < CA”

for all z € A and n > 0. An invariant closed set A is called a chain transitive if for
any 0 > 0 and z,y € A, there is d-pseudo orbit {z;}!" o(n > 1) C A such that o = =
and z,, = y. Abdenur et al [1] proved that C! generically, any chain-transitive set A
of f, then either (a) there is a dominated splitting over A or (b) the set A is contained
is the Hausdorff limit of a sequence of periodic sinks/sources of f. Recently, Lee [9]
proved that C! generically, if a chain transitive set A is locally maximal then it admits
a dominated splitting. We say that A is Lyapunov stable for f if for every neighbor-
hood U of A there is another neighborhood V' of A such that f™(V) C U for any
n > 1. We say that A is bi-Lyapunov stable if it is Lyapunov stalbe for f and for f—!.
Potrie and Sambarino [12] proved that C'! generic diffeomorphisms with a homoclinic
class with non empty interior and in particular those admitting a codimension one
dominated splitting. Potrie [13] proved that for C! generic f € Diff(M), a Lyapunov
stable homolinic class Hy(p) admits a dominated splitting. Wang [14] proved that
for C! generic f € Diff(M), where M is connected, if a homoclinic class H¢(p) is
bi-Lyapunov stable, then we have: either H;(p) is hyperbolic, and so, Hy(p) = M
and f is Anosov, or f can be C' approximated by diffeomorphisms that have a het-
erodimensional cycle. From the results, we prove the following.

Theorem A For C' generic f € Diff(M), a locally mazimal homogeneous homoclinic
class Hy(p) is hyperbolic, for some hyperbolic p € P(f).

From Theorem A, we directly obtained the previous results ([3, 7, 8]). Moredetail,
C' generically, if a diffeomorphism f has the shadowing or limit shadowing property
on a locally maximal H(p) then Hy(p) is homogeneous. Thus we can easily show that
C! generically, if a diffeomorphsm f has the shadowing property ([3, 7]), or the limit
shadowing property ([8]) on a locally maximal homoclinic class then it is hyperbolic.
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2 Proof of Theorem A

Let M be as before, and let f € Diff (M). For § > 0, a sequence of points {z;}_(n >
1) in M is called a §-pseudo orbit of f if d(f(x;),zi41) < 0 for i =0,...,n. For given
z,y € M, we write z ~» y if for any ¢ > 0, there is a d-pseudo orbit {z;}7_,(n > 1)
of f such that z9 = = and z,, = y. The set {x € M : & ~» z} is called the chain
recurrent set of f and is denoted by CR(f). The relation «~ induces an equivalence
relation on CR(f) whose classes are called chain recurrence classes of f. For any
hyperbolic periodic point p, denote by Cy(p) = {z € M :  ~» p and p ~ z}. The
chain recurrent class Cy(p) is a closed and invariant set. In general, the homoclinic
class Hy(p) contained in the chain recurrence class Cf(p).

Lemma 2.1. There is a residual set G; C Diff (M) such that for any f € Gy,

(a) [ is Kupka-Smale, that is, any element of P(f) is hyperbolic, and its invariant
manifolds intersect transversely (see [11]).

b) the chain recurrence class C¢(p) is the homoclinic class H¢(p), for some hyper-
f !
bolic periodic point p (see [4]).

(¢) an isolated chain recurrence class Cy(p) is robustly isolated, that is, there are a
C' neighborhood U(f) of f and a neighborhood U of C¢(p) such that for every

g €U(f), CR(g) NU = Cy(py) (see [5])-

(d) if for any C* neighborhood U(f) of f there is g € U(f) such that g has two
periodic points p and q with index(p) # index(q) then f has two periodic points
py and gy with index(py) # index(qs) (see [10]).

For any ¢ > 0, we say that a hyperbolic p € P(f) has a § weak eigenvalue if there
is an eigenvalue A of D, f™(?) such that

(1—6)"P) < | < (1+8)"®),
where 7(p) is the periodic of p. The following lemma was proved by Wang [14].

Lemma 2.2. There is a residual set Go C Diff (M) such that for any f € Gs, if
a homoclinic class Hy(p) is not hyperbolic then there is a hyperbolic periodic point
g € H¢(p) with g ~ p such that ¢ has a Lyapunov exponent arbitrarily close to 0.

By Lemma 2.2, the hyperbolic periodic point ¢ € Hy(p) is said to be a weak
hyperbolic periodic point if the hyperbolic periodic point ¢ € Hy(p) has a Lyapunov
exponent arbitrarily close to 0. The notion of weak hyperbolic periodic point is a §
weak eigenvalue for the hyperbolic periodic point. We say that a periodic point p is
said to be weak hyperbolic if p has a 0 weak eigenvalue. We rewrite the result of Wang
as the following.

Lemma 2.3. There is a residual set Go C Diff (M) such that for any f € Ga, any
hyperbolic periodic point p of f, if a homoclinic class Hy(p) is not hyperbolic then
there are 6 > 0, and a hyperbolic periodic point ¢ € H¢(p) with g ~ p such that q is a
weak hyperbolic.

The following Franks’ lemma [6] will play essential roles in our proofs.
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Lemma 2.4. Let U(f) be any given C* neighborhood of f. Then there exist € > 0
and a Ct neighborhood V(f) C U(f) of f such that for given g € V(f), a finite set
{x1,22, - , 21}, a neighborhood U of {x1, 22, - ,xx} and linear maps L; : Ty, M —
Ty M satisfying | L; — Dz, g|| < € for all 1 <i <k, there exists g € U(f) such that
gx) =g(x) if v € {z1, 22, - , 2} U(MN\U) and Dy, g = L; for all 1 <i < k.

Lemma 2.5. Let U(f) be a C! neighborhood of f and let U be a locally mazimal
neighborhood of Hy(p). If a weak periodic point g € Hy(p) then there are g € U(f)
and g1 € Ag(U) =,z 9" (U) such that index(q1) # index(py), where Ag(U) is the
continuation of H¢(p).

Proof. Let U(f) be a C! neighborhood of f and let U be a locally maximal neigh-
borhood of Hy(p). Suppose that there is a periodic point ¢ € Hy(p) with the pe-
riod 7(gq) such that ¢ is a weak hyperbolic. For simplicity, we may assume that
f™9(q) = f(q) = q. Since ¢ € H¢(p) is a weak hyperbolic periodic point, for any
0 > 0 there is an eigenvalue A of Dy f such that

(I1-0)<|AN<(1+6)andg~np.

By Lemma 2.4, there is g C* close to f such that g(p) = f(p) = p and D,g has an
eigenvalue A such that |[A\| = 1. Note that by Lemma 2.4, there is g; C! close to f
such that D,g; has only one eigenvalue A with |A\| = 1. Denote by E} the eigenspace
corresponding to A. In the proof we consider two cases : (i) A is real, and (ii) \ is
complex.

First, we may assume that A € R (other case is similar). By Lemma 2.4, there are
a >0, By(p) CU and h C* close to g (h € U(f)) such that

- h(p) = g(p) = p,

- h(z) = exp, o Dpg o exp, ! (2) for x € By(p), and
- h(z) = g(z) for € Byn(p).

Let 7 = a/4. Take a nonzero vector v € exp,(FEj(a)) which is corresponding to
A such that [[v|| = n. Here Ef(a) is the a-ball in EJ with its center at O_; Then we
have
h(exp,(v)) = exp, 0 Dpg o exp, (exp, (v)) = exp,(v).
Put J, = exp,({tv : —n/4 <t < n/4}). Then J, is center at p and h(J,) = Jp.
Since Ba(p) C U we know that J, C Ap(U) =,z A" (U). Since h(Jp) = Jp, take
two end points g, of J,. Then we know that

By Lemma 2.4, there is ¢ C! close to h (¢ € U(f)) such that index(gs) # index(ry),
where g4 and ry4 are hyperbolic points with respect to ¢.

Finally, we consider A € C. For simplicity, we assume that f(p) = p. As in the proof
of the case of A € R, by Lemma 2.4, there are a > 0, B,(p) C U and g € U(f) such
that

9(p) = f(p) = p and g(x) = exp, 0 Dpg o exp, ' (z)
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for x € By(p). Since A = 1, there is n > 0 such that D,g"(v) = v for any v €
exp, ' (ES(a)). Let v € exp,(ES(e)) such that [|v|| = a/4. Then we have a small arc

exp,({tv: 0 <t <1+a/4}) =T, C A(U) = [ ¢"(U)
nez

such that
(i) ¢"(Z) NG/ (T) = F if0<i#j<n-—1,
(ii) 9"(Zp) = Ip, and
(iii) glnzp : I, — I, is the identity map.

Then we take two point g, r € Z, such that the points are the end points of Z,,. As in
the previous arguments, there is g; C' close to g such that index(q,,) # index(rg,)
where ¢4, and 7,4, are hyperbolic with respect to g;. O

Proof of Theorem A. Let f € G = G; NG, and let p be a hyperbolic periodic point
of f. Suppose, by contradiction, that a homogeneous homoclinic class Hf(p) is not
hyperbolic. Since Hy(p) is homogeneous, we assume that index(p) = j. Let U be a
locally maximal neighborhood of Hy(p). Since Hy(p) is not hyperbolic, by Lemma
2.3 there is a periodic point ¢ € Hy(p) with ¢ ~ p such that ¢ is a weak hyperbolic
point. Since H¢(p) is locally maximal in U, by Lemma 2.5 there is g C! close to
f such that g has two hyperbolic periodic points r,s € Ay(U) = [,z 9" (U) with
index(r) # index(s). Since f € G1, Hy(p) = Cy(p) and it is robust isolated, we have
that

(21) [ g"(CR(9) NU) =CR(9) N Ay(U) C CR(g) NU = Cy(py) = Hy(py),
nez

where pg is the continuation of p.
Since r, s € Ag(U) as hyperbolic periodic points of g, we know that r, s € CR(g) N
U. Then by (1) we have

r,s € CR(9) N Ay(U) CCR(9) NU = Hy(pg) = Cy(pg).

Thus we have r,s € Hy(py) with index(s) # index(r). By Lemma 2.1, we have
two hyperbolic periodic points rf,sy € Hy(p) with index(ry) # index(sy). Since
index(p) = j, we know that either index(rf) # j or index(ss) # j. This is a contra-
diction since Hy(p) is homogeneous. O
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